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1. Introduction 

Contrast-enhanced Magnetic Resonance Angiography (CR-MRA) is remarkable technique to 
image the vascular system from head to toe in diagnostic imaging armoury. Computed 
tomography is still an adequate imaging method of choice in few applications such as in 
follow-up studies in neuro-vascular pathologies, even then MRA is getting an equal share 
with tremendous improvements in spatial and temporal resolution. Current clinical 
indications for MRA of the supra-aortic vessels in head and neck include evaluation of 
steno-occlusive disease, assessment of AV-malformations in cerebral vessels, aneurysms, 
atherosclerotic disease and dissections. Moreover, as with other imaging applications, 
limiting contrast dose is a major issue, particularly with the increased risk of development of 
Nephrogenic Systemic Fibrosis (NSF) with higher doses of contrast agent [1] [2]. Therefore, 
contrast agents with higher relaxivity or higher concentration (1M), for which lower doses 
may be used, are beneficial for dynamic MRA studies. 

The critical advantages of Gd-contrast agent for MRA of the vessels are: increased signal-to-
noise ratio and greater vessel conspicuity. In this chapter we will discuss in detail the benefits 
and limitations of currently available gadolinium contrast agents for MRA with respect to its 
clinical indications. We will focus on gadofosveset [3;4] as well, it is relatively a new contrast 
available in clinical applications and would be nice to compare its benefits and limitations with 
other Gadolinium contrast agents which have been used for long in clinical environment. 

2. Conventional technique of magnetic resonance imaging angiography 

MR imaging depends on the relaxation times (T1, T2 and T2*) and proton density in the 
tissue of interest. MRI is very sensitive to flow and motions originating during image 
acquisition. The motions induced by flow can be responsible for number of artefacts which 
can drastically impair the diagnostic image value but on other hand sometime these flow 
effects are of vital interest to image the vascular anatomy. The MRA can be classified to time 
of flight (TOF) and phase contrast MRA [5]. In TOF MRA the blood flow is assumed to be 
perpendicular to the plane of acquisition. For repetition time (TR) shorter than the 
longitudinal T1 relaxation of the stationary proton spins in the imaging slice, the signal will 
be reduced due to partial saturation effect (saturating RF pulse). Inflow blood in the vessel 
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will move the spins from outside of the slice into the imaging plane; these spins have not 
been subjected to the spatially selective RF pulse. These unsaturated spins upon entering the 
slice will produce a much stronger signal than stationary spins assuming the gradient echo 
sequence is applied. This effect is called “entry slice phenomenon” or “inflow enhancement” 
or “flow related enhancement”.  The amount of inflow enhancement will depend on various 
factors like tissue properties (T1), sequence parameters (flip angle and TR) and geometrical 
parameters (slice thickness, orientation and flow velocity). TOF is based on fundamental 
principle that any vessels segment can be imaged by cutting through the vessel 
perpendicular to the flow direction [5]. With this repetitive method applied at each slice a 
complete three dimensional data of vascular tree can be acquired. Various multiple 3D 
reformatting algorithms are available with the post processing unit (Maximum Intensity 
Projection) which can help radiologist visualise the complex vascular anatomy with 
appropriate precision [5]. The image acquisition can be 2D or 3D (as other MRI sequences). 
Both techniques are currently used in clinic with specific applications. The 2D techniques 
offers a higher vessels/background contrast hence can be used in slow flow zone but 3D 
method is limited to fast flow situations. Another aspect of choice among two is the spatial 
resolution. In 2D technique the inplane resolution depends on the FOV and matrix size 
resulting in an anisotropic volume where slice thickness is usually higher than inplane 
resolution. Whereas the isotropic resolution can be achieved with 3D techniques up to sub-
millimetre scale, in addition offers a better signal to noise ratio due to averaging effect of the 
phase encoding in slab direction.   

Phase contrast Angiography: This class of MRA is based on the changes in the phase of 
transverse magnetization [5]. The phase shifts occur when the spins move along a magnetic 
field gradient. The flow induced phase shift has a linear relationship with the moving velocity. 
Hence flow induced phase shift can be used for flow quantification.  The phase contrast MRA 
is acquired as two data sets with different flow sensitivity. The first data (S1) is acquired with 
flow compensation (no flow sensitivity), whereas the second (S2) is acquired with flow 
sensitivity. The amount of sensitivity is controlled by gradient strength. The length of the 
complex difference between S1 and S2 is dependent on the phase shift. An image with signal 
intensity of difference represents the velocity of the spins within the field of view.  

3. Contrast enhanced MRA 

The paramagnetic extracellular contrast agent (Gd chelates) increases the blood signal by 

shortening the T1 relaxation time of the blood. Thus the blood produces the highest signal 

compared to tissue; hence vessel lumen can be demarcated with maximum intensity 

projections. There are various Gd- contrast agents available with different properties and 

relaxivities (table 1) [6-8]. Each one has different relaxivity at different field strength (table 2) 

[6-9] which is very important to know for practical applications. The details of various 

gadolinium contrast agent [10;11] properties are beyond the scope of this chapter, we will 

focus on the application of these contrast agents in various clinical conditions. 

4. Magnetic resonance angiography of head and neck 

The information provided by magnetic resonance imaging (MRI) in evaluation of brain 
lesions is critical for accurate diagnosis, therapeutic intervention and prognosis [12]. 
Contrast enhanced MR neuroimaging using gadolinium (Gd) contrast agents depicts blood- 
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Table 1. Gadolinium contrast agents used in MR Imaging [6-8]. 

 

Table 2. Relaxivities of Gadobenate dimeglumine and gadopentetate dimeglumine at 
varying magnetic field strangths [6-9]. 

brain barrier disruption, thereby demonstrating the location and extent of the disease by 
depicting the increased EES contrast concentration in these areas. Simple contrast-enhanced 
morphologic imaging, however, is limited in accurately predicting tumor aggressiveness 
[13]. Adding dynamic contrast-enhanced and perfusion weighted imaging [14] can solve 
this problem by providing physiological information (hemodynamic and neoangiogenic 
status) in addition to pure lesion morphology [15-17]. 

Most of available Gd-contrast agents differ in their T1 and T2 relaxivities, but have a 
comparable tissue enhancing properties. The exceptions are gadobenate, gadoxetate and 
gadofosveset [4], all of which have transient protein binding capability that is responsible 
for up to twice (and more) the R1 and R2 relaxivity as compared to the other agents at all 
magnetic field strengths [8] [18;19]. In this section, we summarize the current clinical 
applications of gadolinium contrast agents in neuroimaging. 

Bueltmann et.al [20] conducted a study comparing equal single doses of gadobenate 
dimeglumine and gadopentetate dimeglumine for CE-MRA of the supra-aortic vessels at 3T 
in 12 healthy volunteers. Qualitative image analysis revealed significantly higher (p=0.031) 
values in all the examinations with a gadobenate dimeglumine [7;21]. The overall score for 
vessel delineation was also significantly (p=0.005) higher and in general a significant 
(p≤0.026) preference for gadobenate dimeglumine was noted as well as specifically for 
assessments of the extracranial arteries, Circle of Willis and vessels distal to the Circle of 
Willis. In addition, gadobenate dimeglumine use demonstrated significantly (p≤0.021) 
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greater rCNR (relative contrast to noise ratio) for the internal carotid, middle cerebral and 
basilar arteries [22]. 

The 1M formulation of gadobutrol permits a 50% reduction in the bolus injection volume, thus 
it has been hypothesised that this reduced volume along with a faster injection rate would 
facilitate a sharper peak in the contrast bolus, therefore a better first-pass MRA signal [23;24]. 
However, the results from few clinical studies have been in disagreement with the hypothesis. 
In a small  intraindividual study (N=12); patients received a single dose of 1M gadobutrol and 
a double dose of 0.5M gadopentetate dimeglumine, a significantly higher SNR and CNR, and 
better delineation of arterial morphology, was observed with the 1M agent [25;26]. However, 
in another volunteer study, 5 healthy volunteers underwent 4 consecutive MRA examinations 
with: a single dose of 1M gadobutrol, a single dose of 1M gadobutrol diluted to twice the 
volume, and single doses of gadopentetate dimeglumine and gadobenate dimeglumine for 
which the volume and flow rate were doubled to match the diluted gadobutrol volume and 
concentration. Quantitatively, the SNR and CNR for gadobenate dimeglumine and both 
standard and diluted forms of gadobutrol were significantly (p<0.02) higher than 
gadopentetate dimeglumine [27;28], yet no significant difference between either form of 
gadobutrol and gadobenate dimeglumine was reported [12]. Overall, it seems that 1M 
gadobutrol may or may not be advantageous for MRA of supra aortic vessels, depending on 
the vascular territory being examined but it has never demonstrated benefit beyond the higher 
relaxivity agents for CE-MRA [20;27-29]. But it has been proved that gadobutrol is benefiticial 
in brain perfusion imaging than gadopentetate dimeglumine (Figure 1 courtesy) [23]. 

  

Fig. 1. Intraaxial tumor: T1-weighted image (A) with Gd-DTPA showing a brain tumor in 
the frontal lobe of the right hemisphere; maximum concentration color map for perfusion-
weighted image with Gd-DTPA (B). T1-weighted image with gadobutrol (C); maximum 
concentration color map for perfusion-weighted image with gadobutrol (D). 
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Blood pool agents such as gadofosveset (Vasovist®) remain in the circulation for an 
extended time and thus might be potentially useful for imaging of the vasculature [8]. 
Benefits of steady state MRA imaging of the head and neck with blood pool agents are 
anticipated because of its high relaxivity and the extended imaging time associated with its 
use. CE-MRA with gadofosveset, the only blood pool agent approved for use, has 
demonstrated improvements in sensitivity, specificity and accuracy compared with non-
contrast time-of-flight MRA. However, the benefit of gadofosveset compared with other Gd-
contrast agents has been more difficult to establish [4]. Studies have shown that 
gadofosveset is superior to gadoterate meglumine (Dotarem®) and gadopentetate 
dimeglumine for MRA of the hand and whole body [3], respectively. While for MRA of the 
peripheral arteries, gadobenate dimeglumine significantly more specific (p<0.0001) and 
gadofosveset was found to be significantly more sensitive (p=0.011) [3].  

5. Magnetic resonance angiography of pulmonary vessels 

Selective visualization of the pulmonary arteries and veins in high spatial resolution has 
been the domain of conventional digital subtraction angiography. Drawbacks of the 
technique were its invasiveness, the use of nephrotoxic contrast media, and long exposure to 
ionizing radiation. The traditional MRA techniques (including time-of-flight and phase-
contrast angiography), with long acquisition times, were substantially limited by motion 
artifacts, inplane saturation, and intravoxel dephasing. In particular, this affected 
visualization of small pulmonary vessel details. 

With the introduction of three-dimensional gadolinium-enhanced MRA (3D-Gd-MRA), the 
limitations of non-enhanced MRA were overcome. The high-resolution pulmonary 
angiograms could be acquired in a single breath hold without use of nephrotoxic contrast 
media and radiation exposure [30;31]. CE-MRA has already been established as a safe and 
reliable technique for the detection of pulmonary embolism. However, overlay of arteries 
and veins in single-phase acquisitions with scan times of over 20 seconds affects the 
diagnostic reliability, particularly if assessed by the maximum intensity projection (MIP) 
algorithm. Several clinical scenarios require a dedicated selective assessment of pulmonary 
arteries and veins. In 30% of young patients with cerebrovascular accident (CVA), no 
underlying etiology is found. In these patients, pulmonary venous thrombosis has been 
suspected as the source of emboli, which was confirmed by autopsy later in some cases [32-
34]. For accurate surgical pre-planning in patients with pulmonary arterio-venous 
malformations or bronchial carcinoma, a detailed analysis of the arterial and venous 
pulmonary vasculature is mandatory. Multiphase angiography with very short acquisition 
times in each of the single time-resolved phases has produced pure arterio- and venograms 
of the lungs at the cost of substantially lower spatial resolution and anatomic coverage [35].  

The image quality of 3D-Gd-MRA has remarkably improved within the last few years up to 
a point at which vascular pathologies are detected with accuracy similar to that by the 
conventional digital subtraction angiography [36]. This is primary possible by the faster 
sequences, which allow higher resolution scans within a single breath-hold acquisition. In 
addition, optimized strategies for bolus timing and acquisition during maximum arterial 
gadolinium concentrations have substantially contributed to consistently high image 
quality. However, the problem remained of imaging structures separately with rapid 
sequential enhancement. This includes imaging of pulmonary arteries without overlay of 
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veins or renal arteries without overlay of renal parenchyma [37]. It is expected to improve 
with faster acquisition sequences and further improvement in MRA technology. 

In short we can say that the diagnostic workup of many pulmonary diseases has improved 
tremendously by the non-invasive, safe technique of CE-MRA. Surgical planning could 
benefit from the selective 3D visualization of arteries and veins compressed or invaded by 
centrally growing tumors. The different components of arteriovenous malformations 
including feeding and draining vessels could be selectively visualized, and the rate of 
contrast fill-in and transit could be assessed. This also includes monitoring of the lesion after 
interventional embolization. Selective venograms are particularly useful to assess the 
pulmonary venous system for thrombi. 

6. Magnetic resonance angiography of heart and coronary arteries 

Magnetic Resonance Angiography is the most attractive of angiography procedures for 

Coronary arteries because of its widespread clinical availability and the absence of ionizing 

radiations. Kim et al [38] performed a multicentre trial in which coronary magnetic 

resonance angiography revealed left main or three-vessel disease with a sensitivity of 100% 

and a specificity of 85%. Coronary MRA is still undergoing rapid improvement, aimed to 

increase its accuracy for visualizing the distal coronary artery segments and to reduce the 

number of uninterpretable images. The key issue in coronary MRA to improve the image 

quality remains a trade-offs selection between various options to acquisition time, spatial 

resolution, CNR and correction of cardiac and respiratory motion. Parallel image encoding 

is one of the techniques to improve the acquisition speed. Multiple parallel imaging coil 

elements are used to simultaneously obtain the signal from region of interest. Each coil has a 

known specific sensitivity which needs to be mapped beforehand to calculate signal share 

by each coil. Parallel image encoding can be combined with common coronary MRA 

approaches like gradient echo and echo planar imaging. Potential disadvantages of parallel 

image encoding are the extended computation power, the requirement for pre-scanning (to 

create the sensitivity map), the signal-to-noise penalty that comes with this technique, and 

potential inaccuracies in reconstruction. The preliminary works demonstrated the feasibility 

of parallel imaging for coronary MRA and ability to cut down the acquisition time by half 

when using three-dimensional coronary MRA combined with respiratory navigator motion 

correction and parallel imaging as compared to a conventional approach. In summary, the 

main rationale for the application of parallel-image encoding techniques is the improved 

data acquisition speed, which in turn may allow achieve higher spatial resolution, lower 

temporal resolution, or larger three-dimensional volumes. 

Spiral coronary MRA is another way to improve the image acquisition speed, in which the 
k-space is sampled more efficiently and faster. Spiral k-space sampling offers number of 
advantages [39;40]: 1) reduced acquisition speed by faster sampling, 2) enhanced contrast as 
sampling starts from the centre of the k-space, 3) acquisition are insensitive to flow artefacts. 
There are certain drawbacks with spiral MRS: 1) reduced SNR because of faster acquisition, 
2) it is sensitive to main field inhomogeneity.  

Steady State Free Precession (SSFP) in the sequence to improve the image contrast for 
coronary angiography [39;40]. It gives an excellent image contrast between blood and 
myocardium. SSFP is characterized by an alternating phase of excitation pulse combined 
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with the application of time balanced gradients for all gradient directions. SSFP provides 
high signal intensity for tissues with a high T2/T1 ratio (blood) independent of TR and flow 
artefacts. SSFP is of special interest in cardiac functional analysis. SSFP has been compared 
with GRE, and improved endocardial border delineation was reported for the SSFP images 
which in turn facilitated automated edge detection during cardiac functional analysis. The 
potential use of SSFP for coronary MRA has recently been shown by Deshpande et al. in a 
study comparing conventional FLASH (fast low-angle shot) to three-dimensional true-FISP 
(Fast Imaging with Steady-state free Precession)[39]. The SNR and CNR were improved 
with 55% and 178% respectively for the SSFP acquisitions. McCarthy et al. used SSFP for the 
evaluation of coronary artery stenosis in 17 patients, with x-ray angiography as standard of 
reference. In this work, it was shown that hemodynamically significant stenoses could be 
detected with a sensitivity of 70% and a specificity of 88%. 

Coronary MRA using a static magnetic field strength of 3 Tesla improves the signal-to-noise 

ratio, which in turn can be employed to increase the in-plane resolution, reduce the slice 

thickness, reduce the overall acquisition time, or to compensate for the signal-to-noise 

penalty that comes with several fast acquisition techniques such as echo planar imaging 

(EPI) or spiral imaging due to high sampling bandwidths. The increased field strength may 

also cause various side effects, especially when subjects move through the static field while 

entering the bore of the magnet leading to vertigo and nausea.  

Cardiac motion correction is one major concern which captures much attention in cardiac 

MRA. Cardiac motion occurs in both systole and diastole, but is said to be minimal in mid-

diastole (at diastasis). Cardiac motion correction is therefore usually achieved by timing the 

acquisition to the mid-diastolic phase of the cardiac cycle. There is considerable variation of 

motion patterns, motion ranges and motion velocities for coronary artery segments among 

individual patients. On average, the right coronary artery has greater movement and greater 

velocity as compared with the other coronary arteries, up to a factor of two for the proximal 

segments. But, inspite of all movements, the coronary arteries return to the same location 

from heartbeat to heartbeat during the rest period, which is an absolute requirement to 

perform a quality coronary MRA. 

In addition to cardiac motion, heart is subjected to respiratory motions as well. Heart sits 

on the diaphragm, it translates during each respiratory cycle in a supero-inferior direction. 

These motion artefacts can be corrected and presently there are two approaches in clinical 

settings: 1) breath holding and 2) free-breathing navigator gating. During navigator 

gating approach, the position of the right hemi-diaphragm is deduced in real time from a 

navigator pencil beam acquisition. The image data that is acquired only while diaphragm 

position is within acceptable window are used for filling the k-space. The gating window 

is usually chosen as the end expiratory respiratory phase.  Navigator implies that only a 

fraction of total imaging time is used for actual data acquisition. The lead to an overall 

imaging time prolonged by a factor of two using gating for motion correction. Patient 

compliance is very important in this aspect, an average navigator efficacy is 40-60% but it 

drops to 20%-30% when patient is in-compliant or very sick to maintain a regular 

breathing. The problem is sometime addressed with motion adapted gating (stringent 

acceptance window for low frequencies of k-space but wider window while acquiring 

higher frequencies).  
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Coronary MRA is practically used for all cardiac assessment protocols.  Anomalous 
coronary arteries, coronary stenosis, bypass grafting and assessment of relative perfusion 
and vascular integrity are some of the commonest indications for cardiac MRA.  

In conclusion, today’s technical achievements for three-dimensional coronary MRA are able 
to provide excellent high-resolution images. However, MRA is still hampered by poor 
sensitivity and specificity for diagnosing coronary artery disease in distal segments even 
though it is the best non-invasive technique for evaluation of the proximal arteries. As 
coronary plaque imaging is still very challenging with MRA therefore CT Angiography 
benefits from high contrast of plaque compared to adjacent tissue even in the distal part of 
the coronary artery. However, with metal stents the major drawback in CT is, that the metal 
artifacts make image interpretation impossible. 

7. Magnetic resonance angiography of the abdomen and pelvic arteries 

Contrast enhancer MRA is now very well accepted as a reliable technique in assessment of 

abdominal vascular system (Figure 2 courtesy) [62]. In recent investigations, multiphase 3D 

CE-MRA has been shown advantageous in several respects [41;42]. The acquisition of 

multiple phases during contrast media transit guarantees the arterial contrast with no 

venous contamination [43;44]. In recent investigations with a more technical focus, 

multiphase 3D-Gd-MRA has been shown advantageous in several respects [45]. It is also 

shown that Time-resolved CE-MRA performed at 3 T with a 32-channel volume coil can be 

improved using the high-relaxivity agent, which increases quality and quantity of vessel 

enhancement (Figure 3 courtesy) [46]. 

 
 
 
 

 
 
 

Fig. 2. Multiphasic MRA of abdominal aorta after injection of MR contrast Gd-BOPTA, 
showing arterial, parenchymal and venous phase with repect to time (sec). 
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Fig. 3. Multiphasic time resolved CE-MRA allowed high spatial resolution imaging of the 
abdominal aorta. The first three phases present the early and late arterial phase while the 
lower row shows the early and late venous phase. The hepato-biliary pathway can be 
depicted nicely by Gd-BOPTA (a), while Gadoteridol is mainly excreted via the kidney (b). 
c) Relative signal time curve of both contrast media (SI [aorta] / SI [baseline]). Significantly 
(p<0.001; paired t-test) greater signal intensity enhancement was noted for Gd-BOPTA at all 
time-points after the peak signal enhancement is attained. 
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The acquisition of multiple phases during contrast media transit almost guarantees high 

arterial contrast with absent venous enhancement. In addition, the technique can show 

vessel segments with substantially delayed enhancement on successive scans. This is 

particularly important in cases of aortic dissection, aneurysm, or occlusion with variably 

delayed fill-in of the arteries downstream [47]. During a typical abdominal aorta imaging, in 

the early arterial phase, the distal and intrarenal arteries are visualized without substantial 

overlay from enhanced renal parenchyma [37]. In addition, vessels structures with delayed 

enhancement can be detected in later phases of the scan [48] [49]. It has been observed that 

the results from the renal arteries and common iliac arteries were somewhat better than 

those from the external iliac vessels and further distal segments [50]. This is most likely 

related to the three issues. First, the external iliac arteries curve fairly anteriorly and thus are 

often located in the margins of the 3D slab where the signal is typically inhomogeneous due 

to the poor slice profile of the fast 3D GRE sequences. Second, stenoses in this vessel’s 

segments might be already located at the margin of the field-of-view where the magnetic 

field is not linear any more, resulting in image distortions [51;52]. Third, the spatial 

resolution of MRA sequence occasionally limits accurate evaluation of very small external 

iliac arteries [53]. In literature it has been reported that the acquisition of multiple phases is 

helpful for depicting vessel segments with substantially altered enhancement kinetics or 

delayed contrast fill-in [42;54]. Multiphase MRA is a robust technique with reproducible 

accuracy [31;43]. It can therefore be recommended for screening of atherosclerotic 

abdominal and pelvic arterial disease. Higher resolution MRA techniques may be preferred 

for staging of very small vessels, presurgical evaluation or fibromuscular disease. 

8. Magnetic resonance angiography of vascular run-off 

Contrast-Enhanced Magnetic Resonance Angiography is rapidly gaining acceptance as the 
method of choice for diagnostic imaging of the run-off vessels [55] [56] (Figure 4 courtesy 
[55]).  

Compared with time-of-flight imaging, CE-MRA is significantly faster and far less prone to 

flow, saturation, and motion artefacts. Recent studies have shown CE-MRA with 

gadolinium contrast agents to be equivalent to conventional angiography for diagnostic 

imaging of the peripheral vasculature [57;58]. However, a problem inherent to CE-MRA of 

the run-off vessels is the large vascular territory to be imaged [56]. While technological 

improvements such as moving bed and dedicated lower extremity coils have contributed 

towards advances, satisfactory imaging of the run-off vessels is still highly dependent on the 

spatial resolution attainable. Unfortunately, spatial resolution in the peripheral arteries often 

is restricted by insufficient signal-to-noise (SNR) and contrast-to-noise (CNR) in the more 

distal parts of the field of view (FOV). In looking to overcome problems associated with 

insufficient SNR and CNR, various authors have advocated either single injections of high-

dose contrast agents or cumulative dosing with injections at two or more stations along the 

vascular territory. Drawbacks of these approaches, however, include increased costs for 

contrast agents and, when multiple dosing protocols are used, problems associated with 

degraded image quality following the second injection due to residual gadolinium from the 

first injection and the high dose related Nephrogenic Systemic Fibrosis. An alternative 

approach to increasing SNR and CNR with standard doses of gadolinium without further  

www.intechopen.com



 
MR Angiography and Development: Review of Clinical Applications 

 

33 

  

Fig. 4. Targeted maximum intensity projections (MIP) of the pelvic region in the same 
volunteer after identical dosing (0.1 mmol/kg bodyweight, flow rate of 0.8 mL/second, 
flush 25 mL saline) of the weakly protein interacting agent, Gd-BOPTA (a) in comparison to 
Gd-DTPA (b). The intra-individual comparison revealed better conspicuity of smaller 
vessels (arrows) as well as more homogenous vascular enhancement after Gd-BOPTA. 

limiting spatial resolution would be to use contrast agents with preferential vascular 

contrasting properties. Gadobenate dimeglumine (Gd-BOPTA, MultiHance™; Bracco 

Imaging SpA, Milan, Italy) is a gadolinium based contrast agent that possesses increased T1 

relaxivity in vivo compared to other available gadolinium agents (9.7 mM-1 second-1 

compared to between 4.3 and 5.0 mM-1 second-1) due to a capacity for weak and transient 

interaction with serum albumin [59-61]. Preliminary investigations in healthy volunteers 

revealed that the vascular signal intensity of the abdominal aorta is higher and longer-

lasting following administration of Gd-BOPTA than following administration of Gd-DTPA 

at the same dose and injection rate. More recently, studies in patient volunteers have 
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demonstrated marked superiority of Gd-BOPTA over Gd-DTPA for time-resolved renal and 

pelvic CE-MRA [37]. Superiority for multiphasic MRA of the abdomen has also been noted 

for Gd-BOPTA compared to Gd-DTPA and the more highly concentrated gadolinium agent, 

Gd-BT-DO3A [56]. 

The trade-off between high spatial resolution and the need for sufficient SNR and CNR for 
successful diagnosis is particularly pronounced for CE-MRA of the run-off vessels. 
Currently, CE-MRA is most frequently performed using conventional gadolinium-based 
contrast agents such as Gd-DTPA whose T1 relaxivities in protein-containing aqueous 
solution fall in the range between 4.3 and 5.0 mM-1 second-1. These agents possess no 
capacity for protein interaction and it is frequently necessary to use comparatively high 
doses or cumulative dosing regimens to obtain sufficient diagnostic quality along the length 
of the peripheral vasculature. Since the diagnostic quality of CE-MRA is dependent upon 
the intensity of vascular contrast and thus the extent to which the T1 relaxation time in 
blood is reduced during image acquisition, contrast agents with higher T1 relaxivity in 
blood may be expected to provide greater vascular signal intensity enhancement and hence 
greater diagnostic efficacy. Gd-BOPTA is a gadolinium-based MR contrast agent whose 
plasma kinetics are indistinguishable from those of Gd-DTPA and other non-specific 
gadolinium-based contrast agents in demonstrating complete elimination within 3 days of 
administration. The results of these studies confirm the superiority of Gd-BOPTA over Gd-
DTPA for CE-MRA; significantly higher CNR and SNR were noted for Gd- BOPTA for 
almost all segments from the distal 2 cm of the abdominal aorta to the posterior and anterior 
tibial arteries [35;62]. The only segment for which statistical superiority have not been 
demonstrated was the right iliac artery. That superiority was not demonstrated for this 
vessel can be attributed to the fact that an unusually wide range of values were noted for 
this segment compared to the other eight segments. It is possible that this was due to this 
region lying at the edge of the field of view and the coil as mentioned earlier. In terms of the 
diagnostic quality of images acquired, the results of the studies again indicate superiority 
for Gd-BOPTA [63]; the overall diagnostic quality score out of a maximum possible score of 
18 was 17.4 ± 1.5 for Gd-BOPTA and 13.8 ± 2.4 for Gd-DTPA [64] [63]. Significantly, there 
were no vascular segments in which diagnostic quality was determined to be poor following 
Gd-BOPTA administration [63]. On the other hand sometimes diagnostic quality was 
determined to be poor for the left and right tibio-fibular trunks of four of the fourteen 
subjects (28.6%) following Gd-DTPA administration in a study. Venous overlay is a 
potential problem for long time of acquisition. The availability of sequences with shorter TR 
and TE time which permit more rapid acquisitions may go some way towards overcoming 
potential problems of venous overlay when using Gd-BOPTA for peripheral MRA [63]. The 
greatest benefits of Gd-BOPTA are to be found in the most distal, smaller vessels of the 
lower leg [63]. In terms of its potential usefulness in routine clinical practice, one possibility 
is that a lower overall dose could be employed to achieve similar increases in SNR and CNR 
to those increases currently achieved with Gd-DTPA at the same dose. Higher doses of Gd-
DTPA and other conventional agents, and a variety of dosing regimens, are currently used 
to evaluate patients with peripheral vascular disease. Future work might usefully be aimed 
at evaluating whether better diagnostic performance is achievable with equivalent high 
doses of Gd-BOPTA or whether lower overall doses can be employed satisfactorily [65]. 
Similarly, it would be of interest to determine more precisely the influence of injection rate 
on Gd-BOPTA-enhanced MRA of the peripheral arteries. 
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