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1. Introduction 

Continental water storage is a key component of global hydrological cycle which play a 

major role in the Earth's climate system via controls over water, energy and 

biogeochemical fluxes. In spite of its importance, the total continental water storage is not 

well-known at regional and global scales because of the lack of in situ observations and 

systematic monitoring of the terrestrial water reservoirs, especially the groundwaters 

component (Alsdorf & Lettenmaier, 2003). Although some local hydrological monitoring 

networks exist, the current description of water storage comes primarily from global 

hydrology models (e.g., WaterGAP Global Hydrology Model - WGHM (Döll et al., 2003) 

or Global Land Data Assimilation System - GLDAS (Rodell et al., 2004a)), which still 

suffer from important limits, such as the absence of different compartments of the 

terrestrial water compartments (e.g., groundwater and floodplains), the errors introduced 

by external forcings (mostly the precipitation), the lack of reliability of external 

parameters as the soil type or the vegetation cover, the parameterization. Unfortunately, 

direct hydrological measurements are fairly limited, while imaging satellite techniques 

and satellite altimetry only give access to surface water and superficial soil moisture 

variations, that represent just the more accessible components of total water storage. Since 

its launch in 2002, the Gravity Recovery and Climate Experiment (GRACE) gravimetry 

from space mission offers a unique alternative to classical remote sensing technique for 

measuring changes in total water storage (ice, snow, surface waters, soil moisture, 

groundwater) over continental areas, representing a new source of information for 

hydrologists and the global hydrological modelling community. 

We propose a review of the major techniques and results in extracting continental 

hydrology signals from GRACE satellite gravimetry, aiming at studying large-scale 

processes in hydrology and glaciology and the impact of the climatic variations on the 

global hydrological cycle. The two first parts describe the principle of the GRACE mission 

and the nature of the data measured. The third part is devoted to the post-processings 

applied to the GRACE-based products to improve their quality and accuracy. The last part 

presents the most significant results obtained for land hydrology and ice sheets mass 

balance using GRACE. 
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2. Principle of GRACE space gravimetry mission 

GRACE, a joint US-German (NASA/DLR) mission, was launched in March 2002 and placed 
at low altitude on a quasi-polar orbit (inclination of 89.5°), to map the time variations of the 
Earth’s gravity field. 

2.1 Description of the “Low-Low” time-variable gravity measurements 

The mission consists of two identical satellites moving along the same orbit at an altitude of 
~ 450 km, one following the other with a mean inter-satellite distance of approximately 220 
km in a satellite-to-satellite tracking configuration in the low-low mode initially proposed 
by Wolf (1969). The satellites use K-Band microwave ranging (KBR) system (Tapley et al., 
2004a) to monitor continuously the relative motion of the spacecraft (i.e., the range and the 
range rate), which varies proportionally to the integrated differences of the gravity 
accelerations felt by the satellites (Schmidt et al., 2008). The KBR system provides 
measurements of the distance between the two satellites with an accuracy better than 1 
micrometre using carrier phase measurements in the K (26 GHz) and Ka (32 GHz) 
frequencies. Each GRACE satellite contains a 3-axis accelerometer which gives access to the 
dynamical effects of the non-conservative forces such as solar pressure and atmospheric 
drag. Once removed the non-gravitational effects from the inter-satellite range, the corrected 
variations of distance are used to estimate the geopotential with an unprecedented accuracy. 

2.2 Time-variations of mass in the Earth system 

Models of the Earth’s geopotential are classically obtained by inverting GRACE data at 
monthly timescales and a spatial resolution of a few hundred kilometres (Tapley et al., 
2004b). For the very first time, GRACE has enabled the monitoring of the spatiotemporal 
variations of the mass in the Earth system. The tiny variations of the Earth gravity field are 
due to the redistribution of fluid mass inside the surface fluid envelopes of the planet 
(atmosphere, oceans, continental water storage) (Dickey et al., 1999).  

2.3 Expected accuracy and resolution for continental hydrology  

The main application of GRACE is quantifying the terrestrial hydrological cycle through 
measurements of vertically-integrated water mass changes inside aquifers, soil, surface 
reservoirs and snow pack, with a precision of a few millimeters in terms of water height and 
a spatial resolution of ~ 400 km (Wahr et al., 1998; Rodell & Famiglietti, 1999). Pre-launch 
studies focused on the ability of GRACE to provide realistic hydrological signals, especially 
on continents. Wahr et al., (1998) highlighted the need to consider short-wavelength noise 
and leakage errors, as well as the size of the river basin. This early work largely inspired 
subsequent studies addressing the accuracy of recovering continental water mass signals 
from synthetic GRACE geoids (Rodell and Famiglietti 1999, 2001, 2002; Swenson and Wahr, 
2002; Ramillien et al., 2004). The results of these simulations suggest that final accuracy 
would increase with spatial and temporal scales. The comparison of a large a number of 
modelled outputs of Terrestrial Water Storage (TWS) and the expected GRACE 
measurements accuracy showed that water storage changes would be detectable at spatial 
scales greater than 200,000 km2, at monthly and longer timescales, and with monthly 
accuracies of roughly 1.5 cm (Rodell & Famiglietti, 1999). Similar conclusions were obtained 
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using a network of hydrological observations of snow, surface water, soil moisture (SM) and 
groundwater (GW) in Illinois (Rodell & Famiglietti, 2001). 

At basin-scale, the accuracy of GRACE measurements is expected to be 0.7 cm equivalent 
water height (EWH) for a basin with an area of 0.4 x 106 km², and about 0.3 cm EWT for a 
basin with an area of 3.9 x 106 km² (Swenson et al., 2003).  

Combined with external information, GRACE offers the potentiality to monitor large-scale 
groundwater changes. Using a dense network of soil moisture data for the High Plains aquifer 
in the Central USA, Rodell and Famiglietti (2002) demonstrated the feasibility to dectect 
changes in aquifers since the uncertainties of mean variations of GRACE-derived GW for the ~ 
450,000 km² aquifer was approximately 8.7 mm, whereas the amplitudes of the groundwater 
storage change signals were 20 and 45 mm for annual and 4-year periods respectively. 

3. The GRACE data 

Three processing centers including the Centre for Space Research (CSR), Austin, Texas, USA, 
the GeoForschungs Zentrum (GFZ), Potsdam, Germany, and Jet Propulsion Laboratory (JPL), 
Pasadena, California, USA), and forming the Science Data Center (SDS) are in charge of the 
processing of the GRACE data and the production of Level-1 and Level-2 GRACE products. 
They are distribruted by the GFZ’s Integrated System Data Center (ISDC – http://isdc.gfz-
potsdam.de) and the JPL’s Physical Oceanography Distributive Active Data Center (PODAAC 
– http://podaac-wwww.jpl.nasa.gov). Preprocessing of Level-1 GRACE data (i.e., positions 
and velocities measured by GPS, accelerometer data, and KBR inter-satellite measurements) is 
routinely made by the SDS, as well as monthly GRACE global gravity solutions (Level-2). 

3.1 Level-2 GRACE products  

The Level-2 GRACE gravity solutions consist of monthy time-series of Stokes coefficients 
(i.e., dimensionless spherical harmonics coefficients of the geopotential) developed up to a 
degree between 50 and 120, that are adjusted for each monthly time-period from raw along-
track GRACE measurements. Formal errors associated with the estimated Stokes coefficients 
are provided to the users. A dynamic approach, based on the Newtonian formulation of the 
satellite’s equation of motion in an inertial frame centered at the Earth’s center combined 
with a dedicated modelling of gravitational and non-conservative forces acting on the 
spacecraft, is used to compute the monthly GRACE geoids (Schmidt et al., 2008). During the 
process, atmospheric and ocean barotropic redistribution of masses are removed from the 
GRACE coefficients using ECMWF and NCEP reanalyses for atmospheric mass variations 
and ocean tides respectively, and global circulation oceanic models (Bettadpur, 2007; 
Fletchner 2007). The GRACE coefficients are hence residual values that should represent 
continental water storage, errors from the correcting models, and noise over land. The 
monthly solutions differ from one group to another due to differences in the data 
processing, the choice of the correcting models, and the data selection during the monthly 
time-period. Four different completely reprocessed releases were distributed yet presenting 
a continuous improvement in the quality of the GRACE data. Some other research groups 
also propose alternate processing of the GRACE data at monthly or sub-monthly time-scales 
using global (harmonics coefficients) and regional approaches. They include the Groupe de 
Recherche en Géodésie Spatiale (GRGS), Toulouse, France, the Institute of Theoretical 
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Geodesy (ITG) at the University of Bonn, Germany, the Delft Institute of Earth Observations 
and Space Systems (DEOS), Delft, Nederlands, the Goddard Space Flight Center (NASA 
GSFC), Greenbelt, Maryland, USA. 

3.2 Conversion into coefficients of water mass anomalies 

Variations in continental water storage cause changes of mass distribution in the Earth 
system, and thus spatiotemporal changes of the geoid, defined as the gravitational 
equipotential surface that best coincides with the mean sea surface. In global representation, 
it can be expressed as (Heiskanen & Moritz, 1967): 
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for a given time t, where q is the surface distribution of mass, M and S are the total mass 

and the surface of the Earth, respectively,  and  are co-latitude and longitude. Cnm and 

Snm are the (dimensionless) fully-normalized Stokes coefficients and Pnm are associated 
Legendre functions, n and m are harmonic degree and order respectively. Re is the mean 

Earth’s radius (~6,371 km). N is the maximum degree of the development, ideally N   . In 

practice, the Stokes coefficients are estimated from satellite data with a finite degree N <  

and this maximum value defines the spatial resolution of the geoid ~ Re/N. The load Love 
number coefficients k’n account for elastic compensation of Earth’s surface in response to 
mass load variations. A list of values of the first Love number coefficients can be found in 
Wahr et al. (1998). 

By removing harmonic coefficients of a reference ‘‘static’’ gravity field from GRACE 

solutions, time-variations of the Stokes coefficients Cnm and Snm are computed for each 

monthly or 10-day period t. 

For a monthly period t, the surface water storage anomaly within a region of angular area 

 (i.e., surface of the studied basin divided by Re²) can be obtained as the scalar product 

between time variations of Stokes coefficients Cnm(t) and Snm(t), and averaging kernel 
coefficients Anm and Bnm corresponding to the geographical region to be extracted (Swenson 
& Wahr, 2002): 
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where e is the mean Earth’s density (~5,517 kg/m3). In case of a perfect kernel and error 
free data, Anm and Bnm are the harmonic coefficients of the basin function or mask, which is 
equal to 1 inside the basin and zero outside.  

3.3 The problem of aliasing 

The monthly or sub-monthy GRACE solutions have a sufficient temporal resolution to 

monitor the long wavelengths variations of the gravity over land. The phenomenon of short 

term mass variability with period of hours to day, ocean tides and atmosphere are removed 

using de-aliasing techniques consisting of removing model outputs of these contributions. If 
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the atmospheric pressure fields from ECMWF allow a reasonable de-aliasing of the higher 

frequencies caused by non-tidal atmospheric mass changes, errors due to tide models 

appear in the GRACE solutions, especially the aliasing from diurnal (S1) and semi-diurnal 

(S2) tides (Han et al., 2004; Ray & Lutcke, 2006). The aliasing and the modelling errors are 

responsible for the spurious meridional undulations present in the GRACE monthly grids 

and known as north-south striping. They are associated to spherical harmonics order 15 and 

its multiples (Swenson & Wahr, 2006a; Schrama et al., 2007; Seo et al., 2008). Thompson et al. 

(2004) showed that the degree error increased by factors ~ 20 due to atmospheric aliasing, ~ 

10 due to the ocean model, and ~ 3 due to continental hydrology model. The S2 aliasing 

errors have also a strong impact on the C20 spherical harmonics coefficient of the 

geopotential and (Seo et al., 2008; Chen et al., 2009a) and are significant over the Amazon 

basin but dismish using longer time-series (Schrama et al., 2007; Chen et al., 2009a). 

3.4 Accuracy of GRACE measurements: formal, omission and leakage errors 

3.4.1 Formal error 

The degree amplitude of the GRACE error is defined as: 
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where 
lmCσ  and 

lm
σS are the errors on the gravity potential coefficients. 

It can be seen as the square-root of the total variance from all terms of a given spatial scale, 

as the degree l is the measure of the spatial scale of a spherical harmonics (i.e., a half wave-

length of 20,000/l km). These errors increase at degrees 20 to 30 and become dominent at 

degrees 40 to 50. As a consequence, GRACE monthly solutions are low-pass filtered at 

degree 50 or 60 to remove the noise contained in the high frequency domain. 

3.4.2 Omission or cut-off frequency error 

Error in frequency cut-off represents the loss of energy in the short spatial wavelength due 

to the low-pass harmonic decomposition of the signals that is stopped at the maximum 

degree N1. For the GRACE land water solutions; N1=60, thus the spatial resolution is limited 

and stopped at ~330 km by construction. This error is simply evaluated by considering the 

difference of reconstructing the remaining spectrum between two cutting harmonic degrees 

N1 and N2, where N2 > N1 and N2 should be large enough compared to N1 (e.g., N2=300):  
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using the scalar product:  
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These errors are generally lower than 1% of the amplitude of the signal. 
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3.4.3 Leakage error 

Due to the limited space resolution of the GRACE solutions, the estimate of mass variations 

inside a region of interest such as a drainage basin is affected by the leakage effect in two 

different ways. First, the mass changes inside a region spread out the whole globe. On the 

contrary, signals from other regions of the world pollute the estimate inside the considered 

region of interest. These two opposite effects have to be accounted for to estimate accurate 

mass variations at the surface of the Earth. Several techniques were proposed to quantify the 

leakage error. Swenson & Wahr (2002) proposed a geometric formulation of the leakage 

departure of the shape of the smoothed averaging kernel from that of the exact averaging 

kernel, Ramillien et al. (2006a) used an « inverse » mask, which is 0 and 1 in and out of the 

region respectively, developed in spherical harmonics and then truncated at degree 60, Baur 

et al. (2009) proposed an iterative approach based on forward modelling, Longuevergne et 

al. (2010) used a method optimizing the basin shape description. The leakage effects are 

generally estimated using global models as they can not be determined directly from the 

GRACE observations. Leakage effects are smaller close to the ocean. Over large areas, the 

signals leaking in and out tend to compensate each other. For the Amazon basin, leakage 

was found to have a small impact on TWS estimates (Chen et al., 2009b, Xavier et al., 2010). 

For small basins, such as the High Plain Aquifers (with an area ~ 450,000 km²), an error due 

to the leakage is of 25 mm in terms of EWH and remains important, compared with annual 

variations of TWS varying from 100 to 200 mm (Longuevergne et al., 2010). 

4. Post-processing techniques 

To filter out the spurious north-south stripes present in the GRACE TWS products different 
techniques based on empirical, statistical, inverse, or regional approaches were applied.  

4.1 Empirical methods 

4.1.1 Isotropic and non-isotropic filters 

The simple isotropic Gaussian filter proposed earlier by Jekeli (1981) was commonly used in 

pre-launched studies (Wahr et al., 1998), and then applied to real data (Wahr et al., 2004; 

Tapley et al., 2004b) to demonstrate the abilities of GRACE to retrieve time variations of 

water mass anomalies over land. The choice of the smoothing radius and the inhability of 

this type of filter to distinguish between geophysical signals and noise are its major 

drawbacks. More elaborate filters were then developed to reduce the errors on the GRACE 

signals. Several averaging kernels based on the separate minimization of measurement and 

leakage error to signal were proposed, by using Lagrange multipliers and a leakage function 

defined as the difference in shape between exact and smoothed averaging kernels, with no a 

priori (Swenson & Wahr, 2002), or a priori (i.e., the shape of the covariance function assuming 

it is azimuthally symmetric) information and then then minimizing the sum of variance of 

the satellite and leakage errors (Swenson & Wahr, 2003; Seo & Wilson, 2005).  

To take into account the meridian structures of the noise polluting the GRACE signals, 

several non-isotropic smoothing kernels were applied, using spectral Legendre coefficients 

dependent on both degree and order (Han et al., 2005), or Tikhonov-type regularization 

(Kusche, 2007). 
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4.1.2 Destriping method 

This filtering technique, known as destriping or correlated-error filter, was designed to 
remove the correlated errors in the Stokes coefficients responsible for the north-south stripes 
in the GRACE solutions. For a particular order m, the Stokes coefficients are smoothed with 
a quadratic polynomial in a moving window of width w centered about degree l. The sum 
only concerns the terms of the same parity as l (Swenson and Wahr, 2006a). This method 
provides better results at high latitudes than close to the equator as residual errors due to 
the near-sectorial coefficients (l~m) are not completely removed (Swenson and Wahr, 2006a; 
Klees et al., 2008a). Besides, some short-wavelength features are removed, mainly at high 
latitudes. Monthly CSR, GFZ and JPL destriped and smoothed EWH grids of 1-degree 
spatial resolution are available over 2002-2010 at: http://grace.jpl.nasa.gov. 

4.1.3 Stabilization criteria  

The Level-2 GRGS-EIGEN-GL04 models are derived from Level-1 GRACE measurements 
including KBRR, and from LAGEOS-1/2 SLR data for enhancement of lower harmonic 
degrees (Lemoine et al., 2007a; Bruinsma et al., 2010). These gravity fields are expressed in 
terms of normalized spherical harmonic coefficients from degree 2 up to degree 50-60 using 
an empirical stabilization approach without any smoothing or filtering. This stabilization 
approach consists in adding empirically determined degree and order dependent 
coefficients to minimize the time variations of the signal measured by GRACE over ocean 
and desert without significantly affecting the amplitude of the signal over large drainage 
basins. Monthly (Release-1) and 10-day (Release-2) TWS grids of 1-degree spatial resolution 
are available over 2002-2010 at: http://grgs.obs-mip.fr. 

4.2 Statistical methods 

4.2.1 Wiener filtering  

The spatial averaging of monthly GRACE using the Wiener filter data is based on the least-
square minimization of the difference between modelled and filtered signals. This filter is 
isotropic, depending only on the degree power of the signal and noise models. Using 
hydrology and ocean models outputs for simulating the degree power spectrum of the 
GRACE signal, the formal error of the GRACE coefficients, and GRACE solutions, Sasgen et 
al. (2006) were able to determine the optimal coefficients of the Wiener filter, and to 
demonstrate that this method is robust approach for low-pass filtering the GRACE data 
which does not need the specification of any averaging radius. 

4.2.2 Principal Components Analysis 

Principal Components Analysises (PCA) were performed on time-series of Gaussian-filtered 
EWH grids (Schrama et al., 2007) and Stokes coefficients (Wouters & Schrama, 2007). PCA 
was able to efficiently separate modes of geophysical signals from modes corresponding to 
the North-South striping in the EWH grids. The three first modes explain 73.5% of the 
continental hydrology with a Gaussian prefiltering of 6.25° of radius. The residual modes 
contain S2 aliasing errors and a semiannual continental hydrology signal contained in the 
Global Land Data Assimilation Systems (GLDAS) model (Schrama et al., 2007). Directly 
applied to the Stokes coefficients, PCA also successfully removes the meridian undulations 
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present in the GRACE solutions. The results of this technique are expected to be better as the 
time-series of the GRACE solutions become longer (Wouters & Schrama, 2007). 

4.2.3 Independent Components Analysis 

The Independent Component Analysis (ICA) approach is used to extract hydrological 

signals from the noise in the Level-2 GRACE solutions by considering completely objective 

constraints, so that the gravity component of the observed signals is forced to be 

uncorrelated numerically. This blind separation method is based on the assumption of 

statistical independence of the elementary signals that compose the observations, i.e., 

geophysical signals and spurious noise, and does not require other a priori information 

(Frappart et al., 2010a). Comparisons at a global scale showed that the ICA-based solutions 

present less north–south stripes than Gaussian and destriped solutions on the land, and 

more realistic hydrological structures than the destriped solutions in the tropics. ICA 

filtering seems to allow the separation of the GIA from the TWS as negative trends were 

found over the Laurentides and Scandinavia. Unfortunately, this important geophysical 

parameter does not appear clearly in an independent mode yet. At basin-scale, the ICA-

based solutions allowed us to filter out the unrealistic peaks present in the time series of 

TWS obtained using classical filtering for basins with areas lower than 1 million km² 

(Frappart et al., 2011a). The major drawback of this approach is that it cannot directly be 

applied to the GRACE Level-2 raw data, as a first step of (Gaussian) prefiltering is required. 

Monthly CSR, GFZ and JPL ICA-filtered TWS grids of 1-degree spatial resolution are 

available over 2002-2010 at: http://grgs.obs-mip.fr. 

4.2.4 Kalman smoothing  

Daily water masses solutions have been derived from GRACE observations using a Kalman 

filter approach. They are estimated using a Gauss Markov model, the solution at day t+1 

slightly differs from solution at day t from the noise prediction (first-order Markov process) 

estimated using a Kalman filter. A priori information on the hydrological patterns from the 

WGHM model was introduced in the covariance matrix to compensate the small number of 

available observations over a daily time-span. This approach enables to produce temporarily 

enhanced solutions without loss in spatial resolution and resolution (Kurtenbach et al., 2009). 

Daily TWS Stokes coefficients are available over 2002-2010 at: http://www.igg.uni-

bonn.de/apmg. 

4.3 Inverse methods 

4.3.1 Iterative least-squares approach  

This method is based on the matrix formalism of the generalized least-squares criteria 

(Tarantola, 1987) and consists in estimating separately the spherical harmonics coefficients, 

in terms of EWH, of four different fluid reservoirs (atmosphere, oceans, soil water, and 

snow) from the monthly GRACE geoids. For each water reservoir, the anomaly of mass is 

estimated after the convergence of an inverse approach combining the GRACE 

observations with stochastic properties of the unknown hydrological signal (Ramillien et 

al., 2004; 2005). 
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4.3.2 Optimal filter 

This method takes into account the statistical information present in each GRACE monthly 

solution. The noise and full signal variance-covariance matrix is used to tailor the filter to 

the error characteristics of a particular monthly solution. The resulting filter was found to be 

both anisotropic and non-symmetric to accommodate noise of an arbitrary shape as the 

north-south stripes present in the GRACE monthly solutions. It is optimal as it minimizes 

the difference between the signal and the filtered GRACE estimate in the least-squares 

sense. This filter was found to perform better than any isotropic, or anisotropic and 

symmetric filters preserving better the signal amplitudes better (Klees et al., 2008a). Monthly 

GRACE-derived TWS grids of 1-degree spatial resolution computed using the optimal filter 

are available over 2002-2010 at: http://lr.tudelft.nl/en/organisation/departments-and-

chairs/remote-sensing/physical-and-space-geodesy/data-and-models/dmt-1/ 

4.4 Regional approaches 

Since the begining of the low-low satellite gravimetry missions dedicated to Earth's gravity 

field measurement (i.e., CHAMP, GRACE, GOCE), determining locally the time variations of 

the surface water storage has been of great interest for region where very localized strong 

mass variations occur, such as flood and glaciers fields. Moreover, it represents an 

alternative to the problem of numerical singularity at poles by choosing a suitable geometry 

of surface tiles. So far, rectangular surface elements have been considered but other 

geometries have successfully tested (Eicker, 2008; Ramillien et al., 2011). 

4.4.1 Mascons  

In this local approach, the mass of water in surface 4-by-4 degree blocks has been explicitly 

solved using the GRACE inter-satellite KBR Rate (KBRR) data for continental hydrology and 

collected over the region of interest. This size of the surface elements has been chosen as the 

limit of a priori spatial resolution of the GRACE data (i.e., 400 km). This method uses 

inherently empirical spatial and temporal constraints among the coefficients that are 

dependent on geographical locations. The local representation of gravity minimizes the 

leakage error from other areas due to aliasing or mis-modelling (Rowlands et al., 2005; 

Lemoine et al., 2007b). It has revealed more information about interannual variability in the 

subregions than any Stokes coefficients-based approach. Global and mascons methods 

based on spherical harmonics have provided similar results for the mass trend in the 

drainage basins, especially when no spatial constraints are taken into account (Rowlands et 

al., 2010). But, inherent problem of spectral truncation such as leakage are not avoided while 

using spherical harmonics. 10-day and 4° Mascons solutions and corresponding GLDAS 

model time series for each continental surface element are available at: http://grace.sgt-

inc.com/V2/Global.html. 

4.4.2 Regional method  

Another type of regional approach has been recently proposed by adjusting the surface 
mass density from the Level-1 GRACE data, in particular the accurate satellite-to-satellite 
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velocity variations (Ramillien et al., 2011). Once these observations are corrected from 
known accelerations (atmosphere and ocean mass changes, tides, static gravity field…), 
along track residuals of KBR-rate are used to compute kinetic energy (or equivently 
potential anomaly) variations between the twin GRACE satellites, corresponding mainly to 
continental water redistributions. The linear system of equations to solve between 
observations (i.e., potential anomalies) and parameters (i.e., surface elements) is built 
according to the first Newton’s law of attraction of masses. Unlike the mascons solutions, 
spherical harmonics are not used as a basis of regional orthogonal functions, consequently 
this regional method does not suffer from the drawbacks related to any spectral truncation. 
Singular Value Decomposition (SVD) and L-curve analysis are considered to compute 
regularized 10-day 2-by-2 degree solutions of the ill-posed of gravimetry. Lately, another 
version of the inversion scheme takes spatial correlations versus the geographical distance 
between surface elements into account (Ramillien et al., in press). Time series of regional 
solutions over South America have been produced and compared to global solutions and 
mascons, they reveal very comparable amplitudes of seasonal cycle over the Amazon basin, 
as well as sudden flooding events. 

5. Applications to continental hydrology: results and discussion 

5.1 Application in continental hydrology and validation 

Once sufficiently long series of GRACE solutions were made available by the former official 
providers (CSR, JPL, GFZ), various regional studies for validating these products were 
made. Examples of GRACE-based TWS maps are given in Figure 1 showing the ability of 
the gravimetry from space mission to restitue both seasonal and interannual variability.  

Comparisons with global hydrology model outputs and surface measurements revealed 
acceptable agreements between GRACE-derived and model changes of continental water 
storage versus time, especially at seasonal time scale. GRACE provides directly the term of 
TWS variation of the net balance equation. In general, GRACE-based estimates of TWS 
compare favourably with those based on land surface models as well as atmospheric and 
terrestrial water balances (Rodell et al., 2004a; Ramillien et al., 2005; Syed et al., 2005; Klees 
et al., 2008b). The structures seen on global maps of seasonal amplitudes are comparable to 
those described by the WaterGap model developed by Döll et al. (2003) and GLDAS (Rodell 
et al., 2004a). Over the entire Northern Hemisphere, GLDAS water storage simulations with a 
resolution of 1,300 km and accuracy of 9 mm in terms of EWH were found to have a spatial 
correlation of 0.65 with GRACE data, suggesting that gravity field changes may be related to 
TWS variations (Andersen & Hinderer, 2005). However, TWS variations tend to be slightly 
over-estimated by GRACE (Schmidt et al., 2006; Syed et al., 2008). GRACE-based TWS changes 
were also validated by accurate observations of superconducting gravimeters during the 2003 
heat wave that occured in Central Europe (Andersen et al., 2005). They were used to detect the 
exceptional drought (Chen et al., 2009b) and flooding (Chen et al., 2010) affected the Amazon 
basin in 2005 and 2009 respectively (Figure 2a). Correlations of 0.7-0.8 between GRACE-
based TWS and in situ measurements of water level along the Amazon River were found by 
Xavier et al. (2010). Combined with other satellite techniques such as imagery, GRACE 
geoid data were used to study the mechanisms of seasonal flooding in large inundation 
areas like the Mekong delta (Frappart et al., 2006a) and large river basins as the Amazon 
River (Frappart et al., 2008; Papa et al., 2008). 
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Fig. 1. Examples of GRACE-derived TWS maps processed using a Gaussian filtering of 
radius 400 km and ICA (Level-2 Release 4 GFZ solutions) for a) March 2005, b) September 
2005, c) March 2006, d) September 2006, e) March 2007, f) September 2007, g) March 2008, h) 
September 2008, i) March 2009, j) September 2009. 

a) March 2006 b) September 2006

c) March 2007 d) September 2007

f) March 2008 g) September 2008

h) March 2009 i) September 2009
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5.2 Isolating groundwater changes 

Variations in the groundwater storage can be extracted from TWS measured by GRACE 

using external information on the other hydrological reservoirs. The time variations in TWS 

are the sum of the contributions of the different reservoirs present in a drainage basin:  

 TWS SW SN TSS        (6) 

with: 

 TSS RZ GW P        (7) 

where SW represents the total surface water storage including lakes, reservoirs, in-channel 

and floodplains water, SN is the snow storage, TSS is the total soil storage including RZ the 

water contained in the root zone of the soil (generally representing a depth of 1 or 2 m), GW 

the groundwater storage in the aquifers, and P the permafrost storage at boreal latitudes. 

Post-launch studies of GRACE-based groundwater remote sensing have clearly 

demonstrated that when combined with ancillary measurements of surface waters and soil 

moisture, either modeled or observed, GRACE is capable of monitoring changes in 

groundwater storage with reasonable accuracy. Important seasonal correlations of 0.8-0.9  

 

Fig. 2. Time series of TWS anomalies (mm of EWH) from Level-2 Release 4 GFZ GRACE 
solutions (Gaussian filtering of radius 400 km and ICA) for a) Amazon, b) Ganges. 
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were found by confronting GRACE to recordings of well network in Illinois (Yeh et al., 

2006), Oklahoma (Swenson et al., 2008), the High Plain aquifer (Strassberg et al., 2007) and 

the Mississippi basin (Rodell et al. 2007). This method was successfully applied to monitor 

large-scale climatic and anthropogenic impacts on water resources, as the detection of the 

recent severe drought in the Murray-Darling basin in Southern Australia (Leblanc et al., 

2009) or the depletion of the aquifers in India (Rodell et al., 2009) (Figure 2b), but also to 

estimate aquifer storage parameters as the specific yield or storativity (Sun et al., 2010). For 

large drainage basins covered with extensive floodplains, changes in water stored in the 

aquifer is isolated from the TWS measured by GRACE by removing contributions of both 

the surface reservoir, derived from satellite imagery and radar altimetry, and the root zone 

reservoir simulated by hydrological models (Frappart et al., 2010b; 2011b). In the Negro 

River basin, the groundwater anomalies show a realistic spatial pattern compared with the 

hydrogeological map of the basin (DNPM, 1983), and similar temporal variations to local in 

situ groundwater observations (Figure 3). 

5.3 Estimates of snow mass changes at high latitudes  

After a separation of water and snow contributions from observed gravity field using an 

inverse iterative approach based on the least-squares criteria, Frappart et al. (2006b) used 

satellite microwave data and global hydrological model outputs to validate GRACE-derived 

snow mass changes at high-latitudes. In particular, rms errors of 10-20 mm were found for 

Yenisey, Ob, McKenzie and Yukon basins. Comparison at basin scales between GRACE-

derived snow mass variations, GRACE-based TWS variations and river discharge temporal 

evolution shows that the snow component has a more significant impact on river discharge 

at high latitudes than TWS, and that snow and streamflow present similar interannual 

variabilities (Frappart et al., 2011c). 

5.4 Estimates of regional geo-hydrological parameters  

5.4.1 River discharges 

GRACE-based estimates of river discharges are based on the resolution of the water balance 

equation at basin-scale: 

 S =  -  - 
t

P ET R
  (8) 

where S is land water storage (TWS), P and ET the basin-wide totals of precipitation and 

evapotranspiration, and R the total basin discharge, or the net surface and groundwater 

outflow. 

As ET presents large uncertainties, the quantity P-ET is eliminated using the water balance 

of the atmospheric branch of the water cycle: 

 = -  - 
t

W ET P divQ



 (9) 

where W is the vertically-integrated precipitable water, divQ


the divergence of the vertically-

integrated average atmospheric moisture flux vector, computed using the following equations: 
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Fig. 3. When combined with other data, GRACE-derived TWS anomalies provide valuable 
information on changes affecting the aquifers. Above a comparison between a) Map of annual 
amplitude of GW in the Negro River Basin. b) Hydrogeological map of Brazil from DNPM 
(1983), available at: http://eusoils.jrc.ec.europa.eu/esdb_archive/EuDASM/EUDASM.htm, 
in the framework of the European Commission — Joint Research Centre through the European 
Digital Archive of Soil Maps (EuDASM) (Panagos et al., in press). Adapted from Frappart et al. 
(2011b). 

Almost no aquifer. Very small hydrogeological reservoir. 

Local aquifers restricted to fractured zones. Small hydrogeological reservoir. 

Local aquifers or continuous aquifers of limited extension. Two levels of water: 
free and/or confined. Small hydrogeological reservoir. 

Continuous aquifers of regional extension, free or confined. Medium 
hydrogeological reservoir. 
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 
 (11) 

where ps and pT are the pressure at the surface and the top of the atmosphere respectively, q 

is the specific humidity, g is gravitational acceleration and V


is the horizontal wind vector. 

This approach was firstly applied to the Amazon and the Mississippi River basins (Syed et 
al., 2005), and extended to obtain a global volume of freshwater discharge estimated here is 
30,354 ± 1,212 km3/y (Syed et al., 2009). 

5.4.2 Vertical water fluxes 

GRACE-based TWS can be also used to estimate changes in vertical water fluxes solving the 
water balance equation (8). Changes of regional evapotranspiration (ET) rate over 
Mississippi basin were estimated by combining 600-km low-pass filtered GRACE TWS data 
with observed precipitation and streamflow in the water balance equation (Rodell et al., 
2004b). Similarly, Ramillien et al. (2006b) solved the water balance equation for ET rate. 
Time variations of ET were evaluated over 16 large drainage basins solving the water 
balance equation and using precipitation from GPCC and runoff from the WGHM model 
(Döll et al., 2003), and they revealed that GRACE-based ET variations were comparable to 
the ET value simulated by four differend global hydrology models. Swenson and Wahr 
(2006b) estimated the difference precipitation minus evapotranspiration using the water 
balance framework and comparing to surface parameters variations from global analysis. 

5.5 Contribution of TWS to sea level variations 

Seasonal and interannual changes in land water storage derived from GRACE were used to 
estimate the contribution of land hydrology to the sea level variations for 27 of the largest 
drainage basins in the world. Estimation of 2002-2006 sea level contribution of GRACE-
derived TWS of the largest basins was made using the GRGS GRACE solutions, and 
corresponds to a water loss of ~ 0.5 mm per year ESL (Ramillien et al., 2008). Wouters et al. 
(2011) recently estimated the global mean eustatic cycle, i.e., the total amount of water 
exchanged between continents and ocean, to be 9.4 ± 0.6 mm equivalent water level over the 
period 2003-2010. In the Pan Arctic regions, snow volume derived from the Special Sensor 
Microwave/Imager (SSM/I) radiometric measurements over 1989-2006 and GRACE over 
2002-2007 is a key driver of the sea level seasonal cycle, but snow volume trend indicates a 
negligible and not statistically significant contribution to sea level variations (Biancamaria et 
al., 2011). 

5.6 Optimization and assimilation into hydrological models 

The GRACE data have been widely confronted to global hydrological ouputs for 
comparison and validation, and then to improve the description and parameterization of the 
hydrological processes in the models. The GRACE geoid data were used as a proxy to test 
and improve the efficiency of surface waters schemes in the ORCHIDEE land surface 
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hydrology model (Ngo-Duc et al., 2007). Unfortunately, a lack of consistency in the seasonal 
cycle and a time shift between GRACE TWS and global hydrology models may persist. The 
comparison between six GRACE-derived TWS and 9 land surface models forced with the 
same forcings over West Africa permits to identify the processes needing improvement in 
the land surface models, especially the correct simulation of slow water reservoirs as well as 
evapotranspiration during the dry season for accurate soil moisture modeling over West 
Africa (Grippa et al., 2011). 

Güntner (2008) pointed out the importance of integrating the GRACE data into hydrological 
models for improving the reliability of their prediction through advanced methods of multi-
objective calibration and data assimilation. A multicalibration approach to constrain model 
predictions by both measured river discharge and TWS anomalies from GRACE was apllied 
to the WGHM model, improving simulation results with regard to both objectives. Using 
only monthly TWS variations, the RMSE was reduced of about 25 mm for the Amazon, 6 
mm for the Mississippi and 1 mm for the Congo river basins (Werth et al., 2009). GRACE-
derived monthly TWS anomalies were also assimilated into one of the GLDAS models using 
a Kalman smoother approach. Compared with open-loop simulations, assimilated ones 
exhibited better performance thanks to improvements in the surface and groundwater 
estimates (Zaitchik et al., 2008). 

5.7 Detecting long-term variations over ice sheets 

GRACE-derived mass balance estimates of Antarctica (Velicogna & Wahr, 2006a), 
Greenland (Velicogna & Wahr, 2006b; Chen et al., 2006) or both ice sheets (Ramillien et al., 
2006a) have been determined from the Level-2 solutions of the GRACE project. Velicogna 
and Wahr (2006b) found a lost rate of -82 ± 28 Gt/y for Greenland with an acceleration of 
melting in Spring 2004. Mass changes of this ice sheet resolved by drainage basin were 
estimated using the NASA mascons solutions as -101 ± 16 Gt/y after correction for post-
glacial rebound (Luthcke et al., 2006). This latter result is consistent with the one found 
previously by Ramillien et al. (2006a) using 10-day GRGS GRACE solutions. Velicogna & 
Wahr (2006a) estimated an extreme decrease of ice mass of 152 ± 80 Gt/y for Antarctica. The 
problem is that this main value represents the Post-Glacial Rebound (PGR) correction itself 
that the authors removed from the GRACE data using the IJ05 (Ivins and James, 2005) and 
ICE-5G (Peltier, 2004). If GRACE data are not corrected from PGR, the mass balance of 
Antarctica appears close to zero, with large uncertainties due to North-South striping and 
leakage effects. This result shows it is not clear whether this continent actually looses or 
gains ice mass during the recent period (Ramillien et al., 2006a). PGR phenomena are not 
well-modelled, especially over the whole Antarctica where available long-term 
observational constraints remain rare. Consequently, removing PGR that still cannot be 
modelled accurately represent a source of important errors. Velicogna & Wahr (2002) have 
shown earlier that the detection of PGR remains possible by combination of different 
satellite techniques, using 5 years of simulated GRACE and Laser GLAS data over the whole 
Antarctica. However, an effective extraction of PGR signals using GRACE products still 
needs to be demonstrated. 

As mentioned by Baur et al. (2009), even if the PGR correction is less than 10 Gt/y over 
Greenland, mass balance for this continental area using GRACE solutions can vary strongly 
from simple to twice, according to which provider (CSR, JPL, GFZ) is considered, and which 
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processing is applied. Velicogna and Wahr (2005) found a constant decrease of -84 ±-28 Gt/y 
for the period 2002-2004. Later, Wouters et al. (2008) adjusted a rate of -171 Gt/y for 2003-
2008, with an acceleration during summer. Interestingly, Ramillien et al. (2006a) and 
Luthcke et al. (2006) found comparable loss rates of about 110 Gt/y considering 10-day 
GRGS and mascons solutions, respectively, for 2003-2005. Recent re-evaluation of Greenland 
ice mass loss provides -65 Gt/y using ICA-400 solutions and around 100 Gt/y using 
classical Gaussian filtered solution for 2003-2010 (Bergmann et al., 2012). It is clear that an 
interannual variations of Greenland ice sheet exists, as an acceleration of the ice melting in 
Spring 2004 and 2007-2009 (Velicogna & Wahr, 2006b; Velicogna, 2009). A recent study 
pointed a clear de-acceleration of the ice melting over Greenland for the very last years 
(Bergmann et al., 2012), which was confirmed by a recent analysis of Rignot et al. (2011). 

Level-2 GRACE solutions have also been used to quantify ice mass loss of coastal glaciers in 
Western Antarctica, Patagonia (Chen et al., 2007) and in the Gulf of Alaska (Luthcke et al., 
2008) as the response of the recent global warming. Chen et al. (2007) found a depletion of 
mass of -27.9 ± 11 Gt/y for the Patagonian glaciers between April 2002 and December 2007. 
For glaciers in Alaska, negative trends of -84 Gt/y during 2003-2007 and -102 Gt/y for 2003-
2006 were deduced from mascon solutions. Once again, trend estimates depend strongly 
upon either using a model of PGR, or estimating it together with the current mass loss. 
Another complication is the coarse footprint of GRACE which mixes signals from 
neighbouring basins (Horwath and Dietrich, 2009). 

6. Conclusion 

Many studies have demonstrated the possibility of satellite gravimetry to detect and 
monitor spatial versus time, at a precision of only tens of mm of EWH and spatial resolution 
of 400 km. Accuracy of the results still depends upon the level of noise in the GRACE data 
and the post-processing used. In addition to measurement errors and loss of signals by low-
pass filtering, uncertainty on model-predicted GIA represents a major source of error in the 
mass balance estimates of the ice sheets melting, in particular for Antarctica. Besides, a 
resolution of 400 km still represents an important limitation for small-scale studies, 
especially in field hydrology, which often requires surface resolution of tens of kilometers. 
Improvements in pre- and post-processing techniques should increase the quality of the 
GRACE products, such as the “regional” or local approaches. Steady improvement of 
precision and resolution of GRACE products remains encouraging and it opens a wider 
class of applications than previously possible.  

Even if the dying GRACE mission may not be able to provide data of the same accuracy to be 

exploitable in continental hydrology in 2012, other follow-on projects have already been 

proposed by a motivated community to ensure the continuity of such a satellite system. 

Satellite gravimetry remains the only remote sensing technique to map directly large scale 

mass variations. Any Follow-On GRACE mission in preparation by NASA and GFZ would be 

of first interest for studying the impacts on surface redistribution forced by climate change. 
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