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1. Introduction  

Cancer has long been considered primarily a genetic disease, caused by different mutations 

throughout the genome.  In 1983., Feinberg and Vogelstein discovered that the level of DNA 

methylation significantly varies between primary human malignant tumors and their 

normal counterparts (Feinberg & Vogelstein, 1983). Before this publication, there had been a 

paper describing changes in DNA methylation in cancer cell cultures, including the 

influence of N-methyl-N-nitrosourea on the level of DNA methylation in Raji cells (Boehm 

& Drahovsky, 1981). Currently, we are presented with much experimental data showing 

multilevel changes in cancer cells. In this context, two major areas of epigenomic research - 

DNA methylation and histone modifications appear most promising in understanding the 

multistep nature of carcinogenesis. Additionally, they seem to have the potential for being 

cancer biomarkers, useful in early detection, in predicting the biological behavior of tumors 

and for therapy monitoring, as recently reviewed (Rodriguez-Paredes & Esteller, 2011; 

Baylin & Jones, 2011). Finally, epigenetic changes are well-recognized targets for cancer 

therapy, alone, or in combination with various cytostatics (Ren et al, 2011). Epigenetic 

changes are also of the greatest importance in chemoprevention, as there is increasing data 

relating to possibly reversing epigenetic changes in the earliest phase of carcinogenesis, 

when genetic changes have yet to develop (reviewed, Huang et al., 2011). It is not easy to 

understand the particular rules applicable to epigenomic processes. If one specific epigenetic 

change, relating to a specific gene/its promoter, exists in a majority of tumors of a specific 

type, it does not necessarily mean that the same change exists in another type of tumor. This 

is consequential, and represents one reason for obvious differences in responses to 

epigenomic therapy. Recently, we wrote a review article on some aspects of epigenomic 

changes in which we used the term „epigenetic networking“. If we imagine each of our 

living cells as an orchestra performing the symphony of life, then each player (a gene) of the 

orchestra needs to play in concert with 30,000 other players. The communication that 

produces the network of our epi-genome is established at many levels: transcriptionally, 

post-transcriptionally, through protein translation, at the level of post-translational protein 

modifications, through their orchestrated interactions and, finally, their interaction with the 

DNA that can be modified in order to accept or reject the protein partner. This is the way of 
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controlling gene activity and why we, in the previously mentioned review paper, 

considered epigenomic changes as „A Bird's Eye Perspective on the Genome“ (Gall Trošelj 

& Novak-Kujundžić, 2010). 

2. Cancer, DNA methylation and factors beyond our control  

A disturbed DNA methylation pattern represents, most probably, the best and most 
commonly studied epi-change. This change has been extensively documented, especially 
after the introduction of genome-wide analytical methods which clearly confirmed, on a 
very broad scale, that both gain and loss in DNA methylation are very frequent events in 
cancer (reviewed, Ndlovu et al., 2011). It has been known for some time that de novo DNA 
methylation of promoter CpG island (CpGI) does not occur accidentally (Choi et al., 2010). 
An arbitrary border at -1kB upstream and +0.5 kb downstream from the transcription start 
site shows that some 60% of human genes associate with CpG islands.  

Until 2007, the definition of the CpG island was primarily related to the primary structure of 
DNA molecule. In 1987, Gardiner-Garden and Frommer established the generaly accepted 

definition (200 bp long stretch of DNA with a GC content 50% and an observed 

CpG/expected CpG 0.6) that, as realized later, did not make a stringent distinction 
between bona fide CpG islands and Alu repates (Gardiner-Garden & Frommer, 1987).  In 
2002, this obstacle was properly addressed and a new definition of the CpG island, 
commonly used in the field of cancer research, was offered: It is the DNA region longer than 

500 bp, with a GC content 55% and observed CpG/expected CpG of 0.65. (Takai & Jones, 
2002). The percentage number for defining „the promoter rich in CpG“ varies; the most 
commonly used number is usually 55% (Espada & Esteller, 2007). However, it became 
obvious that these definitions lack a clear biological justification and do need improvement 
as they, although sufficiently sensitive in detecting majority of bona fide CpG islands in the 
humane genome, lack of specificity leading to a considerably high number of false positive 
results. In 2007, the computational modeling was used to estimate the “CpG Island 
Strength”, based on predicted epigenetic state and chromatine structure, on non-repetitive 
parts of chromosomes 21 and 22.  The “combined epigenetic score” that was based on 
available “open and transcriptionally competent chromatine structure” epigenomic data 
(including H3K4 di- and trimethylation, H3K9/14 acetylation, DNAse I hypersensitivity and 
Sp1 transcription factor binding), allowed for meaningful interpretation. Between the scores 
of “0” and “1” that related to a particular CpGI function (where “0” represented silenced, 
inactive and inaccessible island, and “1” represented unmethylated, highly accessible CpGI 
with prominent promoter activity), the value of 0.5 turned out to be equally likely to 
correspond to both, bona fide CpGI and the region of DNA that is not a CpGI.  Hence, the 0.5 
value was recommended as a threshold for majority (although not all) future applications. 
This approach has profiled 21,631 CpG islands on the tested chromosomes and, for high 
specificity mapping of CpGI, the map of predicted CpGIs based on the combined epigenetic 
score was suggested (Bock et al., 2007).   

The CpG islands are rarely methylated in normal tissue (except for X-chromosome 
inactivated and imprinted genes). However, in cancer, the picture changes dramatically. 
Aging also represents a process relating to a linear increase of the level of DNA methylation 
in CpG rich gene promoters. On the other hand, paradoxically, the global level of 
methylation in older cells/tissues seems to be decreased. This clearly mimics the 

www.intechopen.com



 
The Importance of Aberrant DNA Methylation in Cancer  

 

333 

methylation status of a cancer cell. However, one should be critical when trying to 
understand what really happens in the living cell: very similar cell types derive from 
different stem cell niches and their epigenomes may differ significantly (Kim at al., 2005). In 
addition, as recently discussed (Ehrlich, 2009), the major problem in quantitative DNA 
methylation studies dealing with native clinical samples is the presence of cells that are non-
neoplastic. When dealing with a tumor tissue that was taken in a surgical theater and 
immersed in liquid nitrogen immediately after extirpation, one can be more than convinced 
that non-tumorous cells are present in a sample. The percentage of „contaminating“, non-
tumorous cells varies from sample to sample. Even if we deal with very similar, relatively 
„clean“, native tumors, we must be aware that every cell divides with its own dynamics. 
Hence, not all cells are in the same phase of the cell cycle. So, the whole cellular content of 
the tumor represents, in a percentage that varies, a mixture of very heterogeneous, cell-cycle 
related, methylomes. Accordingly, what we measure when using the methods that are not in 
situ, is a mixture of signals and we (usually) focus on the most prominent ones. But it does 
not mean that the signals that are less prominent are less important for the tumor in toto. 

The problem becomes even more prominent in comparative analyses, when tumor tissue 
needs to be compared to non-tumorous, adjacent tissue. Our group was not the only one 
that has shown, unexpectedly, the change in imprinting status of IGF2 in a tissue adjacent to 
laryngeal cancer (Grbeša et al., 2008). It seemed „normal“ to the surgeon, and, back then in 
2005, the simplest thought was that we mixed up tumorous and non-tumorous samples. 
Even at that time, we were quite careful with tumor samples, as years of experience taught 
us to take only a small portion of tissue for analyses, leaving at least one small piece of tissue 
in our tumor bank (Spaventi et al. 1994). After obtaining confusing results, this residual 
piece of tissue was given to a very experienced pathologist who needed to answer our 
question: „Is this the tumor“? Morphologically, it was not the tumor. Epigenetically, it 
showed loss of IGF2 imprinting. Based on that finding – it did not appear as „normal 
tissue“. We still think that, especially in smoking-related cancer, this specific change may be 
the first sign of “abnormality”. 

In addition to obvious problems relating to exploring the DNA methylation status in native 
tumors, there are also very specific problems when using cell cultures. As shown by Asada, 
who used several different rat liver cell lines (including a primary cell line), methylation 
level increases significantly after 10 passages. Hence, the authors concluded that, at least in 
their experimental model, „a cautious approach is required when cell lines are utilized to 
study methylation-related carcinogenesis, metastatic or tumoricidal mechanisms“ (Asada et 
al., 2006). 

Based on this brief but, hopefully, informative data relating to objective limitations of the 
system based on factors beyond our control, we enter the field of cancer epigenomics.  

3. Cancer and DNA methyltransferases 

DNA methyltransferases (DNMTs) are the only enzymes which have been shown to mediate 
the transfer of a methyl group from S-adenosylmethionine (SAM) to the C-5 position of 
cytosine, mainly in CpG nucleotides, in mammalian genomes. Although detected, cytosine 
methylation is very rare in the outside of CpG sequences, at least in differentiated cells. For 
example, 99.98% of all methylation in mature fibroblasts occur at CpG dimers. This number is 
significantly reduced in both embryonic and induced stem cells (Lister et al., 2009).  
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In mammals, there are four DNMTs: DNMT1, DNMT2, DNMT3A, DNMT3B. While 

DNMT1 has the highest importance in maintaining post-replicative DNA methylation 

patterns, DNMT3A and -3B are considered critical players in establishing de novo 

methylation patterns. They also assume maintenance activity. DNMT3L, discovered in 2000 

(Aapola et al., 2000), is a regulatory factor for de novo methylation. Its amino acid sequence is 

very similar to that of DNMT3a and DNMT3b but lacks the residues required for DNA 

methyltransferase activity in the C-terminal domain. 

It was shown that the fidelity in replicating methylation patterns in human non-cancerous, 
dividing cells reaches 99.85-99.92% per site, per generation in CGs reach promoters and 
99.56-99.83% in CGs outside the promoters (Ushijima et al., 2003). Human cancer gastric cell 
lines showed decreased fidelity in maintaining the methylation pattern which manifested 
through an increased level of de novo DNA methylation in promoter regions of five tested 
cancer-related genes and 4- to 8-fold higher expression of de novo DNMT3B. This increase 
was highest in two cell lines that showed the highest level of decreased fidelity (Ushijama et 
al., 2005). The question remains: was the increased level of DNMT3B alone sufficient to 
induce so prominent change at the promoters of these genes?  

3.1 DNA Methyltransferase 1 (DNMT1) 

Homozygous knockout of DNMT1 is lethal to the embryo in mammals. On the other hand, 

studies on DNMT1-overexpression in embryonic stem cells also resulted in lethality of the 

embryo, suggesting that accurate expression of DNMT1 is a key factor in maintaining 

embryonic development (Biniszkiewicz et al., 2002). 

For maintaining the methylation pattern during cell division, the cellular machinery uses 

DNMT1. After replication, 5-mC is present only on one parental DNA strand and the 

methylation of cytosines on the newly synthesized strand takes place on the cytosine that 

lies diagonally opposite to 5-mC in the parent DNA strand. Keeping the methylation pattern 

as inheritable modification that needed to be preserved during cell division was originally 

published in 1975 by three independent researchers/research groups (Holliday & Pugh 

1975; Riggs, 1975). Since then, our knowledge has been significantly advancing, especially as 

a result of fast developing molecular techniques. However, it does not matter how rapidly 

our research progresses, the importance of the discovery published in 1975 remains 

astonishing, even from the most sophisticated molecular perspective.  

During the S-phase of the cell cycle, DNMT1 was found to be localized to DNA replication 

foci through its interaction with proliferating cell nuclear antigen (PCNA). The precise cell-

cycle-dependent localization of DNMT1 depends on the protein UHRF1, also known as 

ICBP and NP95. This protein shows strong preferential binding to hemimethylated CG sites 

through its methyl DNA binding domain, and tethers DNMT1 to replication fork (Bostick et 

al., 2007; Sharif at al., 2007). The DNMT1 also interacts with histone deacetylases resulting in 

repressing gene expression or forming heterochromatin structure.  

3.1.2 DNMT1 and post-translational modifications 

Little is known about post-translational modification of DNMT1, that may, possibly, change 
its functioning, especially in cancer. There are several in vitro studies pointing out the 
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protein kinases involved in DNMT1 phosphorylation. From the perspective of cancer 
research, the AKT and PKC certainly are very promising candidates that may help us to 
better understand the functioning of DNMT1. Both kinases were shown to phosphorylate 
recombinant DNMT1 at Ser127. AKT additionally phosphorylates Ser143. This modification 
decreases the ability of DNMT1 to interact with PCNA and UHRF1. As a consequence, 
DNMT1 shows increased cell-cycle-dependent stability (Esteve et al., 2011).  

3.2 DNMT2 

DNMT2 is expressed in most human and mouse adult tissues (Goll & Bestor, 2005) and its 
role seems to be related to methylation of cytosine 38 (C38) of RNAAsp (Goll et al., 2006). 
There are no strong evidence on DNA methylation activity of DNMT2. The Dnmt2 defficient 
mouse embryonic stem cells do not show measurable alteration of genomic DNA 
methylation pattern (Okano et al., 1998). Additionally, in contrast to exclusive nuclear 
localization of Dnmt1 and Dnmt3, Dnmt2 is primarily localized in the cytoplasm of 
transfected mouse 3T3 fibroblasts (Goll et al., 2006).  

The level of DNMT2 expression in human cancer cell line is quite variable: high in K562 
(leukemia) and MCF-7 (breast cancer) and very low, almost undetectable in A549 (lung 
cancer ) and HepG2 cells (liver cancer) (Schaefer et al., 2009). It has been shown that the 
treatment with 5-azacytidine inhibits C38 methylation at RNAAsp. These findings open the 
possibility that DNMT2 may contribute to neoplastic process through a novel pathways, 
related to RNA methylation. Clearly, much research should be performed in this area in 
order to understand all possible roles of DNMT2. 

3.3 DNMT3 family 

In mature cells which divide, DNMT1 is predominant DNA methyltransferase. However, 
there are two other DNMTs, DNMT3a and DNMT3b, which cannot differentiate between 
unmethylated and hemimethylated CpG sites. Their role is primarily de novo DNA 
methylation. Accordingly, they are highly expressed in early embryonic cells when 
programmed waves of de novo methylation occur. Their level is considerably lower after 
differentiation and in adult somatic tissues, but it significantly increases in cancer cells. Both 
enzymes contain large N-terminal parts which interact with other proteins. The C-terminal 
domain represents the catalytic center (Gowher & Jeltsch, 2002). In 1999, mice with targeted 
disruption of the Dnmt3a and Dnmt3b genes was an excellent model for exploring the 
activity of these two enzymes. Experiments showed lack of de novo methylation in 
embryonic stem cells and early embryos but without any effect on the maintenance of 
imprinted methylation patterns (Okano et al., 1999).  

3.3.1 DNMT3B 

The significance of this enzyme in cancer has been well recognized. The most recent 
research publications present its role in silencing tumor suppressor genes, through 
methylation of their promoters. In a study of hepatocellular carcinoma, DNMT3B 
overexpression was correlated to the level of promoter methylation and expression of 
MTSS1 (Metastasis Suppressor 1). There was negative correlation with DNMT3B expression 
and MTSS1 expression, but not with its promoter methylation. The DNMT3B was found to 
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be directly bound to the 5’-flanking MSS1 region that was sparsely methylated and 
methylation inhibitors failed to recover the MSS1 expression. Based on these findings, the 
conclusion was that DNMT3B may repress MTSS1 through a DNA methylation-
independent mechanism (Fan et al., 2011). This should not be surprising, keeping in mind 
that different protein complexes include the DNMT3B. The thought is that DNMT3B, 
through a partnership with a transcription repressive complex, inhibits gene expression 
without necessarily exhibiting its genuine de novo methyltransferase function.  

3.3.2 DNMTs in cancer 

As shown in a comprehensive review in 2011, incorporating most available data relating to 
the level of DNMTs in cancer, these enzymes are increased in all tested cancer clinical 
specimens and cancer cell lines (Daniel et al., 2011). The methods used for the quantification 
were primarily Real-Time PCR and immunochistochemical methods, or both. When we 
perform these experiments, we must question: Does the amount of mRNA reflect the 
amount of the protein? Can we reach any conclusion without measuring protein activity? 
On all these, the answer is, or should be, a resounding „no“. However, it has happened all 
too many times that we do not see clearly and that we reach our conclusion prematurely. If 
premature – then it is, unfortunately often – wrong. The consequence of all too many 
examples of this kind of unfortunate mistake is an enormous waste of time, as it takes years 
to get back on the right track. Many recently retracted papers, including those published in 
journals with the highest impact factors, are extremely consequential. Many researchers who 
are initially on the right path, change their hypotheses after reading what they had been led 
to believe, mistakenly, to be a break-through article. This mistaken action took them straight 
into the disaster zone of irreproducible results. It takes years for an article to be retracted. 
Meanwhile, many scientific careers are damaged in an effort to reproduce a result that 
cannot be reproduced.  

4. Cancer and global DNA hypomethylation 

The reasons for global DNA hypomethylation combined with hypermethylation at many 5' 
gene or promoter regions in cancer is not understood. In prior years,  research related to this 
phenomenon was performed on several models: prostate carcinomas, Wilms's tumors and 
gastric cancer (Ehrlich et al., 2002; Kaneda et al., 2004; Santourlidis et al., 1999). In order to 
clarify this phenomenon, Ehrlich and co-workers analyzed the relationship of cancer-linked 
hypermethylation and hipomethylation at 55 gene loci (mostly CpG islands overlapping the 
5' promoter regions), three classes of repetitive elements and global hypomethylation profile 
in epithelial ovarian malignant tumors (19 ovarian carcinomas, 20 LMP (low malignant 
potential) tumors and 21 cystadenomas) (Ehrlich et al., 2006). They proved that promoter 5' 
gene hypermethylation and both satellite or global DNA hypomethylation occur 
independently. This was shown in a multivariate regression analysis where, in a final 
model, hypermethylation variables and hypomethylation variables independently predicted 

the degree of malignancy in ovarian tumors as follows: LTB4R (P0.005), MTHFR1 

(P=0.006), CDH1 (P=0.005) and Sat (P=0.005). After making an adjustment for multiple 
comparisons, the LTB4R and MTHFR1 showed an association of DNA methylation with 

DNMT1 mRNA levels (P0.01), in carcinomas. However, this association was not seen when 
combining them with LMP tumors.  
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These examples lead to the following thought: if the total amount of the enzyme is 
increased, and the system is (globally) hypomethylated, then something has to impact its 
function. The focus should be on protein interactions because, as shown very recently, the 
interaction between DNMT1, PCNA and UHFR1 may be disrupted in human and mice 
astrocytes and glial progenitor cells. This specific change was shown to be an oncogenic 
event (Hervouet et al., 2010). The same paper shows that gliomagenesis relates to the 
decrease of 5-mC, the expression level of Dnmt1 remains stabile, but the catalytic activity of 
the enzyme decreases. This knowledge was applied to analyses measuring maintaining 
DNMT1 activity in 45 glioma patients who were divided into two groups: those with low 
(N=23), and those with high level of methyltransferase activity (N=22). Very significant 
differences in survival time was found between these two groups (p=0.0019), indicating that 
the level of DNMT1 activity, rather than the absolute amount, could be used as a survival 
prognostic factor. However, this conclusion must be taken with caution because of the 
limited number of patients. The results also clearly show that DNMT1/PCNA/UHRF1 
interactions inversely correlate with the level of DNMT1 phosphorylation, reflecting, as 
proved in the cited paper, that the DNMT1 phosphorylation represents the hallmark of 
DNMT1/PCNA/UHRF1 interaction. The loss of this interaction represents a milestone for 
chromosomal instability induced by hypomethylated DNA repeat elements and also 
mediates overexpression of several very potent oncogenes such H-ras and survivin. 
However, it has to be noted, once again, that the number of patients was rather small and 
more research, based on a larger number of patients, must be performed in order to convert 
very strong indications into conclusions relating to DNMT1 phosphorylation as a prognostic 
cancer marker. 

5. Loss of Imprinting (LOI) and cancer 

Genomic imprinting is an epigenetic phenomenon that ensures monoallelic gene expression 

in a parent-of-origin dependent manner. Accordingly, imprinted genes are expressed only 

from a paternal or maternal allele. If we consider the biallelic expression as a full activity of 

a certain gene, then the imprinted gene gives “half” of the information which makes it very 

vulnerable to pathogenetic processes. If the gene is biallelically expressed, then any kind of 

damage affecting one allele still leaves 50% of overall function. As is the case with tumor 

suppressor genes, this may be sufficient for normal functioning. If the same happens with 

the active copy of the imprinted gene, the other allele, silenced through established 

imprinting marks, cannot add to the functioning. Hence, there is a haplo-insufficiency 

related to imprinted genes that makes them more “vulnerable”. 

5.1 Regulation of genomic imprinting 

Estimation of the total number of imprinted genes in the human genome varies according to 
the methodology used. There are ~100 imprinted genes in the mammalian genome and ~70 
imprinted genes have been experimentally verified and catalogued (Morison et al., 2001). 
These genes are not randomly scattered throughout the genome. They are clustered in the 
domains containing regulatory DNA elements - imprinting control regions, ICRs. These cis-
regulatory elements are methylated only on one allele and that is the reason for calling them 
differentially methylated regions/domains, DMRs/DMDs. DNMT1 has the most important 
role in DNA methylation maintenance at ICRs. In addition to DNA methylation, other 
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epigenetic modifications (post-translational histone tail modifications, binding of polycomb 
proteins, non-coding RNAs) play an important role in regulating ICRs. 

5.2 IGF2/H19 imprinting 

IGF2, coding for IGF2 mitogenic peptide and H19, a protein non-coding gene, at the human 
chromosome 11p15.5, are reciprocally imprinted, in most tissues studied to date. This is 
controlled by the IGF2/H19 ICR which lies upstream of H19 and is methylated only on the 
paternal allele (Tremblay et al., 1997). Accordingly, H19 promoter is also methylated on the 
paternal allele and H19 is silent (Zhang et al, 1993). 

The insulator model (Figure 1) describes, roughly, how IGF2/H19 ICR regulates monoallelic 
expression of IGF2 and H19. The insulators are DNA sequences which block contact 
between promoters and nearby enhancers/silencers. The IGF2/H19 ICR is positioned 
between IGF2 and H19, ~100 kb downstream of the IGF2. The downstream enhancers are 
shared by IGF2 and H19 (Leighton et al., 1995). On the maternal allele, the CCCTC binding 
factor (CTCF) binds to unmethylated IGF2/H19 ICR and insulates Igf2 promoters from the 
enhancers (Bell & Felsenfeld, 2000; Hark et al., 2000). The human IGF2/H19 ICR region has 
seven CTCF binding sites, but only the methylation of the sixth one acts as a key regulatory 
domain (Takai et al., 2001) through abolishing the CTCF binding to the paternal IGF2/H19 
ICR, leading to IGF2 expression (Bell & Felsenfeld, 2000; Hark et al., 2000). In humans, the 
CTCF binding to both IGF2/H19 ICR and the IGF2 promoters P2-P4, and insulation of the 
IGF2 promoters from enhancers on the maternal allele, involves long-range 
intrachromosomal interactions (Vu et al., 2010). 

 

 

Fig. 1. The insulator model. Arrows: Five IGF2 promoters and a H19 promoter; shaded boxes: 
nine IGF2 (lined blue) and five H19 (lined pink) exons. Black filled lines: DMR0, DMR2 and 
IGF2/H19 ICR, shown below the exons as (methylated) on the paternal allele, and without any 
fill (unmethylated) on the maternal allele. Orange arrowheads: enhancers. Yellow sun: CTCF. 
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In humans, there are still some missing links relating to IGF2/H19 imprinting mechanisms. 
One of them includes two additional differentially methylated regions (Figure 1): DMR0, 
surrounding IGF2 promoter P0 and methylated on the paternal allele (Murrell et al., 2008) 
and DMR2, in IGF2 exon 9 (Murrell et al., 2008). DMR0 does not bind CTCF (Vu et al., 2010). 
The existence of two additional imprinted genes in this region IGF2AS (Okutsu et al., 2000), 
and PIHit (paternally expressed Igf2/H19 intergenic transcript) (Court et al., 2011) adds even 
more complexity to the whole chromosomal locus; together with the CTCF paralogue, 
BORIS/CTCFL (Brother of Regulator of Imprinted Sites/CTCF-like) (Loukinov et al., 2002). 

Both proteins, CTCF (Uniprot: P49711) and BORIS (Uniprot: Q8NI51), share 74% homology 

in their 11-Zn-finger, DNA binding domains. Their N’ and C’ termini have less than a 10% 

sequence homology. This implies that they can bind to the same DNA sequences (for 

example, IGF2/H19 ICR) but each of them interacts with different protein partners and has 

different function. For example, BORIS is involved in the establishment of IGF2/H19 

imprinting marks in the male germline (Jelinic et al., 2006). CTCF is involved in the 

interpretation of these imprinted marks in somatic cells (Hore et al., 2008). 

5.3 Loss of imprinting in cancer 

Loss of imprinting (LOI) in cancer is manifested as either activation of normally 

epigenetically silenced allele resulting in biallelic expression, or as silencing of normally 

active allele (Table 1; IGF2 and H19 not shown). 

 

Imprinted gene Cancer type Reference 

Biallelic expression 

IGF2AS Wilms’ tumor (Vu et al., 2003) 
PEG1/MEST Invasive breast cancer (Pedersen et al., 1999) 

Lung cancer (Kohda et al., 2001)  
LIT1 Colorectal cancer (Nakano et al., 2006) 
IPW Testicular germ cell tumor (Rachmilewitz et al., 1996) 

Loss of expression 

PEG3 Glioma (Maegawa et al., 2001) 

Endometrial, cervical and 
ovarian cancer cell lines 

(Dowdy et al., 2005) 

PLAGL1/ZAC1 Ovarian cancer  (Abdollahi et al., 2003)  

Breast cancer (Abdollahi et al., 2003) 
ARHI/DIRAS3/NOEY2 Breast cancer (Yuan et al., 2003) 
ITUP1 Glioma cell lines  (Maegawa et al., 2004) 
CDKN1C Bladder cancer (Hoffmann et al., 2005) 

Lung cancer (Kondo et al., 1996) 
MEG3 Meningioma (Zhang, X. et al., 2010) 

Table 1. Imprinted genes - Loss of imprinting in cancer 

Theoretically, in the case of imprinted tumor suppressor genes, loss of the expression from 

only one functional allele could contributes to tumorigenesis by mimicking “the second hit”, 

according to Knudson’s Two Hits Hypothesis (Knudson, 1971). The same effect on the cell 
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dividing potential and growth has the biallelic expression of the imprinted, growth 

promoting gene; mice with Igf2 LOI in intestines have less differentiated intestines and 

develop twice as many adenomas, in comparison with control (Sakatani et al., 2005). This is, 

of course, simplified presentation which may not be realistic at all due to existence of many 

different regulating processes and signaling molecules included in the process of 

carcinogenesis. 

5.3.1 Loss of IGF2 and H19 imprinting in cancer 

IGF2 and H19 LOI has been demonstrated in many different types of cancer (reviewed in 

Jelinic & Shaw, 2007). We were the first to analyze the IGF2/H19 imprinting status in 

laryngeal squamous cell carcinoma samples (LSCCs) (Grbesa et al., 2008) where we detected 

IGF2 LOI in 33% of LSCCs and 28% of adjacent non-tumorous laryngeal tissues. This finding 

was already discussed. At that time, the IGF2 LOI in normal tissues has been detected only 

in colon mucosa of patients with colorectal cancer (Cui et al., 2003), and it was also known 

that IGF2 LOI exists in peripheral blood lymphocytes, in 10% of normal population 

(Sakatani et al., 2001). It is difficult to imagine the IGF2 LOI as a cancer biomarker as, 

presently, we detect LOI at the level of easily degraded mRNA (that needs to be entirely free 

of DNA). Additional problem presents restriction of analysis to the polymorphic sites (SNP), 

that are not necessarily informative for certain markers, in certain populations (Kaaks et al., 

2009). We have also detected H19 LOI in 23% of LSCCs, in line with el-Naggar’s results (el-

Naggar et al., 1999). Increased H19 expression in LSCCs was reconfirmed recently (Mirisola 

et al., 2011).  

In a non-tumorous cell, based on the insulator model, one expects existence of MOI 

(maintenance of imprinting) through monoallelic IGF2 and monoallelic H19 expression. If 

there is a LOI, the insulator model proposes biallelic expression of IGF2 or H19, and no 

expression of the partner (for example, IGF2 biallelically expressed, H19 silenced). But, this 

is not the case. We have detected, in a small subset of samples (2/10) informative for both 

IGF2 and H19 imprinting analyses, biallelic IGF2 expression (IGF2 LOI) joined with H19 

MOI. In remaining eight samples, the imprinting was maintained. This was also observed in 

a broad group of head and neck cancers (among them, 14 LSCCs) (el-Naggar et al., 1999). 

Again, we are here facing the challenge related to the presence of “contaminating”, non-

tumorous cell with an open possibility that they contributed to the “mixed” result. The 

solution could be the usage of methods which enable analysis of IGF2/H19 imprinting in the 

individual cells (for example RNA fluorescent in situ hybridization).  

We have also analyzed the methylation of the 6th CTCF-binding site (CBS6) within the ICR 

by methylation restriction PCR, MR-PCR (Ulaner et al., 2003a). In the samples with IGF2 and 

H19 MOI, the CBS6 was hemimethylated, while its methylation appeared aberrant in the 

tissue samples with IGF2 or H19 LOI (Grbesa et al., 2008). The analysis of CTCF binding to 

the CBS6 by chromatin immunoprecipitation (ChIP) was not performed due to the well 

known problem in this part of molecular oncology: the limited amount of tissue. However, 

based on ours and other groups results, it seems that IGF2 and H19 LOI cannot be explained 

solely on the basis of the level of CBS6 methylation (Cui et al., 2002) and its occupancy by 

the CTCF (Ulaner et al., 2003b). In cancer cell lines with IGF2 LOI, the whole 3-D structure of 
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the IGF2/H19 locus is dramatically changed, in comparison with normal cells and cancer 

cells with IGF2 MOI (Vu et al., 2010). As the prototype of the method that should be used for 

this kind of analysis (The Chromosome Conformation Capture Original Copy Assay (3C-

OC) coupled to QPCR and 3D software analysis) does not represent the standard technique 

applicable for clinical tissue specimen analyses, it will take some time before implementing 

this type of research on native clinical material. 

5.3.2 New player on the scene – BORIS 

The BORIS is involved in establishment of methylation marks at paternal IGF2/H19 ICR 

during spermatogenesis (Jelinic et al., 2006). Its expression has been detected in various 

cancers and cancer cell lines (D'Arcy et al., 2008; Hoffmann et al., 2006; Hong et al., 2005; 

Jones et al., 2011; Kholmanskikh et al., 2008; Looijenga et al., 2006; Renaud et al., 2007; 

Risinger et al., 2007; Smith et al., 2009; Ulaner et al., 2003a; Woloszynska-Read et al., 2007).  

In our LSSC samples, BORIS was expressed with both maintained IGF2 and H19 

imprinting but also in the samples with IGF2/H19 LOI (Grbesa I, unpublished results). 

Recently, 23 BORIS transcript variants that may potentially produce 17 BORIS 

polypeptides  were discovered (Pugacheva et al., 2010). In human tissues, polypeptides 

that correspond to calculated molecular weight of some of the BORIS isoforms, have been 

detected with polyclonal anti-BORIS antibody (Jones et al., 2011) but the role of different 

BORIS isoforms in establishment and maintenance of IGF2/H19 imprinting remains to be 

elucidated. 

6. Poly(ADP-ribosyl)ation in regulation of DNA methylation 

Since the seminal work by Feinberg and Vogelstein pointing to the global hypomethylation 

in tumor cells (Feinberg & Vogelstein, 1983), many reports followed documenting aberrant 

aquisition of methylation marks at discrete loci in the genome, most notably those 

comprising genes involved in cell cycle control. Such methylation pattern is opposite to the 

bimodal methylation pattern, characterized by global DNA methylation and 

hypomethylation of CpG islands, that is physiologically aquired at the time of embryo 

implantation and faithfully maintained throughout life (Brandeis et al., 1993). The search for 

cis- and trans-acting factors that orchestrate such bimodal methylation pattern has since 

been the focus of scientific interest. 

Twenty years ago, linker histone H1 has been identified to have inhibitory effect on DNA 

methylation (Caiafa et al., 1991). Shortly thereafter, the difference between H1 histone 

isoforms, at that time termed as “tightly-bound” and “loosely-bound,” in regulation of DNA 

methylation were observed. In contrast to “typical” loosly-bound histone H1, tightly-bound 

histone H1 has been shown to facilitate methylation of linker DNA (Santoro et al., 1993). The 

histone H1, which is able to bind CpG-rich DNA sequences and inhibit double-stranded 

DNA methylation, has later been identified as variant H1e (Santoro et al., 1995) that 

promotes chromatin condensation or, upon poly(ADP-ribosyl)ation (pARylation), 

chromatin decondensation (D’Erme et al., 1996). Appart from the importance of this histone 

variant and its pARylation in chromatin decondensation, which allows  recruitment of 

transcription factors, the same group has demonstrated the mandatory role of pARylation in 
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the maintenance of hypomethylated state of CpG islands in mouse fibroblasts (Zardo & 

Caifa, 1998). 

Inhibition of pARylation by competitive PARP inhibitor, 3-aminobenzamide (3-AB), 

enhances DNA metylation (Zardo & Caifa, 1998). pARylation is process catalyzed by 

poly(ADP-ribose) polymerases (PARP), which use NAD as a substrate to build up polymers 

of ADP-ribose on acceptor proteins, including PARP-1 (D'Amours et al., 1999). It is the 

founding member of this enzyme family, accounting for more than 90% of cellular 

pARylating capacity. It is able to form long linear or branched ADP-ribose polymers 

composed of several up to 200 ADP-ribose units. There are at least 28 sites in PARP-1 

automodification domain upon which long and branched ADP-ribose polymers bind 

(Juarez-Salinas et al., 1982). The negative charge of ADP-ribose polymers makes them 

resemble nucleic acids and compete with them for binding different protein partners. ADP-

ribose polymers, either covalently linked to acceptor proteins or protein-free, are also able to 

non-covalently bind proteins (Malanga & Althaus, 2005). The binding of ADP-ribose 

polymers to acceptor proteins is dependent on the presence of amino-acids consensus, 

poly(ADP-ribose)-binding motifs, that allows for non-covalent binding (Pleschke et al., 

2000). Those consensuses are present in a wide variety of proteins with very divergent 

functions, ranging from structural proteins such as histones (Althaus et al., 1995), proteins 

involved in DNA repair to enzymes involved in regulation of DNA topology (Malanga & 

Althaus, 2005). Binding of negatively charged poly(ADP-ribose) polymers functionaly and 

structuraly modifies acceptor proteins (Panzeter et al., 1992).  

The DNMT1 has two amino-acid consensus motifs for binding poly(ADP-ribose) polymers 

in its N-terminal domain. It was demonstrated that pARylated PARP-1 and DNMT1 form 

complex in vivo, and that either PARP-1-associated or free poly(ADP-ribose) polymers are 

able to inhibit catalytic activity of DNMT1 (Reale et al., 2005). The majority of PARP-1 

molecules in normal cell is unmodified (D'Amours et al., 1999) and the mechanism directing 

the minority of, under physiological conditions, automodified PARP-1 molecules to CpG 

islands remains an open question. In an effort to elucidate the possible involvement of 

pARylation in the regulation of Dnmt1 gene promoter, Guastafierro et al. (2008) have 

examined transcription factors known to be subject to covalent poly(ADP-ribosyl)ation 

(Hassa et al., 2006). Highly conserved multifunctional transcription factor, CTCF (Ohlsson et 

al., 2001), attracted their attention based on its role in protection of DNA from methylation 

and functional dependence on pARylation. The key role of pARylation of CTCF in its 

insulator/ enhancer blocking function has been reported by Yu et al. in 2004. The role of 

CTCF in regulation of IGF2/H19 imprinting has been abolished by treatment with PARP-1 

inhibitor 3-AB. To establish whether the lack of CTCF pARylation is indeed responsible for 

the loss of IGF2 imprinting, the association of poly(ADP-ribose) polymers with H19 ICR was 

examined by ChIP on wild-type and mutant-type ICR containing CTCF-binding sites. The 

pARylation mark has been present only if the wild-type allele has been inherited maternally. 

In the lack of specific antibodies recognizing pARylated CTCF, however, it cannot be ruled 

out that CTCF binding to its target sites is necessary for activation of PARP-1 or other 

members of poly(ADP-ribose) polymerase family that would pARylate proteins other than 

CTCF in that region. Indeed, it has been demonstrated that, in addition to its previously 

recognized characteristic of being acceptor of poly(ADP-ribose) polymers, CTCF is interacting 
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with PARP-1 and is able to activate PARP-1 in the absence of DNA nicks, whereby both 

proteins become pARylated and negatively affect DNA methylation machinery 

(Guastafierro et al., 2008). The epigenetic regulation of tumor suppressor p16INK4a provided 

some insight into CTCF and PARP-1 DNA-binding and the influence of their pARylation 

relative to the expression of this gene and several other CTCF-regulated genes (Witcher & 

Emerson, 2009). Transcription of p16INK4a depends on CTCF binding to a chromatin 

boundary ~ 2kb upstream of its transcription start site. In the absence of CTCF binding, p16 

is silenced in various types of tumor cells. When associated with the boundary element, in 

p16-expressing cells, CTCF is pARylated. However, no direct association of pARylated 

CTCF and PARP-1 could be detected in those p16-expressing cells. In p16-silenced cells, 

CTCF was not pARylated and bound to the methylated boundary element, but CTCF-

PARP-1 complex could be readily detected by co-immunoprecipitation. Moreover, the 

authors found that pARylated CTCF dissociates from PARP-1, whereas pARylated CTCF 

remains associated with PARP-1 and loses its function, at this boundary element. Therefore, 

it is conceivable that deregulation of pARylation may impart the aberrant association of 

CTCF and PARP-1 and change the association of CTCF with its DNA binding sites. Relevant 

to the possible influence of the CTCFs binding to DNA and its protective role against DNA 

methylation is the recent report on the ability of CTCF to form an unusual DNA structure 

(MacPherson & Sadowski, 2010). Considering that, in addition to the classical view that 

PARP-1 is activated by DNA nicks, various non-linear DNA structures are able to activate 

this enzyme (Lonskaya et al., 2005), the property of CTCF to loop DNA may be yet another 

facet in connecting processes of DNA methylation and poly(ADP-ribosyl)ation. 

7. Epigenomic therapy 

The inhibition of DNMTs has been used in epigenetic cancer therapy, based on the idea that 

seems to be quite simple: what is hypermethylated, needs to be normomethylated. So, if we 

consider the act of removing the methylation marks from hypermethylated promoters of 

tumor suppressor genes whose protein products are involved in regulation of cell cycle, 

apoptosis and DNA repair as a therapeutic act, we may be well on a right way.  

There are two kinds of DNA methylation inhibitors: nucleoside (Fig. 2) and non-nucleoside 

analogues. The consequences of nucleoside analogue incorporation into DNA (in this 

situation, in lieu of cytosines) is DNMT binding and blocking, causing depletion of overlay 

active enzyme molecules with DNA methyltransferase activity. Two DNA methylation 

inhibitors, cytidine analogs, were approved by the US Food and Administration (FDA), for 

the treatment of Myelodysplastic Syndrome and certain forms of leukemias: 5-azacytidine 

(azacytidine, VidazaTM), which was approved in May, 2004 and 5-aza-2'-deoxycytidine (5-

azaCdR, decitabine, DacogenTM), which is a deoxyribose analog of 5-azacytidine, approved 

in May, 2006 (Figure 2). 

The antineoplastic effects caused by these two drugs are related to targeted DNA 

demethylation (and consequential restoration of gene activity necessary for differentiation) 

and a direct cytotoxic effect on abnormal, rapidly dividing hematopoietic cells in the bone 

marrow. Non-proliferating cells are relatively insensitive to these two drugs, but their 

inherently toxic effects do produce certain side-effects. 
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a) b)               

Fig. 2. 5-Azacytidine (a) and 5-Aza-2′-deoxycytidine (b) 

7.1 5-azacytidine and decitabine 

5-azacytidine was described as a DNMT inhibitor more than 30 years ago (Jones & Taylor, 
1980). The first approved clinical targets for 5-azacytidine were Myelodysplastic Syndrome 
(MDS) and acute myeloid leukema. The drug can be applied subcutaneously or through  IV 
infusion.  

This nucleotide analogue becomes incorporated into DNA in place of cytosine after being 
modified by ribonucleotide reductase and subsequent phosphorylation. When DNMT1 
„recognizes“ it as a unmethylated substrate in a newly synthesized DNA strand and 
„approaches“ it, it becomes trapped through covalent binding to the incorporated analogue. 
The reduced level of DNA methylation that follows represents the consequence of passive 
demethylation in consequent cell cycles due to the lack of functional enzyme. 5-azacytidine 
can also be phosphorylated by uridine-cytidine kinase and, as such, incorporated into RNA. 
When applied subcutaneously, it may cause: nausea, anemia, thrombocytopenia, vomiting, 
pyrexia, leukopenia, diarrhea, injection site erythema, constipation, neutropenia and 
ecchymosis. Most common adverse reactions through IV application, according to the FDA, 
included: petechiae, rigors, weakness and hypokalemia. 

MDS is also the primary therapeutic indication for DacogenTM , as in the case with VidazaTM. 
The most prominent side-effects associated with DacogenTM treatment are neutropenia and 
thrombocytopenia.  

The third analogue, zebularine, has several advantages over the two previously mentioned 
compounds. It is more stable, highly selective for cancer cells and, hence, far less toxic 
(Cheng et al., 2004). However, this potential drug seemed to fail after being very successful 
in a small pilot study, because a very high dosage of the drug were needed to obtain the 
desired antitumorous effect (Goffin & Eisenhauer, 2002). In all three cases, the facts which 
include non-selective DNA targeting resulting in side-effects, were the basis for approaching 
the problem in a different way. That is, developing compounds which target DNMTs 
directly, without prior DNA incorporation requirement. 

7.1.1 New methods in exploring activity of methylation inhibitors 

In 2008, Illumina Golden Gate arrays were used for direct characterization of the effects of 
azacytidine application in three different leukemia cell lines (HEL, HL-60, K562) and ten 
patients who fulfilled the WHO criteria for MDS. In the cell lines, the effect of the drug on 

www.intechopen.com



 
The Importance of Aberrant DNA Methylation in Cancer  

 

345 

DNMT1 protein level differed, the lowest being in HL-60, while HEL cells appeared relatively 
resistant to DNMT1 depletion. Accordingly, HL-60 was considerably demethylated, while the 
HEL cell line did not exhibit significant change in global methylation level. After performing 
an array-based methylation profiling (1,505 CpGs representing 807 cancer-associated genes), 
the results were very interesting. In untreated cell lines, the number of methylated CpGs 
exceeded 80%. After treatment, more than 80% of spots became demethylated, but only in HL-
60 and K562 cell lines. There was no consistent demethylation trend in HEL cells. Of 
importance, flow cytometry analysis showed similar overall cell cycle profiles in all three cell 
lines. The results obtained on patients’ samples (6/10, as six patients completed at least one 
treatment course consisting of four cycles) differed significantly. In three patients, the 
methylation levels remained the same, while in three other persons the level of methylation 
decreased significantly, through a cyclic demethylation,  following the cyclic administration of 
the drug (Stresemann et al., 2008; Stresmann & Lyko 2008). 

In 2011., a genome-scale Infinium analysis (27,578 CG nucleotides; more than 14,475 associated 

genes) was performed on two human colon cancer cell lines (HCT116 and double knockout 

(DKO) HCT116, lacking DNMT1 and DNMT3B) and a HL-60 leukemia cell line treated with 

both azacytidine and decitabine. The bimodal peaks of methylation distribution was found in 

both treated and untreated cells, representing spots with low and high levels of methylation. 

These experiments not only showed more potent demethylation activity of decitabine when 

compared with azacytidine, but also preferential demethylation at specific loci and 

demethylation resistance of certain number of CGs, in HCT116. The results from these in vitro 

study shed new light on problems encountered in clinical work with these drugs: not only was 

the degree of demethylation of the whole genomic DNA higher than gene-specific 

demethylation (this is something that we do not want to happen, as these drugs were 

implemented in the clinic in order to demethylate the hypermethylated promoters of tumor 

suppressor genes), but also the spatial distribution of demethylated CpGs mimicked the 

distribution found in DKO HCT116. However, when the cluster of cancer-related genes 

associated CGs was analyzed separately, it turned out that 906 out of 2,125 were 

hypermethylated and both drugs were very efficient in removing methylation marks. It is hard 

to distinguish which gene (and joining CGs) represents the clean „cancer-related“ gene. Many 

genes that were considered to be „inflammatory genes“ or „metabolic genes“, turned out to be 

“cancer genes”, as well. One should be careful regarding this kind of clustering because we are 

currently far away from a complete understanding of how certain signaling 

proteins/pathways interact, regardless of to which cluster they were primarily asigned.  

When performing computational modeling for the presence of transcription factors binding 

sites in 851 CpGs representing 644 genes, demethylation - sensitive and – resistant CGs 

showed different types of enrichment. For example, binding sites of Forkhead box (Fox) 

transcription factors were enriched in demethylation sensitive genes, while basic Helix-

Loop-Helix transcription factor binding sites turned out to be enriched in demethylation 

resistant genes (Hagemann et al., 2011).  

7.2 Non-nucleoside compounds 

There are several more, potentially promising, non-nucleoside, candidates. Some of them 

are well known drugs/healing compounds, such as curcumin.  
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- Procaine (a well known local anesthetic) and its derivative, procainamide (a well known 
drug for treating cardiac arrhythmia) have shown demethylating activity in cancer cell 
lines of different origin. They were shown to be a specific inhibitors of DNMT1 (Lee et 
al, 2005). For example, in prostate cancer cells, procainamide restores GSTP1 expression 
through demethylation of GSTP1 promoter (Lin X et al., 2001). In lung cancer, these 
drugs induce demethylation of WIF-1 (Wnt Inhibitory Factor) promoter, a negative 
regulator of the Wnt-signaling pathway (Gao et al., 2009).  

- Hydralazine: The methylation inhibitory role was shown to be specifically related to the 
inhibition of DNMT (Angeles et al., 2005). Its combination with magnesium valproate, 
seems to be promising in treating different types of malignant disease, including MDS 
(Candelaria et al., 2011). 

- The inhibitory effect of (-)- epigallocatechin-3-gallate (EGCG), the healing compound 
from green tea, was shown in 2003 (Fang et al., 2003). It was then shown for the first 
time, that inhibition of DNA methylation can be inhibited by a commonly consumed 
dietary constituent. At the same time, these results suggested the potential use of EGCG 
for the prevention of cancer-related gene silencing. The authors measured the DNMT1 
catalytic activity and performed molecular modeling of the interaction between EGCG 
and DNMT1. Finally, they proved reversal of hypermethylation through the 
reactivation of expression of several genes (RAR, MGMT, p16INK4a, and hMLH1).  

- Genistein, the soy bean isoflavone, was also shown to influence DNMTs. Based on a 
literature search, there seems to be only one study exploring its efficacy as a DNA 
methyltransferase inhibitor (Li et al., 2009).  

7.2.1 Curcumin 

Curcumin (diferulolymethane) is the yellow pigment found in the cooking spice turmeric 

(Curcuma longa linn). Curcumin is a strong inhibitor of the NF-B signaling pathway (Gupta et 

al., 2011). Having in mind the central role of NF-B in many different signaling pathways, it is 

not surprising that this compound shows anti-inflammatory, anti-oxidant, antimicrobial and, 

finally, anticancer activity. Curcumin is currently being investigated for its chemopreventative 

efficacy in a variety of solid tumors. So far, most of the controlled clinical trials of curcumin are 

in phase I (Hatcher et al., 2008), suggesting that oral curcumin is more likely to be effective as a 

therapeutic agent in cancers of the gastrointestinal tract than in other tissues (Sharma et al., 

2005). The results of one non-randomized, open-label, phase II clinical trial conducted in the 

U.S. were published recently, reporting on the first 25 patients with advanced pancreatic 

cancer. The patients did not receive any concomitant chemotherapy or radiotherapy. There 

was partial response in one patient and disease stabilization in other patient, for 

approximately 2.5 years (Dhillon et al., 2008). Another clinical phase I/II trial included 21 

gemcitabine-resistant pancreatic cancer patients who received, like in Dhillon’s study, 8 grams 

of curcumin daily, together with gemcitabine-based chemotherapy in this instance. This 

combination was shown to be „safe and feasible in patients with pancreatic cancer and 

warrants further investigation into its efficacy“ (Kanai et al., 2011).  

There are many efforts to improve curcumin‘s bioavailability. The most recent results 
reported on nanoparticle curcumin (Theracurmin), show that this form of curcumin can 
safely increase plasma curcumin levels in a dose-dependent manner at least up to 210 mg, 
without saturating the absorption system (Kanai et al., 2011). 
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We have shown that curcumin selectively inhibits the H19 transcription in several different 
tumor cell lines, but not in non-tumorous cells. We do not think that protein-non-coding 
H19 mRNA itself necessarily exerts any kind of vital oncogenic or tumor-suppressive 
function, but we do think that its mRNA presence indicates vivid, globally deregulated 
cellular transcription (Novak Kujundzic et al., 2008). 

It has been confirmed that curcumin interacts directly with 33 proteins, one of them being 
DNMT1 (Liu et al., 2009). It is considered that this binding causes direct inhibition of the 
enzyme and represents the molecular basis for the DNA hypomethylating activity of 
curcumin (Liu et al., 2009).  

8. 5-Hydroxymethylcytosine 

As discussed in previous sub-chapters, methylated cytosine entered the spotlight of the 

international scientific community, primarily due to our understanding of how genes are, or 

need to be, regulated. We are just entering the era of full appreciation of the importance of 

one more cytidine modification, discovered in bacteriophage, in 1952. (Wyatt & Cohen, 

1952). It was „rediscovered“ in 1972. in rat tissue, but was neglected because the results did 

not seem to be reproducible (Penn et al., 1972). However, thanks to knowledge gained 

during these almost 60 years, combined with advances in technology, we are now learning 

about a sixth nucleotide in our genome (Münzel et al., 2011). Only two years ago, two 

papers in Science showed that mammalian DNA contains 5'-hydroxymethylcytosine (hmC; 

5 hmC; 5-HOMEdC, Figure 3) (Kriaucionis & Heintz, 2009; Tahiliani et al., 2009).  

 
 

 
                                   a)                           b)                                      c) 

Fig. 3. Cytosine and its modifications. 

Unmodified cytosine (a), 5-methylcytosine (b), 5-hydroxymethylcytosine (c). 

To date, based on a few in vitro experiments, it has been thought that hmC presents the 
major oxidative product of mC (Bienvenu et al. 1996; Wagner & Cadet, 2010).  

Ideal for detecting the methylated cytosines, bisulfite fails on hmC. As a result, there is a 
problem with positioning the sixth nucleotide in the DNA molecule. There is hope from 
nanopore sequencing, because the first published results show the difference between mC 
and hmC in single-, and double-stranded DNA (Wanunu et al., 2011).  

So far, most of the work on 5-hmC and TET group of proteins (TET1, TET2 and TET3) was 

performed on embryonic stem cells and there are only a few papers dealing with „the sixth 

nucleotide“ in cancer. The TET proteins which can modify 5-methylcytosine in humans 

were initially discovered through a computational search showing these proteins as 
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mammalian homologs of the trypanosome proteins JBP1 and JBP2, the enzymes proposed to 

oxidize the 5-methyl group of thymine (Tahiliani et al., 2009). Predictably, hmC levels 

decrease upon RNA interference-mediated depletion of TET1.  

The role of hmC in cancer and its role in participating or in creating epigenomic networks, is 

almost entirely unknown. There are a few, recently published papers, showing its influence 

on the affinity (a strong decrease) with which the MBD proteins bind to DNA „occupied“ by 

hmC. The 5-hmC immunoassay (developed by Liu at coworkers) was applied to various 

healthy human tissues and four cancer cell lines. The differences in hmC content among the 

tested cell lines were minor and insignificant. The tissue analyses showed that brain tissue 

has the highest content of hmC. Among all tissues tested, the lowest level was detected in 

lung, breast and placenta. When compared with mC distribution in various tissues (which 

published data showed a range of 1-2.5), the differences in hmC tissue-specific content were 

very strong. In cancer tissues, when compared to adjacent, non-tumorous tissue, the level of 

hmC was significantly lower; in one case 7.7-fold, in the other 28-fold (Li & Liu, 2011). So, 

the question was asked: is it possible that this increase occurs because the global level of 

methylated cytosines decreases in cancer cells?   

Part of the answer was given in a paper published in September, 2011 (Haffner et al., 2011). 
The authors analyzed 78 carcinomas and 28 normal tissue samples (prostate, breast and colon). 
They have shown, by using immunohistochemical staining they developed, a significant 
decrease of hmC in tumorous tissues. There was also a significant difference in hmC tissue 
distribution: in normal tissue, the signals were strongest in the terminally differentiated 
luminal cells and far less strong in basal cells. In cancer tissues, the differences were very clear 
at the border between the tumor and non-tumorous tissue. However, although very 
prominent, these changes did not allow for any association with clinicopathological features, 
including the tumor grade (level of differentiation). Although there is a significant similarity 
between Haffner's and Li's result, the methods they used were quite different, which – to be 
sure, does not diminish the quality and importance of their results. In any event, the hmC 
story will need to be explored on many clinical samples before we allow ourselves to conclude 
anything about their prognostic significance in cancer patients.  

Williams and colleagues published a very extensive study on TET protein family member 
function, showing the necessity of TET1 time-specific expression during development. In 
their experimental model, TET1 localized to both gene bodies and transcription start sites 
(TSS), being especially enriched at genes with high CpG content, while mC localized in 
regions with low CpG content. The results indicate „that TET1, by converting mC to hmC 
serves an important function in the regulation of DNA methylation fidelity” (Willimas et al., 
2011). What, one should ask, is the consequence of the hmC presence in the gene 
promoters/bodies? It seems that, in a pure in vitro system, based on CMV promoter and 
HeLa cells extracts, the presence of hmCs in the gene promoter inhibits transcription, while 
their presence in the gene body does not directly inhibit transcription (Robertson et al., 
2011).  

9. Conclusion 

In this chapter, we have covered aspects of deregulated DNA methylation in cancer, 

including a review of older data and introducing the most recent findings. By using this 

www.intechopen.com



 
The Importance of Aberrant DNA Methylation in Cancer  

 

349 

approach, we have tried to show maybe the most intriguing and certainly the most 

emerging aspects of molecular biology of a cancer cell, at the time of preparing this chapter. 

Certainly, the new exciting discoveries in the field of cancer epigenomics that we are 

presenting here are only part of emerging sets of data. The new papers with exciting 

findings are coming to  scientific community almost on a daily base does and, for that 

reason, we did not allow to ourselves offering any hard conclusion, at this time period.  We 

are aware that there are many more issues and mechanisms for discussion, such as the 

interactions of DNA and proteins, methylation related and unrelated, that we did not 

discuss. For that reason, we all look forward to future books and articles providing insight 

on these and like topics. 
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