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1. Introduction 

With the development of our modern cities, growing traffic problems adversely affect 
people’s traveling convenience more and more, which has become one of the most crucial 
factors considered in urban planning and design in recent years. Urban traffic congestion is 
a severe problem that significantly reduces the quality of life in particularly metropolitan 
areas. However, frequently constructing new roads is not realistic and untenable in social 
and economic aspects. In the effort to deal with this intractable problem, so-called intelligent 
transportation systems (ITS) technologies are successfully implemented widely throughout 
the world nowadays. ITS with two important components advanced traffic management 
systems (ATMS) and advanced traveler information systems (ATIS) aim to relieve the 
increasing congestion and decrease travel time through providing information to the drivers 
by means of radio broadcasts or dynamic route guidance systems. 

The provision of accurate real-time information and predictions of traffic states such as 
traffic flow, travel time, occupancies, etc., is much fundamental and contributive to the great 
success of ITS (Chen et al., 2010; Dong et al., 2010; Vlahogianni et al., 2004; Lam et al., 2006; 
Tan et al., 2009; Tang et al., 2003; Thomas et al., 2010; Zhang & Liu, 2008, 2009c). As an 
important part of ITS, traffic states analysis and traffic forecasting are important in directing 
commuters to pick optimal routes, which have attracted many researchers to focus on this 
subject in recent decades. In general, as illustrated in the statement, the traffic forecasting 
“can be separated into two paradigms: the empirical based, incorporating fairly standard 
statistical methodology on the one hand, and that based on traffic process theory, either of 
demand or of supply, on the other” (Van Arem et al., 1997). 

Because of the feasibility of data collection from numerous kinds of equipments and the 
requirements of dynamic management, the empirical approaches for traffic forecasting 
correspond with the development trends of ITS. It aims to find out the hidden regularity of 
traffic states through the random and uncertain traffic data by systematic analysis and a 
variety of mathematics/physics methods. 

The empirical approaches can be approximately divided into two types: basic forecasts 

approaches and combined forecasts approaches. The basic forecasts approach means to 

predict the traffic state using a certain particular prediction model. The robustness and 
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accuracy of these approaches lie on the prediction models themselves. Furthermore, basic 

forecasts approaches can be roughly classified into two types: parametric and 

nonparametric techniques. Both techniques have shown their own advantages on different 

occasions in recent years (Tsekeris & Stathopoulos, 2010; Zhang & Liu, 2009f, Zhang & Liu, 

2010; Zhang et al., 2010). On the basis of the classification, the chapter provides a systematic 

review of these models such as historical-mean (HM), filtering algorithm, linear and 

nonlinear regression, autoregressive process, neural network (NN), fuzzy systems, support 

vector regression (SVR), and Bayesian networks, etc. 

The combined forecasts approach means to combine different forecasts into a single one that 

is assumed to produce a more accurate forecast. The robustness and accuracy of combined 

forecast approaches lie not only on the prediction effect of individual prediction model, but 

also on the efficiency of combination. Because the combined method is to apply each 

predictor’s unique feature to capture different patterns in the data, it would give a smaller 

error variance than any of the individual methods (Bates & Granger, 1969). This advantage 

may make the approach fully scalable to the very large amounts of traffic data practically. 

Due to its simplicity and practicability, the combined forecasts approach becomes very 

important to traffic forecasting, and researchers have focused on it, both theoretical and 

applied. 

Though the data-driven traffic forecasting gains many achievements, there still exist some 

unsolved problems. From the practical point of view, data gained from some detectors are 

incomplete, i.e., partially or completely missing or substantially contaminated by noises. The 

missing data sometimes render an entire dataset useless, which is a major hurdle in 

analyzing traffic information. As missing data treatment is an important preparation step 

for effective management of ITS, some proper solutions to solve missing data problems are 

provided in the chapter. And the chapter ends with a brief introdcution of Shanghai 

Integrated Transportation Information Platform (SITIC), which represents the level of 

informatization development in transportation. 

2. A brief review of data-driven traffic forecasting 

The data-driven traffic forecasting refers to predicting the future state of a certain 

transportation system based on the historical data, existing traffic data and the related 

statistics data (Brockwell & Davis, 2002; Chrobok, 2004). Traffic forecasting is a branch of 

forecasting, and it is an important part of modern transportation planning and intelligent 

transportation system. Usually, traffic flow, average speed and travel time etc., are defined 

as the basic parameters of traffic state. Specifically, traffic forecasting is essentially the 

prediction of these basic parameters based on dynamic road traffic time series data. For 

instance, most of literature foucs on traffc flow forecasting (Jiang & Adeli, 2004; Qiao et al., 

2001; Abdulhai et al., 1999; Castillo et al., 2008; Chen & Chen, 2007; Dimitriou et al., 2008; 

Ding et al., 2002; Huang & Sadek, 2009; Ghosh et al., 2005, 2007; Smith et al., 2002), travel 

time forecasting, and related analysis such as validation, optimization, etc. (Chan et al., 2003; 

Chan & Lam, 2005; Chang et al., 2010; Kwon, 2000; Kwon & Petty, 2005; Lam, 2008; Lam et 

al., 2002, 2005, 2008; Lam & Chan, 2004; Lee et al. 2009; Nath et al., 2010; Schadschneider et 

al., 2005; Tam & Lam, 2009; Tang & Lam, 2001; Yang et al., 2010). 
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Overall, the process of traffic state variation is a real-time, nonlinear, high dimensional and 
non-stationary stochastic process. With the shortening of statistical time range, the stochastic 
and uncertainty of traffic state are more and more strong. Short-term traffic state variation is 
not only related to the state of the local road section over the past few hours, but also 
influenced by the traffic states of upstream and downstream road sections, weather 
situation and unexpected events, etc.  

From the spatial and temporal point of view, the traffic state can reflect regular variation. 

For example, the traffic states of various road sections of urban road network during peak 

and non-peak period show periodic variation respectively; and the traffic states in urban 

highway traffic on weekdays and weekends also show different periodic variation, which 

reflects the temporal regularity of road network traffic. Meanwhile, the urban road network 

topology, the length of each road link, lane width and traffic direction, etc. can determine 

the variation of traffic state on a particular road link, which reflects the spatial regularity of 

road network traffic. Therefore, in the research of transportation prediction, it is essential to 

fully consider real-time traffic state variation with the randomness and regularity 

temporally and spatially. Namely, real-time traffic forecasting should predict the future 

traffic state on the basis of studying the specific sections of the historical traffic data, the 

whole spatial-temporal road network traffic condition variation, weather situation, and 

other influence factors. Fig.1 describes the framework of data-driven traffic forecasting 

models. 

Historical Traffic 

Information

Real-time Traffic 

Information

Topological Structure of 

Urban Road Network

Topological Structure of 

Highway

Positional Information 

of Sensors

Traffic Predictive 
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Travelers’
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Data Collection Data Analysis
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Fig. 1. The framework of traffic forecasting models. 

3. Traffic forecasting approaches 

The following factors are usually used for the classification of traffic forecasting approaches: 

single road link or transportation network, freeways or urban streets, physical models or 

mathematical methodologies, univariate or multivariate method, etc. From the methodology 

point of view, the traffic forecasting approaches can be divided into two types: the empirical 

based approaches and traffic process theory based approaches. For the convenience of data 

collection from numerous kinds of equipments, a large amount of the historical traffic 

information and real-time traffic information can be obtained. And the empirical approaches 

become the new trend of ITS. In this part, we focus on the achievements concerned with 

empirical approach according to its classification. 
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3.1 Basic forecasts approaches 

A large amount of scientific literature has been concerned with basic forecasts approaches. 
On the basis of the classification, the chapter provides a systematic review of parametric and 
nonparametric traffic forecasting techniques briefly. 

3.1.1 Parametric traffic forecasting approaches 

Since the early 1980s, extensive variety of parametric approaches has been employed 
ranging from historical average algorithms (Smith & Demetsky, 1997; Wu et al., 2004), 
smoothing techniques (Smith & Demetsky, 1997; Williams et al., 1998), linear and nonlinear 
regression (Deng et al., 2009; Lu et al., 2009; Zhang & Rice 2003; Sun et al., 2003), filtering 
techniques (Ross, 1982; Okutani & Stephanedes, 1984; Whittaker et al., 1997; Chien & 
Kuchipudi, 2003; Stathopoulos & Karlaftis, 2003), to autoregressive linear processes (Min et 
al., 2010; Min & Wynter, 2011). Thereinto, the autoregressive integrated moving average 
(ARIMA) (Ahmed & Cook, 1979) family of models such as simple ARIMA (Levin & Tsao, 
1980; Nihan & Holmesland, 1980; Hamed et al., 1995; Smith, 1995; Williams, 1999), 
ATHENA (Kirby et al., 1997), subset ARIMA (Lee & Fambro, 1999), SARIMA family (Smith 
et al., 2002; Williams et al., 1998, 2003; Ghosh et al., 2005), are classical milestones in 
forecasting area. Such time series methods belong to time domain approaches, and 
frequency domain approaches like spectral analysis, “which are regressions on periodic 
sines and cosines, show their important insights into traffic data which may not apparent in 
an analysis in the time domain only” (Stathopoulos & Karlaftis, 2001a, b). The parametric 
traffic forecasting approach is the milestone of the traditional time series forecasting. And it 
brings significant developments for traffic forecasting. 

3.1.2 Nonparametric traffic forecasting approaches 

Lately extraordinary development of distinct nonparametric techniques, including 
nonparametric regression, neural networks, etc., has shown that they may be able to become 
a high potential alternative to their parametric counterparts (Huisken, 2003; Lam et al., 
2006). In essence, nonparametric statistical regression can be regarded as a dynamic 
clustering model that relies on the relationship between dependent and independent traffic 
variables. (Davis & Nihan, 1991; Smith & Demetsky, 1997; You & Kim, 2000; Smith et al., 
2000, 2002; Clark, 2003; Turochy, 2006). In other words, it attempts to identify past 
information that are similar to the state at prediction time, which leads to easily 
implemented nature. Over the past decade, another nonparametric technique, artificial 
neural networks (ANNs) have been applied in traffic forecasting because of their strong 
ability to capture the indeterministic and complex nonlinearity of time series (Smith & 
Demetsky, 1994, 1997; Chang & Su, 1995; Dougherty & Cobbet, 1997; Lam & Xu, 2000; Park 
et al., 1999; Dharia & Adeli, 2003; Wei et al., 2009; Wei & Lee 2007; Lee, 2009). Motivated by 
the universal approximation property, neural network models ranging from purely static to 
highly dynamic structures include the multilayer perceptrons (MLPs) (Clark et al., 1993; 
Vythoulkas, 1993; Lee & Fambro, 1999; Gilmore & Abe, 1995; Ledoux, 1997; Innamaa, 2000; 
Florio & Mussone, 1996; Yun et al., 1998; Zhang, 2000; Chen et al., 2001), the radial basis 
function (RBF) ANNs (Lyons et al., 1996; Park et al., 1998; Park & Rilett, 1998; Chen et al., 
2001), the time-delayed ANNs (Lingras et al., 2000; Lingras & Mountford, 2001; Yun et al., 
1998; Yasdi 1999; Abdulhai et al., 1999; Dia, 2001; Ishak & Alecsandru, 2003), the recurrent 

www.intechopen.com



 
How to Provide Accurate and Robust Traffic Forecasts Practically? 

 

193 

ANNs (Dia, 2001; Van Lint et al., 2002, 2005), and the hybrid ANNs (Abdulhai et al., 1999; 
Chen et al., 2001; Lingras & Mountford, 2001; Park, 2002; Yin et al., 2002; Vlahogianni et al., 
2005; Jiang & Adeli, 2005; Quek et al., 2006), etc. Besides the above neural networks models, 
computational intelligence (CI) techniques that encompass fuzzy systems, machine learning 
and evolutionary computation have been successfully developed in the field of traffic 
forecasting. For instance, some literature applies Bayesian networks (Zhang et al. , 2004; 
Castillo et al., 2008) and Bayesian inference based regression techniques (Khan, 2011; 
Tebaldi et al., 2002; Sun et al., 2005, 2006; Zheng et al., 2006; Ghosh et al., 2007), some 
literature uses fuzzy systems or fuzzy NNs to predict the traffic states (Dimitriou et al., 2008; 
Quek et al., 2009). While others start to explore support vector regression (SVR) to model 
traffic characteristics and produce prediction of traffic states (Castro-Neto, 2009; Ding et al., 
2002; Hong, 2011; Hong et al., 2011; Wu et al., 2004; Vanajakshi & Rilett, 2004). The recent 
application of different CI techniques and hybrid intelligent systems has shown that the 
rapidly expanding research field is promising. 

3.2 Combined forecasts approaches 

The basic idea of the combined forecasts approach is to apply each predictor’s unique 

feature to capture different patterns in the data (Zhang & Liu, 2009d, 2009e). The 

complement in capturing patterns of data sets is theoretically essential for more accurate 

prediction (Timmermann, 2005; Huang, 2007). “Both theoretical and empirical findings 

suggest that combining different methods can be an effective way to improve forecast 

performances.” (Yu et al., 2005a). The linear combining forecasts methodology has a long 

historical background. Compared to computational intelligence based nonlinear ensemble 

forecasting models (Chen & Zhang, 2005; Chen & Chen, 2007), the linear combination 

retains the conceptual and computational simplicity. In the part, we focus on the application 

of linear combination method. Researchers have proposed various combined methods since 

the pioneering work of Bates and Granger. Clemen provided a review and annotated 

bibliography of the literature for reference (Clemen, 1989). “Research in various fields has 

strongly suggested that the performance of prediction can be enhanced when (sometimes 

even in simple fashion) forecasts are combined.” (Yang, 2004). 

Basically, we can describe the main problem of combined forecasts as follows. Suppose there 

are N forecasts such as  1PV (t),  2PV (t), …,  NPV (t) (including correlated or uncorrelated 

forecasts), where PiV (t) represents the forecasting result obtained from the ith model 

during the time interval t. The combination of the different forecasts into a single forecast 


PV (t) is assumed to produce a more accurate forecast. The general form of such a combined 

forecast can be described with formula 

  N

1
( ) ( )ii=P Pit = w tV V  (1) 

where wi denotes the assigned weight of PiV (t), and commonly the sum of the weights is 

equal to one, i.e., ∑iwi=1. Our studies mainly investigate the combined models with the 

additional restriction that no individual weight can be outside the interval [0, 1]. Various 

methods can be applied to determine the weights used in the combined forecasts. Four 

common methods are presented in the following. 

www.intechopen.com



 
Intelligent Transportation Systems 

 

194 

3.2.1 Equal Weights (EW) methods 

The EW method, applying a simple arithmetic average of the individual forecasts, is a 
relatively robust method with low computational efforts. Namely, each wi is equal to 1/N 
(i=1, 2, …, N), where N is the number of forecasts. The beauty of using the simple average is 
that it is easy to understand and implement, not requiring any estimation of weights or 
other parameters (Jose & Winkler, 2008). This makes it robust because they are not sensitive 
to estimation errors, which can sometimes be substantial. It often provides better results 
than more complicated and sophisticated combining models (Clemen, 1989). Although the 
approach has non-optimal weights, it may give rise to better results than time-varying 
weights that are sometimes adversely affected by some unsystematic changes over time. 
Under the circumstances, the method has the virtues of impartiality, robustness and a good 
“track-record” in time series forecasting. It has been consistently the choice of many 
researchers in the combination of forecasts. 

3.2.2 Optimal Weights (OW) methods 

Bates & Granger proposed that using a MV criterion can determine the weights to 
adequately apply the additional information hidden in the discarded forecast(s) (Bates & 
Granger, 1969), and Dickinson extended the method to the combinations of N forecasts 
(Dickinson, 1973). Assuming that the individual forecast errors are unbiased, we can 
calculate the vector of weights to minimize the error variance of the combination according 
to the formula 

 1 1 1( )= - -

n n n

-

V V
I I Iw M M
'  (2) 

where In is the n×1 matrix with all elements unity (i.e. n×1 unit vector) and MV is the 
covariance matrix of forecast errors (e.g. MVij is the covariance between the error of forecast i 
and forecast j at a particular point in time). Granger & Ramanathan pointed that the method 
is equivalent to a least squares regression in which the constant is suppressed and the 
weights are constrained to sum to one (Granger & Ramanathan, 1984). In the case of a 
combination of two forecasts, we suppose there is no correlation between forecast errors. 

3.2.3 Minimum Error (ME) methods 

The ME method minimizes the forecasting errors when combining individual forecasts into 
a single one. A solution for this method applies linear programming (LP) whose principle 
and computational process are described as follows (Yu et al., 2005a). Set the sum of 
absolute forecasting error (i.e., ∑i Ei(t) during the time interval t) as 

   N N

1 1
| ( )| ( ) ( ) ( ) 1, 2, , TLP i ii= i= P Oi= E t = w t t t t =V VF     (3) 

where FLP is the objective function of LP; VO(t) denotes the observed value during the time 
interval t and T the number of forecasting periods. To eliminate the absolute sign of the 
objective function, assume that 

 
( ), ( ) 0| ( )| ( )

( )
    0,        ( ) 02

i ii i
i
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The introduction of ui(t) and vi(t) aims to transform the absolute sign of the objective 
function so as to be consistent with the standard form of LP. Obviously, |ei(t)|=ui(t)+vi(t), 
ei(t)=ui(t)−vi(t). On the basis of the above specification, the LP model can be constructed as 
follows: 

 

 
 
N

1

N

1

N

1

 ( ) ( ) ,

( ) ( ) ( ) ( ) ( ) 0,

( ) 1,

( ) 0,  ( ) 0,  ( ) 0,  1, 2, , N,  1, 2, , T

i ii=

i i ii=

ii=

i i i

P Oi

Min O = u t v t

w t t t u t v t =

w t =

w t u t v t i = t =

V V

 

   



   





 

 (5) 

where i denotes the number of individual forecasts, and t represents the forecasting 
periods. In the equation group, assuming wi≥0 aims to make every forecast method 
contribute to the combined forecasting results. The ME method is equivalent to a simple 
dynamic linear programming problem; thus, the optimal solutions to the LP can be 
obtained by the simplex algorithm. The method is an effective combination methodology 
with time-variant weights. 

3.2.4 Minimum Variance (MV) methods 

The linear combining forecasts methodology has a long historical background. Researchers  

Since the negative value of the weight has no factual meaning, researchers usually add the 
restriction that no individual weight can be outside the interval [0, 1] practically. The main 
ideas are described as 

 

T

N

1

 ( ),

1,    1,  2, ,  N

0,

i V i

ii=

i

Min w w

w = i =

w




 

 

M

 (6) 

where MV is the matrix of error variance. By solving the quadratic programming (QP) 
problems, an optimal weight set can be obtained for the combining forecasts (Yu et al., 
2005b). The problem with this optimizing approach is that it still requires MV to be properly 
estimated. Practically, MV is often not stationary, in which case it is estimated on the basis of 
a short history of forecasts and thus the method becomes an adaptive approach to 
combining forecasts (De Menezes et al., 2000). 

4. Data imputation 

Various imputation techniques have been developed in the past decade. Techniques including 
naïve imputation, expectation maximization (EM) algorithm (Schafer, 1997; Dempster et al., 
1977), data augmentation (DA) algorithm (Tanner & Wong, 1987), and regression imputation, 
etc. lead logically to modern approaches. Regression imputation and MI have been proved to 
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be more effective than the others, especially the latter one (Ni et al., 2005; Zhong et al., 2004). 
State space methodology is found to be extremely significant to ensure more accurate results in 
nearest nonparametric regression (Kamarianakis & Prastakos, 2005). The amelioration 
including the historical information in the state space may further improve imputation 
accuracy. Zhang & Liu proposed LS-SVMs method incorporating with the multivariate state 
space approach to recover missing traffic flow data in arterial streets of Xuhui district, 
Shanghai (Zhang & Liu, 2009a, 2009b). The state space not only incorporates lagged values but 
also is supplemented with aggregate measures such as historical information, spatial 
information, etc. Fully applying spatial and temporal information, the state space based 
approaches can model the traffic flow successfully. In this part, we focus on the imputation 
techniques based on state space method (Zhang & Liu, 2009a, 2009b). 

In time series, state is defined as a series of system values measured during the past k 
intervals (kN). Measurements at time t, t-1,…, t-k compose a state vector and k is an 
appropriate number of lags. A state vector of traffic flow measured by loop detector(s) l 
every F minute(s) can be described by: 

  ( , ) ( ), ( 1), , ( )l l l l l lt k = V t V t V t k X  (7) 

where Vl(t) denotes the traffic flow from the detector(s) l during the time interval t; Vl(t-1) 
represents the traffic flow from the detector(s) l during the previous F-minute interval, etc. If 
L loop detectors are considered around the object detector(s) in the traffic network, the 
values of l range from 1 to L (LN). When t≤kl, Xl(t, kl) contains the last kl-t+1 parameters 
measured in theday before the chosen particular day. Object detector(s) can be defined as 
the detector(s) with missing data. 

Considering the historical information in the past week(s), the state space X(t, L) can be 
defined as: 

 1 1 2 2 L G ,( , ) ( , ), ( , ), , ( , ), ( )L hist wt L = t k t k t k V t  X X X X  (8) 

where VGhist,w(t) is the historical traffic flow from the object detector(s) at the time-of-day and 
day-of-the-week associated with time interval t at week w that is usually selected as the 
previous week. The selection of appropriate L and kl for each detector l is based on the 
spatio-temporal analysis of traffic flows collected from loop detectors at different 
intersections. Input-output pairs for the training process can apply the vectors 

  G( , ), ( )t L V tX ,  ,Tmaxt k , 1 2max( , , , )max Lk = k k k  (9) 

where VG(t) is the traffic flow obtained from the object detector(s) G during the time interval 
t; T is the number of time intervals in a day; kmax denotes the maximum value among the lags 
kl, l=1, 2,…, L. This training process must suppose the good condition of detector(s) G and 
close relation between VG(t) and Vl(t). The total number of training samples is (T-kmax+1). 
When detector(s) G cannot supply complete data VG(T+h) at time T+h, hN, due to some 
malfunctions, vectors X(T+h, L) are used as input variables to obtain the predicted results 


GV (T+h) that can replace the missing values. Comparison between the imputed values and 

the actual ones VG(T+h) can be utilized to verify the efficiency of different imputation 
methods. 
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5. A brief review of Shanghai integrated transportation information platform 

In recent years, we have been exploring traffic informatization and building Shanghai 
Integrated Transportation Information Platform (SITIC) that provides a mechanism to 
connect isolated islands of information. After three periods of construction, the system 
software/hardware, backbone networks, information distribution channels have been 
completed successfully. The guiding thought for the development of SITIC is “Investigating 
the present state, revealing the objective laws, and guiding the urban transport more 
scientifically and efficiently”. 

Classifying the transportation into Road Traffic, Public Traffic, Inter-city Traffic and 
District/Transport Hub, sorts of information of vehicles and people were collected from 
kinds of sources, which is the basis of the normal running of SITIC and further data mining. 
Different real-time information on the transportation of Shanghai can be clearly shown in 
SITIC. Researching the transportation problems in metropolis, especially the traffic 
prediction, we found that mastering the situation of transportation is important to traffic 
management, which leads to the essentiality of level division of the road network into macro 
(network), meso (district), and micro (link) levels. Meanwhile, data gained from some 
detectors are incomplete, i.e., partially or completely missing or substantially contaminated 
by noises. This may be caused by malfunctions in data collection and recording systems that 
often occur in practice. The missing data sometimes render an entire dataset useless, which 
is a major hurdle in analyzing traffic information. Missing data treatment is another 
important preparation step for effective management of intelligent transportation systems 
(ITS). The following figure describes the contents and function of the platform briefly. 

 

Fig. 2. The main structure of SITIC. 
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6. Conclusion 

The chapter summarizes data driven approaches for traffic prediction in three parts. First, 
on the basis of classification of the main methods for traffic forecasting, the chapter aims to 
describe a large amount of literature of traffic forecasting models. And we focus on the 
decription of combined forecasts approaches that we believe represent the trend of the 
development of traffic forecasting in practice. Second, from the practical point of view, 
proper solutions to solve missing data problems are decribled, espertially the state space 
based approaches. Finally, from the perspective of dynamic traffic management, it presents 
the corresponding work and experience of traffic informatization in Shanghai. 
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