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1. Introduction 

The physical properties of coatings elaborated by plasma spraying, especially the mechanical 
properties are strongly influenced by some fifty operating parameters of the spraying process. 
Several studies have been conducted to correlate these operating parameters with the coating 
microstructure, via the behavior of molten particles in flight to be impacted against the surface 
substrate, well known as splats. Then, it is expected to build coatings with tailored properties 
for mechanical and even thermal applications (Fauchais & Vardelle, 2000). 

Simultaneously to the operating parameters of plasma spraying, characteristics of raw 
powder play an important role in the coating elaboration (Vaidya et al, 2001). Depending on 
the production process, particles feature different characteristics concerning shape, size, 
specific density, purity, etc. This has a significant influence on the resulting coating 
properties (Sampath et al, 1996). Consequently, it becomes mandatory to have an intensive 
knowledge about the powder characteristics in order to better control the behavior of in-
flight particles and, thus obtaining coatings with the expected performance. 

For the elaboration of composite coatings, it is commonly to use composite powders. 
However, different characteristics of powders are obtained from the variety of processes 
nowadays available for powder production, even for powders with the same chemical 
composition! (Kubel, 2000) Kubel has compared powders produced from different 
techniques for plasma spraying (atomization, agglomeration by spray-drying, melting and 
grinding, wet particle coating; sintering). A variety of powder characteristics is found for 
which the operating parameters for plasma spraying must be adapted to obtain deposits 
featuring the desired properties. From this, certain components or materials are fabricated 
by some of these methods or exclusively just one. 

For example, when the particle shape is different, a change in powder flowability is induced. 
If the more spherical particles are, then powder flows much better. Consequently, the 
resulting properties of coatings obtained by plasma spraying of these powders are so 
different, even if the projection conditions, particle size and mass flow of the powders used, 
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are constant. This is due to the difference in behavior of particle during injection and in-
flight. A powder that flows with difficulty causes a blockage in the pipe injection, resulting 
in a decrease in the rate of deposition. Then, the overheating of substrate and detaching of 
coating are expected. Similarly, the injection of fine particles in a plasma jet has been a major 
difficulty in thermal spraying. 

All these inconvenient are critical for the elaboration of composite coatings due to the great 
differences in physical and chemical properties between metals and ceramics. For example, 
when co-spraying is performed, the deposition of different phases into the coating 
microstructure is heterogeneous, becoming the undesired goal. For this, agglomeration of 
particles is the solution used to spray fine particles of metals, carbides or ceramics. Spray-
drying, granulation or compression methods are used to join fine particles each other resulting 
in bigger agglomerates featuring higher specific area and lower density values. In certain 
manner, these agglomerates still retain some properties from fine particles. The result is a low 
rate of deposition and a porous microstructure coating because of incipient fusion of 
agglomerates during their passage through the plasma jet. However, particle agglomeration 
can easily help to prepare the metal-ceramic composite particles and get coatings composed of 
a metal matrix reinforced by ceramic grains. The agglomerates can be eventually, densified by 
sintering or calcinating and, then crushing before their thermal spraying. 

To find ways of avoiding the heterogeneous deposit of different phases, coating of particles 

is a promising method to deposit simultaneously, metallic and ceramic phases. A variety of 

processes is nowadays available by including wet and dry routes. In the wet route, also 

known as the chemical route, a liquid phase is used to disperse organic binders in order to 

attach two or more different materials such as aluminum coated with nickel, or titanium 

carbide coated with graphite. This method seems to be used less because of the difficulties 

posed by the process itself, mainly by the use of organic binders, often regarded as 

environmental pollutants, the heterogeneity of the coating layer and the cost of production. 

Changes in quantity of coating material on the particles and the loss of it during spraying 

induce a heterogeneous distribution of phases and mechanical properties of deposits. 

A new trend in the production of composite powders is actually required. This technology 

must be able to meet the industrial needs for manufacturing composite coatings taking into 

account the reproducibility of results, problems related to environmental pollution, costs 

and the feasibility of powders production. 

In the mid-80's, Yokoyama developed the process, called mechanofusion for the production 

of PMMA particles coated by alumina (Yokoyama et al, 1987). Later, powders based on 

nickel and aluminum, were prepared by Ito (Ito, 1991). This technology allows the 

production of composite powders in a dry route with no need to add a binder, or sintering 

for attaching to the particles coating the surface of host particles. Another feature of the 

Mechanofusion process is the obtaining of particles with a nearly spherical shape. 

Technologies for dry particle coating are relatively new and are still under research and 

development stages, but have a high industrial interest. In comparison with other methods 

for producing coated particles, the dry technique is considered "clean" since it does not use 

solvents or organic binder, and even water is avoided. Therefore, the cost and time of 

production is considerably reduced, if only by avoiding the step of drying powders. 
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By giving the proposal for using of two different techniques, the mechanofusion and plasma 
spraying, this chapter is aimed to describe how the particles characteristics play an 
important role in order to adapt the mechanofusion process for producing composite 
powders and their influence on the coatings building by plasma spraying. 

2. Raw material: The particles processing 

Currently, the materials used in the preparation of composite coatings can be obtained from 
different techniques; however, the selection of this technique will depend on the plasma 
spraying technique used in order to obtain the appropriate treatment of the particles in the 
jet and then the desired deposit. Next, it will be summarized a brief classification of 
composite coatings under the only criterion of the production technique of powder. 

2.1 Wet coated particles 

The coating of particles in a wet route is most often used for the protection of carbide 

powders, which decompose rapidly during spraying. This decomposition or loss of carbon 

causes either the oxidation of released elements or the formation of intermediate phases 

which degrade the deposits properties such as their oxidation resistance, hardness or wear 

resistance. Then, it is though that could be useful the adding a protective layer on the 

particles sensitive. For example tungsten carbide (WC) was coated with cobalt (Co), whose 

content varies from 12 to 17 wt% (Vinayo et al, 1985; Kim et al, 1997; Jacobs, 1998). Other 

examples, TiC can be coated with carbon or graphite (Moreau, 1990), and chromium oxide by 

cobalt CrO2/Co (Lugscheider, 1992). Sol-gel is a technique for the production of composite 

particles at the nanoscale such as Al2O3/SiC system that allows obtaining deposits with some 

metastable phases of Al2O3 into the stable phase α-SiC (Jiansirisomboon, 2003). 

2.2 Self-propagating High-temperature Synthesis (SHS) 

The SHS process (Self-propagating High-temperature Synthesis) is part of the family of 

combustion reactions involving the metal reducing and oxidizing (oxygen is the oxidizing 

agent the most common). For the synthesis of materials by direct reaction, self-combustion is 

established by the exothermicity of the reaction and converts the reactants into products that 

are still in solid form. This does not necessarily mean the involvement of oxygen. The SHS is 

used for the production of composite powders containing titanium carbide (TiC), considered 

the best replacement for the tungsten carbide (WC) traditionally used in applications that 

require good wear resistance. The obtained composites coatings consist of TiC phase 

dispersed within a metal matrix formed by the NiCr alloy (Bartuli & Smith, 1996). In other 

applications, the MoSi2 compound prepared by SHS is used to form a protective layer 

resistant to corrosion at high temperatures, such as casting nozzles in the glass industry 

(Bartuli et al, 1997; Gras, 2000). 

2.3 Plasma spheroidized powder 

Spheroidization of powders by plasma is primarily to heat and melt the particles while 
holding in a plasma jet. The raw materials are often milled and sintered powders with poor 
flowability. The spherical droplets that form are then cooled and solidified gradually. The 
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wollastonite mineral (CaSiO3) are very popular in the field of cement and ceramics, 
including one of its metastable phase called wollastonite TC (triclinic structure) has a great 
success in medical applications. Obviously, the control of chemical composition and 
impurities becomes mandatory. However, the irregular morphology of minerals leads to 
difficulties in marketing. That's why a spherical morphology of particles is desired. Work on 
this subject have lead to encouraging results using the plasma spraying in water, whose 
particle shape is spherical then this improves the flowability characteristics and the quality 
of the deposit (Liu & Ding. 2002; Liu & Ding. 2003). By the same principle, it is possible to 
improve the flow characteristics of particles initially irregulars; mixtures of milled powders 
of NiCoCrAlY and ZrO2-Y2O3 were densified and spheroidized by plasma spraying in 
distilled water (Khor et al, 2000). On an industrial scale, companies like Tekna Plasma 
Systems Inc. produce a wide variety of powders spheroidized by plasma radiofrequency 
induction including powders such as YSZ/ZrO2, Al2TiO6, Cr/Fe/C, SiO2, Re/Mo, Re, WC, 
CaF2, TiN (Boulos, 2011). 

2.4 Atomization 

As already described, spraying of particles is the most used method for the production of 

alloys of iron, cobalt, nickel, or aluminium (Rautioaho et al, 1996; Wang et al, 2006; 

Krajnikov, 2003; Kelly, 1999). But the resulting particles have no the same shape depending 

of the atomization media, particles may show a spherical (gas atomization) or an irregular 

(water atomization) shape. The deposits obtained with these powders feature an 

homogeneous distribution of phases. This is due to the excellent flowing characteristics of 

particles in the plasma and the absence of metastable phases of the compounds prepared by 

this technique (Sordelet, 1998; Zhao et al, 2003; Zhao & Lugscheider, 2002). 

2.5 Mechanical alloying 

The main objective of the plasma spraying of powders obtained by mechanical alloying is to 
obtain homogeneous microstructure but also very fine. Since mechanical alloying can lead 
to intermetallic phases that are often difficult to form even at high temperatures, the plasma 
spraying of powders prepared by high energy milling is then an excellent alternative for the 
formation of deposits of this type of composite phases. The versatility of the mechanical 
alloying allows processing systems such as HA hydroxyapatite reinforced with zirconia 
stabilized with yttria, Cu/Al2O3 and Ti/Al/Si3N4 (Fukumoto & Okane. 1992).  In the case of 
systems with explosive materials such as aluminium powder with a very fine particle size 
(< 3 µm), the short-term mechanical alloying reduces the reactivity of this powder due to 
either the inclusion of particles of a hard phase (Al2O3 and/or SiC) within the Al particles or 
the bonding of small particles of Al2O3 and SiC at surface of Al (Bach et al, 2000). 

2.6 Reactive plasma spraying 

To reduce costs, several authors propose the use of particles capable of reacting with the 

environment by forming new compounds due to the reactivity of the in-flight particles and 

get a more homogeneous distribution of phases. Depending on the working  atmosphere, 

the resulting species may be of oxide, nitride or carbide. Examples of this kind of coatings 

are those obtained from spraying of materials such as FeTiO3, whose resulting deposits are 
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composed of Fe/TiC-Ti3O5; and titanium Ti to obtain the deposition TiN, Ti2N, TiN1-x, TiC 

or TiC1-x (Ananthapadmanabhan & Taylor, 1999; Valente & Galliano, 2000; Lugscheider et 

al, 1997). 

2.7 Melted/sintered and milled powders 

The melted/sintered and milled powders are commercially the most popular due to their 

relative simplicity of the production process. The main difference between the two processes 

is the temperature of production, which induces some differences in the properties of 

powders. In the case of WC/Co, sintered particles are more porous than melted ones, and 

the appearance of intermediate phases such as W2C and Co3W3C or even only tungsten, is 

far more important in the melted powders than in sintered. Regarding particle morphology, 

melted powders are the most irregular, since the fracture is created along the crystal planes 

and twins while in the sintered particles, the fracture propagates between defects and grain 

boundaries. Obviously, resulting deposits feature different characteristics even if is the same 

material, such as fracture toughness and modulus are higher for deposits prepared with 

powders milled and blended than those sintered and crushed (Khor, 2000; De Villiers, 1998; 

Jacobs et al, 1998). The process of melting and milling the powder can also be used to vary 

the chemical composition, particle size distribution and homogeneity of the powder system 

(Ananthapadmanabhan, 2003). 

2.8 Agglomerated powders 

Apart from the more conventional technology of all, the mechanical mixing of powders [ ,  

],, the technique of preparing agglomerated powders is the most used in the field of 

plasma spraying of composite powders. The spray drying, commonly known as 

agglomeration of the powder is used to form spherical agglomerates followed by a 

sintering treatment in a controlled atmosphere to prevent their destruction during their 

penetration into the plasma jet. Different systems of powders are produced including: 

WC/Co, WC/CoCr, WC/NiMoCr, Ni/SiC (Wang et al, 2006; Krajnikov, 2003; Kelly, 1999; 

Vinayo et al, 1985; Bach, 2000; Khan & Clyne, 1996; Zimmermann et al, 2003; Wielage et al, 

2001). 

2.9 Other techniques 

The study of development of composite coatings is not only related to the pre-processing of 

powders but also to different spraying protocols. For example the formation of multilayer 

deposits is becoming popular in applications such as deposition of thermal barrier to reduce 

the problem of cracking of the deposit or detaching due to thermal shock. This is also valid 

for the development of deposits with a combination of the properties of wear resistance and 

lubrication (Ramaswany et al, 1997; Gadow, & Scherer, 2001). However, if the deposit 

should keep just certain homogeneity of phase distribution, the co-spraying of powders 

allows the deposition of powders having different densities without the need for binders or 

pre-mix powder (Trice, 1999; Denoirjean, 2003). Another possibility for development of 

composite coatings is the co-precipitation of phases by melting and tempering of materials 

often immiscible each other (Colaizzi, 2000). 

www.intechopen.com



 
Advanced Plasma Spray Applications 

 

44

2.10 Mechanofusion 

The elaboration of composite coatings using mechanofused powders was proposed in the 
90's by the inventors of the system (Yokoyama et al, 1987). After that, a limited number of 
studies was presented in the literature. The system Ni/Al was investigated first by H. Ito et 
al. The system Ni/Al was investigated first by H. Ito et al. with interesting results 
encouraging for the industrial use of mechanofusion process as a new alternative of powder 
preparation for plasma spraying (Ito et al, 1991). Mechanofused powders exhibit improved 
flowability as compared to raw powders because of the spherical shape, which facilitates 
injection. Consequently, deposits are built with a homogeneous distribution of phases and 
the appearance of intermetallic phases formed during spraying (Ito et al, 1991; Kim, 1997; 
Jacobs, 1998). Several authors have evaluated different configurations of powdered systems 
for plasma spraying including: NiAl/TiC/ZrO2 (Herman et al, 1992a; Herman et al, 1992b), 
AlCuFe and AlCuCo (Csanády, 1997), NiAl or NiCrAl-TiC-ZrO2 (Bernard, 1994), and 316L 
stainless steel – α-Al2O3 (Ageorges & Fauchais, 2000; Cuenca-Alvarez et al, 2003a, 2003b). 

2.11 An example of application 

In the following sections, the influence of main parameters of mechanofusion processing, 
henceforth called MF, firstly on deformation of metallic particles and, secondly the particle 
coating will be described. The powder system is selected  by considering a review of the 
previous bibliography oriented towards a wear resistance application. 

2.11.1 Powder characteristics 

Stainless steel (SS) is specified as the host particles, whereas alumina as the guest ones. The last 
is sustained by the increase of wear resistance by combining toughness of metals with 
hardness of ceramics. Physical characteristics and SEM micrographs of raw powders are given 
in table I. Since dry particle coating depends on the particle size distributions (PSD) of host 
and guest particles, PSD must be different each other at least in an order of 2 as confirmed by 
laser granulometry. Commercial gas atomized 316L stainless steel is provided by Sultzer 
Metco with two particle size distributions whereas finer α-alumina is from Baikowzki, France. 

Preparation of composite particles is performed by using an in-house designed MF set-up, 
consisting of a cylindrical chamber rotating on the vertical axis at 1400 rpm, with a 
concentric joint of compression hammers and scraper blades remaining static. The gap 
between the inner wall of the chamber and the compression hammer is adjustable. Due to 
centrifugal forces and, depending on the compression gap, the powder is forced against the 
chamber wall and dynamically compressed through the gap. Consequently, particles bed is 
intensively mixed and subjected to different phenomena such as compression, attrition, 
frictional shearing or rolling. Then, mechanical energy input, plus the generated heat can 
lead to mechanical alloying, homogeneous mixing, or deformation of metallic particles. 

When two different types of particles, in terms of chemical composition and particle size 
distribution, are MF processed; the finest particles (secondary) are attached on the coarser 
particle surface (host) without needing to use binders (Yokoyama et al, 1987). There are 
several operating parameters affecting the performance of the MF device (Cuenca-Alvarez, 
2003c). However, once the characteristics of host and guest particles are specified, the key 
parameters are the rotation speed, processing time as a function of the powder input rate, 
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compression gap and the mass ratio of host to guest particles. Then, a compression rate (τ) is 
defined by the relation between the powder bed thickness formed over the inner wall (EC) 
and the spacing of compression gap (EF): 

 
EC EF

EC
τ

−
=   (1) 

As mentioned above, this work analyzes firstly the influence of compression rate affecting 

the stainless steel particle shape, followed by the study of feasibility of the MF device to coat 

stainless steel host particles by pure alumina in function of the powder charges and the 

powder rate input. The corresponding variations in the operating parameters are given in 

table II. 

 
 

Function Characteristics Morphology 

Host 
Designation: 
SS 

316L Stainless Steel 
Mean Particle size: 142 µm
Specific mass 7960 kgm-3 

 

 
 

Guest 
Designation: 
AL 

Alumina (α- phase) 
Mean Particle size: 1.5 µm
Specific mass 3900 kgm-3 

 

 
 

 

Table 1. Powder characteristics 
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Parameter Value 

Stainless steel charge [g] 150 

Compression rate [τ] 25, 15, 5 

Mass ratio of Host/Guest particle  15, 7.5, 3 

Processing time [h] 1, 2, 3, 4, 5 

Table 2. MF operating parameters. 

2.11.2 Deformation of metallic particles 

Compression rate plays an important role on the particle shape. When τ = 25, metallic 

particles are welded to the internal chamber wall due to the overheating generated by the 

friction between the compression hammer and the powder bed (figure 1a). However, 

friction decreases rapidly at lower values of τ (15) where deformed particles are obtained as 

shown in figure 1b. For τ=5, the compression gap is widely spaced to induce a moderate 

deformation of particles with a tendency to spheroidize them (figure 1c).  

  

 

Fig. 1. Appearance of mechanofused particles at different τ: (a) 25 (b) 15 and (c) 5. 

Nevertheless, fine particles (~1 µm) appear as a result of the abrasion effect taking place into 

the wide gap formed by the geometry of scraper blades. Thus, in order to reduce this effect, 

scraper blades geometry is modified to recover more efficiently the agglomerated powder 

from the wall surface with an incipient abrasion effect. 
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2.11.3 Coating of stainless steel particles by Al2O3 

By using τ = 5, milling and overheating of particles is avoided but a rolling effect is still 
present, particle coating is strongly influenced by the behaviour of alumina particles into the 
powder bed. When alumina content is evaluated by means of processing powder at values 
of mass ratio of host to guest particles of 3 and 7.5, alumina particles are segregated onto the 
chamber wall surface as shown in Fig. 2a. This behaviour allows just the coverage of some 
particles featuring a heterogeneous surface coating (Fig. 2b). However, if MF process is 
performed with smaller amounts of fine guest particles, surface coverage is more uniform. 
This phenomenon applies for a mass ratio of host/guest particles of 15.0 and, is explained 
by a better dispersing of alumina particles within the bed of particles, avoiding their 
segregation. 

    

Fig. 2. (a) Agglomeration of alumina particles onto chamber components. (b) SEM 
micrographs of mechanofused particles at higher alumina contents. 

By considering the latest, processing time is investigated as a function of the powder input 

rate by introducing alumina particles at 0.05 g/min in order to ensure a well dispersion of 

both phases into the powdered bed. Samples are taken by intervals of 1 h up to 5 h. A 

comparison in particle size distributions of mixtures processed at different periods (Fig. 3a), 

shows a slight difference in the main peak centered at 105 µm. It is likely that, even though 

the compression gap is widely spaced, a strong rolling effect is still induced, thus attrition of 

coarser metallic particles take place in the early stages of MF processing, reducing the size of 

metallic particles. However, a small peak is observed in the range of 0.3 to 1 µm for the 

samples processed up to 4 and 5 h. This phenomenon suggests that guest alumina particles, 

which previously have been attached to the surface of host particles, now are detached due 

to their successive passing throughout the compression gap. In Fig. 3b, the corresponding 

XRD patterns reveal an increase in size of Al2O3-α peak as more alumina particles are 

introduced. Nevertheless, a slight oxidation of stainless steel particles is detected on 47° 2θ 

in all cases as a result of attrition taking place in the early stages of processing described 

before. Then, material not oxidized is renewed at the surface of metallic particles, but 

oxidation does not continue because of attaching of alumina particles onto that metallic 

surface preventing its wearing. 

Attrition and deformation effects, described above, lead the composite particles to adopt a 
spherical shape after 4 h of processing, achieving a shape factor of 1.25 (1.0 corresponds to 
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the perfect sphere). Morphology and cross-sections from the resulting composite particles 
(fig. 4) reveal the formation of a uniform coating of alumina onto the surface of stainless 
steel particles, attaining up to 5.4 µm of thickness. 
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Fig. 3. Evolution of (a) particle size distribution and (b) XRD patterns during MF process of 
stainless steel SS plus alumina at different processing times: 1, 2, 3, 4, and 5 h. 
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Fig. 4. Evolution of (a) PSD and (b) XRD patterns during MF process of stainless steel SS 
plus alumina at different processing times: 1, 2, 3, 4, and 5 h. 

2.11.4 Coating of stainless steel particles by Al2O3 and SiC 

The study for preparing a metal/oxide/carbide composite powder was performed by 
working with the same operating parameters indicated on table 2 but adding up to of 4 
wt % alumina and 1.6 wt % silicon carbide. After 6 h of processing, the resulting particles 
were mesh sieved between 40 - 200 µm. 

Samples of SS/AL/SiC mechanofused-composite powders consist also of a stainless steel 
core uniformly coated by a ceramic shell composed by a mixture of Al2O3/SiC. Typical 
morphologies and cross sections of these powders are shown in Fig. 5. All composite 
powders are found to be nearly spherical with a mean shape factor of 1.05 and the ceramic 
shell thickness attains 3.6 µm in thickness. No phase transformation or contamination was 
detected after the mechanofusion processing as confirmed by XRD analysis. 

3. Plasma spraying: The operating parameters 

Metal, ceramic or composites coatings, produced by plasma spraying are formed via the 
stacking of impacted particles at a very high speed (100 to 350 m / s), then flattened due to a 
molten or plastic state, over the surface of the substrate to be coated. The microstructure of 
these deposits depends on the particle behaviour in-flight into the plasma and at the impact 
against the substrate which was prepared previously to certain characteristics. 
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Simultaneously, this behavior is majorly controlled by the spraying conditions and the 
thermophysical properties of plasma gas. In the following, it will be presented the resulting 
composite coatings from the previously described powders processed by mechanofusion 
considering the main operating parameters of the spraying process. 

  

Fig. 5. SEM micrographs of (a) morphology and (b) cross section of Stainless 
steel/Al2O3/SiC mechanofused-composite powders. 

3.1 Generation of plasma jet 

The plasma jet is formed from a high voltage discharge (5 - 10kV) and high frequency (few 
MHz) between the tip of a thoriated tungsten cathode (2% Wt Thoria) and the wall of a 
nozzle-anode electrolytic copper (concentric to the cathode). Thus, a plasma jet flows trough 
out of the nozzle at high speed (between 1000 and 2500 m/s) and a temperature between 
8000 and 14000 K, for an enthalpy about 100 kWh/m3. The plasma gas at the nozzle exit, have 
a low density (1/30th of the density of cold gas) and viscosity at 10 000 K could be ten times 
higher than the same mixtures at room temperature. For this case, air plasma spraying (APS) 
was performed with a conventional d.c. plasma torch under the parameters listed on Table 3. 

3.2 The convective motion inside the particles 

Inside the plasma jet, a strong movement is induced at the interface liquid-gas due to a 
significant difference in velocity between the fluid and the molten particles, forcing the 

displacement of material within of droplet. This is evidenced by the appearance of waves on 
the surface of the particles and oxide nodules in their core, after passing through the plasma 

jet (the Reynolds number is 20 to 40) (Espié, 2000). Figure 6 shows the morphology of 
particles collected at 100 mm downstream of the nozzle exit. Three types of behaviours, 

according to the state of heating of composite particles, can be observed: (Fig. 6a) those 
corresponding to particles just over the melting temperature where the alumina shell is 

broken due to the large difference of expansion coefficient between both materials (for 
stainless steel is 17 x 10-6K-1 and 8 x 10-6K-1 for alumina); (Fig. 6b) those more heated than 

in the preceding case but where the molten alumina shell was not entrained to the tail of the 
in flight particle, then the alumina shell is already consolidated but the host particle is burst 

into pieces. The third case (Fig. 6c) corresponds to the overheated particles where the light 
alumina shell at the surface of the molten stainless steel droplet is entrained either to the 

front or the back edge of the moving droplet. 
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Anode nozzle i.d. [mm] 7 

Arc current [A] 550 

Voltage [V] 57 

Argon flow rate [slm] 45 

Hydrogen flow rate [slm] 15 

Gun thermal efficiency [%] 56 

Injector external position [mm] x = 7.5 z = 3.0* 

Injector i.d. [mm] 1.8 

Spray distance [mm] 100 

Table 3. Plasma jet parameters 

 

 
 

 
 

Fig. 6. Aspect of different types of particles collected in mid-flight: (a) semi-solid composite 
particle, (b) ceramic shell still remaining consolidated and (c) completely molten composite 
particle. 

3.3 Chemical reactions of particles in-flight: oxidation and/or decomposition 

If thermal spraying is performed at atmospheric pressure in the open air, the plasma jet is 

mixed with the entrained air, having different physicochemical properties, especially 

density is 30 or 40 times higher, inducing the formation of vortex rings. Thus, coalescence of 

these vortices is expected to form large amplitudes, showing difficulty to mixing with the air 

jet, as 'dense particles', until the plasma is correlatively cooled by heat exchange. 

Consequently, changes in the distributions of temperature, velocity and composition of the 

plasma conduce to a heterogeneous treatment of particles and, in particular it is likely to 
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react with the entrained oxygen. The reaction rate depends mainly on the oxygen content in 

their neighbourhood, the exposure time of metal particles to oxygen and the particles 

temperature (Vardelle et al, 1995). 

The oxidation reaction is developed through two mechanisms (Espié, 2000): 

• By diffusion of oxygen from the surface to the core of particles (very slow, thickness 
about one hundred nanometers to a few microns for metals such as pure iron) that 
represents 1 to 2% by weight oxide; 

• By convection from the particle surface towards within. In a continuous circulation, this 
induces the introduction of metal oxidized and dissolved oxygen inside the core of 
particle and the refreshing of metal to the surface. Then, the formation of oxide nodules 
is expected with much higher weight percentage of oxide (12 to 14 wt% for iron, for 
example), as compared to that obtained by diffusion. 

Obviously, oxidation phenomenon inside the plasma have a significantly influence on the 
composition, microstructure, properties and performance of the deposits obtained. 
Typically, this is responsible for the appearance of defects in lamellae cohesion; chemical 
differences on the surface and on the coefficients of dilatation that eventually degrade the 
mechanical and thermal properties of deposits. The only way to prevent or slow down their 
occurrence is the isolating of spraying process in vacuum chambers or in controlled 
atmosphere, but their use remains limited to applications that justify the significantly higher 
installation cost (by a ratio 10 to 25). 

XRD analysis (Fig. 7) reveals a slight oxidation rate of the metallic phase when spraying 
SS/Al2O3 composite powder. It is worth noting that ferrochromium oxides promote 
fractures and cracking when coatings are subjected to compressive stress (Volenik, 1998). 

3.4 Coating building 

The deposit is built by a series of successive passes that allow the deposition of particles in a 
melted or plastic state. The stacking of particles begins on the substrate surface and then 
continues on particles already deposited and, generally, solidified. Consequently, the 
contact conditions between lamellae/substrate and lamellae/lamellae are critical for the 
final properties of coatings (Bianchi, 1995; Branland, 2002). The time between two successive 
passes must be also considered because, for small size parts is about a few seconds while for 
larger parts (15 m long) this time can reach even several tens of hours. 

Obviously, the final properties of coatings are directly controlled by factors concerning 
particles (kinetics, viscosity, chemical reactivity of droplets, temperature) and substrate 
(chemical asset, temperature, roughness). This is explained from a variety of studies that is 
found in references (Léger et al, 1996; Sampath et al, 1996; Fauchais et al, 2004; Pech, 1999). 

3.4.1 Substrate temperature 

From all operating parameters, the substrate temperature seems to play the most important 
role in the formation of lamellae. For a smooth substrate (Ra<0.05 µm), below of a substrate 
temperature, so-called "transition temperature, TT", the droplet breaks into interconnected 
pieces. The lower the temperature of the substrate, the morphology of lamellae is more 
irregular splash-shaped. However, over the TT temperature, the morphology of the lamellae 
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is rather cylindrical disk-shaped with higher contact area and stronger adhesion to the 
substrate. It should be noted that TT depends on the sprayed and substrate materials. For 
example, for a zirconia or alumina on stainless steel 316L, TT is about 200 ° C. 

 

Fig. 7. XRD spectra of different plasma sprayed coatings from SS/Al2O3 and SS/Al2O3/SiC. 

By considering wettability, TT also depends either on the oxidation state of the substrate 
and in-flight particles. If substrate is heated too long at too high temperature, an oxide layer 
is formed changing the characteristics of substrate surface in terms of nature, thickness, 
morphology and roughness of the oxide formed. Although the substrate is at a temperature 
greater than TT, lamellae will show a weak adhesion or even will not attach to it (Fauchais et 
al, 2004). 

The best contact conditions observed on smooth substrates at a temperature greater than TT, 
also applies to rough substrates (Ra > 1 µm) and deposit adhesion is greatly increased (by a 
factor of 3 to 4). In addition, the morphology of lamellae also governs the size and 
distribution of pores, residual stresses and microstructure of the deposit. 

The morphology of splats of SS/Al2O3 depends on substrate surface temperature. On cold 

substrates (TS<100°C), alumina has splashed all around the fingered stainless steel splat, as 

shown in Fig. 8.a, whereas a nearly disk-shaped splat, is obtained on a substrate preheated 

to 300°C where the aluminum is placed either over (Fig. 8b) or under (Fig. 8c) the stainless 

steel splat according to the host particle size. This phenomenon was explained concerning 

about the alumina cap position relatively to the stainless steel droplet: for the particles 

smaller than 100 µm the alumina cap is behind the stainless steel droplet at impact on the 

substrate while with particles bigger than 100 µm it is in front of stainless steel (Cuenca-

Alvarez, 2003c). 

For another type of splats, corresponding to particles shown in Fig 6a., alumina is scattered 
in small pieces over the splat surface (Fig. 8d). In-flight, the alumina pieces are either solid 
or close to their melting temperature i.e. very viscous. Upon flattening the stainless steel 

www.intechopen.com



 
Advanced Plasma Spray Applications 

 

54

which has a high momentum pushes away the alumina pieces or maybe those beneath the 
flattening particle in its rim where the contact with the substrate is poor. Thus, alumina 
pieces are distributed evenly at the top of the splat and more regularly in its rims. It occurs 
whatever may be the preheating temperature of the substrate. 

 

  

  

Fig. 8. Splats of stainless steel/alumina composite particles collected on (a) cold and (b,c,d) 
350 °C preheated substrates.  

The powdered system SS/Al2O3/SiC develops particular splat morphology (Fig. 9). It 

consist of an alumina-mesh net interconnected by fine SiC grains and distributed over the 

stainless steel splat as confirmed by the EDS analysis presented in white color. 

3.4.2 Phases distribution and hardness properties 

Typical microstructures of the resulting plasma sprayed coatings of SS/Al2O3 and 
SS/Al2O3/SiC mechanofused powders are shown in the Fig. 10. Both coatings exhibit a 
dense lamellar structure with randomly distributed hard phases within the stainless steel 
matrix. However the alumina distribution is coarser when spraying SS/Al2O3 powder due 
to the higher alumina content. Homogeneous distribution of ceramics is then expected 
either by adding a lower content of hard phase or using a smaller core particle size. 

These microstructural characteristics of coatings influence their hardness properties. A 
comparison between the different coatings developed, illustrated in Fig. 11, shows that 
higher hardness is obtained with both SS/Al2O3 (HV5 843 MPa ± 63) while with 
SS/Al2O3/SiC is lower (HV5 756 MPa ± 38). However, the resulting hardness of composite 
coatings is in both cases higher than that obtained with pure stainless steel deposits (HV5 
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747 MPa ± 44). Two possible reasons can explain these observations: the uniformly 
distributed alumina within the coating and the formation of ferrochromium oxides 
increasing its hardness by dispersion strengthening of hard phases. 

 

 
 

 

   

Fig. 9. Particular morphology of SS/Al2O3/SiC splats showing the ceramic-mesh net on the 
stainless steel splat with their corresponding EDS analysis in white color. 

   

Fig. 10. Typical microstructures of plasma sprayed coatings from (a) SS/Al2O3, and (b) 
SS/Al2O3 SiC 

By comparing with SS/Al2O3, hardness of SS/Al2O3/SiC coating is lower due to the 
incomplete melting of particles limiting the oxide formation. It is most likely that mainly 
coarse host particle size and a thermal barrier effect of the alumina shell promote this state 
of incomplete fusion. But also, the hardness attains a value similar to that of pure stainless 
steel deposits. Nevertheless, no oxide formation is detected by XRD analysis with this type 
of composite coating. This suggests that coatings’ strengthening is mainly governed by the 
formation of a fine ceramic-mesh net as described above in Figure 9. 
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Fig. 11. Comparison of hardness between different plasma sprayed coatings developed from 
either pure stainless steel or composites powders. 

4. Conclusions 

Mechanofusion process is an effective means to prepare composite powders to be thermal 
sprayed and, consequently to control the plasma spray deposit microstructure. The high 
energy input of the mechanofusion process is directed towards the creation of particle 
interfaces via agglomeration of particles with a very fine size, in this case alumina (0.6 µm) 
and silicon carbide (3 µm), coated on stainless steel particles (–90 µm +45 µm). It is likely 
that agglomeration of fine alumina and silicon carbide particles on stainless steel particles is 
governed by the large difference in particle size distributions. 

When spraying these composite powders, alumina and silicon carbide particles are found 

embedded and uniformly distributed in a dense steel matrix enhancing hardness properties. 

The final hardness is according to the kind of composite but it could be considered that the 

responsible for increasing the coating hardness, is mainly the uniformly distributed ceramic 

hard phase within the metallic matrix. Actually, the formation of ferrochromium oxides is 

not an option to increase coating hardness, because coarser particles (100-140 µm) are not 

completely melted during their passing through the plasma jet, so oxidation is still diffusion 

controlled  

By spraying a ternary composite powder (stainless steel/alumina/silicon carbide), coating 
hardness is slightly higher than that of pure stainless steel. These composite coatings exhibit 
a particular mechanism of strengthening consisting of the formation of an alumina-mesh net 
interconnected by fine SiC grains and distributed over the surface of the stainless steel splat. 
This allows to joint directly metal splats, retaining the hard phase between lamellae. 

Finally it is likely that oxidation of stainless steel particles is limited or almost stopped by 

their coarse particle size and a molten Al2O3 and SiC layer.  
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the core of the plasma jet may exceed up to 30,000 K. Gas velocity in the plasma spray torch can be varied

from subsonic to supersonic using converging-diverging nozzles. Heat transfer in the plasma jet is primarily the

result of the recombination of the ions and re-association of atoms in diatomic gases on the powder surfaces

and absorption of radiation. Taking advantages of the plasma plume atmosphere, plasma spray can be used

for surface modification and treatment, especially for activation of polymer surfaces. I addition, plasma spray

can be used to deposit nanostructures as well as advanced coating structures for new applications in wear and

corrosion resistance. Some state-of-the-art studies of advanced applications of plasma spraying such as

nanostructure coatings, surface modifications, biomaterial deposition, and anti wear and corrosion coatings

are presented in this book.
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