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Data Fusion in a Hierarchical Segmentation 
Context: The Case of Building Roof Description 
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1. Introduction     

Automatic mapping of urban areas from aerial images is a challenging task for scientists and 
surveyors because of the complexity of urban scenes. The 2D image information can be 
converted into 3D points provided that aerial images have been acquired in a (multi-) 
stereoscopic context (Kasser & Egels, 2002). Altitudes are then processed using automatic 
correlation algorithms to generate Digital Surface Models (DSM) (Pierrot-Deseilligny & 
Paparoditis, 2005), (Baillard & Dissard, 2000). The DSM helps in the understanding of an 
urban scene, especially for the 3D building reconstruction problem. There are two main 
approaches to take to this problem: 
1. detecting 3D primitives (segments or planes) before making polyhedric building 

models (Jibrini & al, 2000),  
2. using a parametric model-based approach (Lafarge et al, 2006). 
This study aims to present a methodology for detecting building roof facets. These facets are 
meant to be integrated into an algorithm for building reconstruction. Many researches have 
been performed on this topic using DSMs as altimetric data. Nevertheless, in the last past 
years, airborne lidar systems (ALS) have become an alternative source for acquiring 
altimetric data (Baltsavias, 1999). These systems are based on the recording of the time-of-
flight distance between an emitted laser pulse and its response after a reflection on the 
ground. They provide sets of 3D irregularly distributed points, georeferenced with an 
integrated GPS/INS device. The accuracy (< 0,15 m in altimetry) and the robustness of such 
systems are better than photogrammetric derived DSMs. However, ALS do not provide 
textural information that can be exploited, as they are with optical aerial images.  
We therefore propose in this paper to use jointly calibrated aerial images and 3D lidar data 
to extract 3D roof facets. We built a joint image segmentation paradigm that includes 
radiometric, geometric and semantic properties of each data set. Very few researches have 
been performed on the fusion of lidar and aerial images and are mainly focused on image 
classification (Rottensteiner et al, 2004), (Haala & Walter, 1999). 
We will present in the first part the theoretical background of our methodology, especially 
the hierarchical segmentation framework. We will then show some results of 3D roof facet 
extraction.
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2. Methodology

2.1 Background 

A region is defined as a set of pixels sharing the same properties. Segmenting an image I in

n regions consists in determining a partition In∆ of I satisfying: 
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The segmentation problem may be considered under various points of views seeing that a 
unique and reliable partition does not exist. Beyond classical region growing algorithms, 
approaches based on a hierarchical representation of the scene retained our attention. These 
methodologies open the field of multi-scale descriptions of images (Guigues et al, 2003). 
Here, we are interested in obtaining an image partition whereon roof facets are clearly 
delineated and understandable as unique entities. 
A hierarchy is defined as a tree structure. It is a graph where nodes are related to image 
regions and edges (father-child relationships) to region subset inclusions. The root of the 
tree corresponds to the whole image and the leaves to the initial partition (over-
segmentation) of the image. An eligible partition onto a hierarchy (or a cut) is therefore a 
set of nodes which related leaf region sets are disjoint. Figure 1 sketches a cut in a hierarchy 
represented as a dendrogram as well as the corresponding partition. 

Fig. 1. Sketch of a cut in a hierarchy (dendrogram). Red circles are the selected cut nodes and 
correspond to the presented image partition. 

A data structure for representing an image partition is the Region Adjacency Graph (RAG). 

The RAG is defined as an undirected graph ),( VEG  where V  is the set of nodes related 

to an image region and E  the set of edges related to adjacency relationships between two 

neighbouring regions. Each edge E  is weighted by a cost function (or energy) that scores 
the dissimilarity between two adjacent regions. The general idea of a hierarchical ascendant 
segmentation is to merge sequentially the most ”similar” pair of regions (or the one that 
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minimises the cost function) until a single region remains. The fusion of these two regions 
(or the contraction of the RAG minimal edge) creates a node in the hierarchy and two father-
child relationships in case of a binary tree. Figure 2 sketches the generation process of the 
hierarchy from an initial partition of the image. 
ostfun 
tio

Fig. 2. Construction of a hierarchy based on a RAG (left).  

2.2 Theory 

The shape of the hierarchy (therefore the region merging order) constraints the existence of 
an eligible partition. In other words, initial regions that theoretically belong to a roof facet 
must be mutually merged until a node in the hierarchy appears as a roof facet entity. If it 
appears that sub-regions of a facet merge with adjacent regions that do no belong to their 
supporting facet, the embedded geometry is broken.  

2.2.1 The cost function 

The region merging order depends on the definition of the energy Ε  associated to each 

edge of the RAG.  We can write Ε  as a sum of three terms rΕ , lΕ  and sΕ  respectively 

related to the image radiometry, to the lidar geometry and to the semantic extracted from 
lidar data. 

rΕ  is defined to minimise the loss of information when describing the image from n  to n-1

regions. We retained the cost function given by Haris (Haris et al, 1998) for merging two 

neighbouring regions iR  and jR  : 
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Where
r
. is the number of pixels in each region and =

kr

kI
R
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1

µ the average value 

of the radiometries at image sites k of the region. 

In our context, lΕ is defined to take advantage of both the accuracy and the regularity of 

lidar measurements onto roof surfaces to make appear in the hierarchy nodes corresponding 
to roof facet entities. It is therefore expected that image regions merge independently over 
each roof facet of the focused building. Higher levels of the hierarchy are not of interest in 
this study. The adequation of lidar points to lie on a roof facet is measured by estimating a 

plane onto those included in ji RR . A non robust least square estimator is applied 

specifically for neighbouring regions not to merge when the estimated plane is corrupted by 
non coplanar points. Such is the case when attempting to merge two regions apart from the 
roof top before other couples of regions belonging to the same roof facet with possible 

significant radiometric dissimilarities. If 
li

N  (resp. 
lj

N ) is the number of lidar points 

in region iR  (resp. jR )  and pr  the residuals of a laser point to the estimated plane, 
2

lρ  is 

the average square distance of laser points to the estimated plane with  
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If we consider a similar weighting factor as for rΕ depending on the number of lidar points 

l
. in image regions, lΕ is expressed as: 
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3D lidar points have been previously processed to extract a binary semantics: ground and 
off-ground points. Theoretically, the off-ground class includes building and vegetation. 
However, we will only consider the segmentation algorithm to be focused on buildings. The 
process is performed with a high level of relevancy over urban areas owing to the sharp 
slope breaking onto building edges (Bretar et al, 2004). An image region will be classified as 
ground if it contains at least one projected lidar ground point. Otherwise, the region is 
considered to be a built up area. This binary semantics provides a reliable ground mask that 
can be integrated into the initial segmentation. Two regions of different classes are kept 
disjoint until the highest levels of the hierarchy. Finally we can write 

∞
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2.2.2 The optimal eligible partition 

A roof facet is defined as a 3D planar polygon which average square distance to lidar 

support points (
2

lρ ) is less than a threshold s. The final partition is obtained by recursively 

exploring the binary tree structure from its root comparing 
2

lρ  of each node to s.

3. Results 

The test area is part of the inner city of Amiens, France. Aerial images (resolution 0,2m) are 
firstly re-projected into ortho-rectified geometry in order to avoid the segmentation of 
building facades. Using the original geometry of a set of calibrated aerial images is thought 
as future work. In order to enforce the region borders to lie on real discontinuities, we 
applied a contour detection algorithm (hysteresis thresholding) on the gradient image. The 

gradient was computed with a Canny-Deriche operator ( 1=α ) (Deriche, 1987). The 

watershed algorithm is finally applied on a combination of both images (maximum of 
gradient and contour images). Figure 3 sketches the flowchart of the entire methodology. 

gradient contours Max(gradients,contours)

WatershedLidar ground points

RAG

Hierarchical image segmentation

Set of embedded partitions

Eligible partition (cut)

3D facets

Initial image

Fig. 3. Flow chart of the algorithm 

We present in table 1 a set of embedded image partitions. Region contours are back-
projected onto the ortho-rectified image. Parameter s describes a partition set. Following s,
one can notice that structures progressively appear as unique entities until adjacent facets 
merge together. At the time of the study, s is tuned after a visual evaluation of each 
partition. Indeed, this threshold is highly related to the roof shape and is therefore different 
from one building to the other. We clearly see on these examples the delineation of the 
buildings with regard to ground regions as well as to courtyards. Isolated elementary 
regions remain within the large ground region due to the lack of lidar points inside them.  



Vision Systems - Segmentation and Pattern Recognition 304

Table 1. Examples of partitions at different scales .White segments are the region borders. 

As for the building presented in table 1, we consider that a final eligible partitions is 
achieved for s=0,5m. Figure 4 shows the reconstructed 3D facets of this building. This 
reconstruction considers lidar points belonging to an image region larger than 30 pixels and 
which orientation is greater than 30° from vertical. The presented 3D scenes give a realistic 
representation of the buildings whereon hyper-structures such as dormer windows are 
particularly visible. There delineation could not have been obtained considering only lidar 
data due to their low spatial density. The high radiometric contrast of the aerial image over 
some of these structures is then real complementary information. The accuracy of lidar 
points gives also the opportunity to detect two neighbouring regions with a low orientation 
difference as two different facets. 

S
=

0,
01

m

S
=

0,
1m

S
=

0,
3m

S
=

0,
5m

S
=

1m

S
=

2,
9m



Data Fusion in a Hierarchical Segmentation Context: The Case of Building Roof Description 305

Fig. 4. 3D views of facets estimated from lidar (red) points (same building as in table 1).  

Fig. 5. Result of the algorithm on a complex building.  

The 3D region contours are calculated from 2D region contours. In case of overlapping 
regions, the smallest one is extruded from the largest, which explains the general shape of 
the presented facets.   

 4. Conclusion

We have presented a methodology for extracting roof facets over buildings by merging 
aerial images and 3D lidar data in a hierarchical segmentation framework. Building roof 
facets are detected using radiometric, semantic and geometric information of images and of 
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lidar data. We have shown that integrating lidar points in an image segmentation process 
has enhanced the potentialities of using only 3D lidar points for extracting planar surfaces.  
The 3D facet contours are not accurate or realistic even if they are based on the image 
contours. This is mainly due to remaining small regions located at the region borders. 
Seeing that images have been resampled to fit the ortho-rectified geometry, facet contours 
do not take benefit of the original image geometry. The future work consists at first in using 
aerial images in their original geometry to avoid the resampling artefacts onto building 
borders. In a second step, we would like to derive global criteria to provide admissible 
range values of parameter s.
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