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1. Introduction 

The lymphomas are a heterogeneous group of malignant diseases, which vary with respect 

to their molecular features, genetics, clinical presentations, treatment approaches and 

outcomes. They are divided into two broad groups on the basis of pathology: Hodgkin's 

disease (HD) and non-Hodgkin's lymphoma (NHL). They comprise approximately 5% - 6% 

of all malignancies and are the fifth most frequently occurring type of cancer in the Western 

world (Jemal A et al., 2009). HD and many histological sub-types of NHL are potentially 

curable with appropriate chemotherapy and/or involved-field radiotherapy, and patients 

with disease relapse may be cured by second-line salvage treatments (Hampson FA and AS 

Shaw, 2008). Accurate staging and response assessment are essential to guide treatment 

decisions. Molecular imaging has become an essential tool in the early diagnosis (guiding 

biopsy), initial staging and risk stratification, monitoring response to therapy, and detection 

tumor recurrence of lymphomas. Research in molecular imaging is also contributing to our 

understanding of the disease pathogenesis of lymphomas and helping to direct more 

effective care of patients with the diseases. 

Computed tomography (CT) once was the single imaging modality for staging and 

monitoring morphological changes after treatment. The relatively recent integration of 

positron emission tomography (PET) with the use of [18]F-fluorodeoxyglucose tracer (18F-

FDG) into oncologic imaging has further improved baseline staging and facilitated 

functional evaluation of disease behaviour (such as tumor malignancy grade), metabolic 

response to therapy, and earlier detection of disease recurrence (Ngeow JY et al., 2009; 

Schoder H et al., 2005; Spaepen K et al., 2002). Particularly for conclusions of therapy 

response assessment, FDG-PET has been shown to be considerably more accurate than 

anatomical imaging by CT because of its ability to distinguish between viable tumor and 

necrosis or fibrosis in post-therapy residual masses.  

The specificity of FDG-PET is improved with the addition of CT. Integrated PET/CT, with 
the advantage of combining functional and anatomical information and better attenuation 
correction, is regarded to be the current standard of practice for the management of 
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lymphomas. However, PET/CT is expensive, time-consuming, involves exposure to 
ionizing radiation, and is not widely available because it requires support infrastructure, 
such as cyclotrons and radiochemistry laboratories (Huang B et al., 2009). In contrast, 
magnetic resonance imaging (MRI) provides excellent tissue contrast and high spatial 
resolution, and lack of ionizing radiation. It may be a potential alternative for the 
surveillance of lymphoma patients with multiple follow-up examinations. Moreover, the 
rapidly evolving parallel imaging acquisition technique with multi-channel phased array 
surface coils has enabled a high spatial resolution whole-body MR examination within a 
reasonable time (Lauenstein TC and RC Semelka, 2006). The development of imaging 
modalities, which can encompass the entire body, is of great importance, especially for 
aggressive lymphomas, in which extensive disease involvement is common (Antoch G et al., 
2003; Ghanem N et al., 2006).  

Whole-body MRI has shown advantages for the detection of distant metastatic diseases, 

especially from tumors frequently spreading to the brain, liver, or bone marrow (Kwee TC et 

al., 2009), and it has been introduced as a whole-body bone marrow screening application 

(Schmidt GP et al., 2009). Within this context, whole-body MRI is highly accurate for staging 

of hematologic diseases, such as lymphomas. However, additional bone marrow biopsy is 

still considered mandatory. 

Evaluation of nodal disease by CT and conventional MRI still relies on size criteria, lymph 

nodes with a short-axis diameter greater than 10 mm are generally considered positive. 

However, lymph nodes may be enlarged reactively and even small lymph nodes may be 

infiltrated by malignant cells. Thus, tumor in unenlarged lymph nodes may go undetected. 

Diffusion-weighted MRI (DWI) is a noninvasive technique that probes the random 

microscopic motion of water molecules in vivo (Le Bihan D, 1995). DWI with apparent 

diffusion coefficient (ADC) mapping provides quantitative physiological and functional 

information regarding characterization of lymphomas. Because of their high cellularity and 

high nuclear-to-cytoplasm ratio, aggressive lymphomas have relatively high signal intensity 

on DW images and low ADC values (Sumi M et al., 2007). Recent studies have shown that 

DWI with ADC mapping could distinguish between benign and malignant 

lymphadenopathy (Holzapfel K et al., 2009; Perrone A et al., 2009), and it may have 

prognostic potential in patients with aggressive lymphomas (Wu X, PL Kellokumpu-

Lehtinen et al., 2011). An advantage of DWI over conventional MRI sequences in the 

evaluation of lymphoma is the high lesion-to-background contrast, which make it a valuable 

imaging modality for detecting metastasis and cancer relapse, and it has also been used to 

assess treatment response in various malignancies including lymphomas (Wu X, PL 

Kellokumpu-Lehtinen et al., 2011). Our recent pilot study showed that DWI, in combination 

with whole-body MRI, yielded results comparable with those from integrated PET/CT in 

treatment evaluation of patients with diffuse large B-cell lymphoma (Wu X, PL Kellokumpu-

Lehtinen et al., 2011). DWI and PET/CT share similar applications in the field of clinical 

oncology. This is important when a patient is not suitable for PET/CT exams (e.g. diabetes) 

or PET/CT is not available.  

This chapter will highlight the most important and potential applications of FDG-PET/CT 

and MRI including whole-body MRI and DWI emphasizing the strengths and pitfalls of 

each imaging approach in diagnosis, initial staging, and response assessment of lymphomas.  
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2. Classification of malignant lymphomas 

The lymphoproliferative disorders encompass a collection of lymphoid neoplasms with 

different clinical and histological presentations. The classification of lymphoid malignant 

diseases has been beset by difficulties. In 1994, a census for universal lymphoma 

classification was published in the form of the Revised European-American Lymphoma 

(REAL) classification (Harris NL et al., 1994). The current World Health Organization 

(WHO) classification was derived from the REAL criteria, in which NHL is categorized into 

more than 20 subtypes on the basis of cell origin (B- or T-cell precursor), morphological, and 

immunophenotypic data (Harris NL et al., 2000). Diffuse large B-cell lymphoma and 

follicular lymphoma account for more than 50% of cases of NHL. The WHO classification 

helps to determine not only malignancy grade, but also prognosis. Systems in which NHL is 

grouped into indolent, aggressive, and very aggressive disorders are practically very useful 

(Cronin CG et al., 2010).  

3. Diagnosis, initial staging, and prognosis assessment of malignant 
lymphomas  

Diagnosis is based on an integration of morphological (lymph nodes, blood and bone 

marrow), immunophenotypic, molecular, cytogenetic data, and clinical behavior. Many 

lymphomas have characteristic morphological features, but no specific biomarker is of 

diagnostic value. In patients suspected of malignant lymphoma, a surgical excision biopsy 

of an enlarged lymph node (or extra-nodal site) is mandatory to confirm the diagnosis and 

to define the histological subtypes.  

Once the diagnosis of HD or NHL has been established by biopsy of a particular site, 

accurate determination of disease extent (staging) is crucial for appropriate treatment 

planning and prognosis prediction. In addition, knowing the sites of involvement at time of 

diagnosis makes it possible to accurately restage at the end of therapy and document a 

complete remission. Conventional staging techniques, considered the standard reference, 

include contrast-enhanced CT of the neck, chest, abdomen and pelvis, uni/bilateral bone 

marrow biopsy, and in some cases MRI. CT has been the most commonly used imaging 

modality for initial staging of lymphomas for decades. In patients with aggressive NHL and 

HD, FDG-PET and FDG-PET/CT are increasingly applied for the initial staging. Bone 

marrow biopsy is an invasive procedure and can be subject to sampling errors (Pelosi E et 

al., 2008). Therefore, PET scan should be the first step in lymphoma staging workup so that 

it could be used to guide bone marrow biopsy in the presence of patchy bone marrow lesion 

(Figure 1). The role of FDG-PET in indolent lymphoma is still unclear, and not all indolent 

lymphomas are FDG-avid. In current clinical practice, the use of MRI for staging malignant 

lymphoma is still limited. It is mainly applied as an adjunct to CT in selected cases with soft 

tissue lesions, or suspected involvement of the central nervous system or bone marrow that 

need to be further evaluated (Vermoolen MA et al., 2011).  

Staging of both HD and NHL is based on the Ann Arbor classification, with the inclusion of 

a definition of bulky disease known as the Cotswold modification (Lister TA et al., 1989). 

This staging system encompasses the number of sites of disease involved, the type of 

involvement (nodal or extra-nodal), and the distribution of disease. Whole-body imaging is 
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Fig. 1. A coronal slice of fused PET/CT image (a), the corresponding PET image (b) and CT 
image (c) in a 62-year-old male patient with diffuse large B-cell lymphoma  
Multiple FDG avid lesions are showing in the cervical, mediastinum, abdominal region, and 
the left iliac on both the fused PET/CT image and the PET image. The iliac lesion was 
neither detected by the corresponding CT image, nor by bone marrow biopsy that was 
performed at the right side of the iliac.  

therefore an indispensable tool. Ann Arbor stage I: Only one lymph node region or extra-

nodal site is affected. Stage II: Multiple lymph node regions are affected, but limited to the 

same side of the diaphragm. Stage III: Involvement of lymph node regions on both sides of 

the diaphragm, which may be accompanied by local extra-nodal extension. Stage IV: Diffuse 

involvement of one or more extra-nodal organs or sites, including bone marrow, liver, and 

lung (Lister TA et al., 1989). Accurate staging is critical for identifying patients with early 

stage (stage I or II) lymphoma, some of which might be treated with involved-field radiation 

therapy. Chemotherapy is performed in patients with more advanced stage disease (stage III 

or IV).  

The International Prognostic Score (IPS) based on seven factors consisting of serum albumin, 

hemoglobin, gender, stage, age, leukocytosis, and lymphocytopenia is used for newly 

diagnosed HD patients. Whereas the International Prognostic Index (IPI) is the most widely 

used prognostic index for adult NHL, which is based on both clinical and imaging findings 

including age, serum lactate dehydrogenase (LDH) level, extent of disease, and performance 

status. The IPI is derived from an additive score of 0 to 5 points to stratify patients as having 

low (0 - 1 point), low-to-intermediate (2 points), high-to-intermediate (3 points), or high (4 - 

5 points) prognostic risk (Shipp MA, 1994). However, considerable variations still remain in 
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the outcome of individual patients within the same prognostic group because of the 

biological and clinical heterogeneity of the diseases. Currently, the paradigm of treatment in 

HD and NHL is moving towards a more risk-adapted therapy based on the individual 

patient’s prognosis by advanced imaging techniques.  

4. Response assessment of malignant lymphomas 

The response to therapy of lymphomas shows a high variability, therefore, it is important to 

have knowledge of early chemotherapy efficacy for individual patient. Furthermore, 

assessment of early- or mid-treatment response to chemotherapy has been shown to be of 

prognostic value in patients with malignant lymphomas (MacManus MP et al., 2007). 

Identification of nonresponders at an early stage allows for the adjustment of chemotherapy 

and radiotherapy regimens promptly and thereby may improve the outcomes and decrease 

the toxicity and costs that associated with ineffective treatment. However, the value of 

altering therapy based on early- or mid-treatment FDG-PET remains to be established 

(Cheson BD et al., 2007). Response assessment at the end of treatment is performed to assess 

whether there is a partial or complete remission, which is important for determining the 

need for additional treatment and for determining prognosis. The International Working 

Group (IWG) criteria, published in 1999, have become the widely accepted standard for 

response assessment in NHL, and were subsequently adopted for HD (Cheson BD et al., 

1999). Although based primarily on CT findings, the IWG criteria take bone marrow biopsy, 

clinical, and biochemical information into account. The IWG criteria have proved extremely 

useful in the standardization of treatment response, but they do have a number of 

limitations. As a consequence of this, together with advances in functional imaging, revised 

criteria that incorporate both CT and FDG-PET were published in 2007 (Cheson BD et al., 

2007). Complete remission indicates disappearance of all evidence of disease, partial 

remission indicates regression of measurable disease and no new sites, stable disease 

indicates failure to attain complete remission or partial remission, and progressive disease 

indicates the appearance of new lesions or increase by ≥50% of previously involved sites 

(Cheson BD et al., 2007). According to the revised criteria, a patient is considered to be 

complete remission even if a residual CT mass is present, provided the mass has changed 

from being FDG avid or PET-positive to PET-negative.  

5. Different imaging modalities  

5.1 Computed tomography  

The introduction of CT in the mid 1970s was a tremendous breakthrough in noninvasive 
imaging, and its potential for staging malignant lymphoma was soon recognized and 

investigated. Since then, CT has gradually become the imaging modality of choice for 
staging malignant lymphomas. CT technology has continuously been developed and 

refined; major milestones include the introduction of spiral (helical) CT, and the advent of 
multi-detector row CT that increases the speed of data collection dramatically. In addition, 

current CT scanners have a faster gantry rotation. These properties enable acquisition of 
high resolution cross-sectional images of the whole-body within only a couple of seconds, 

which minimizes or eliminates breathing artifacts (Kwee TC, Kwee RM et al., 2008; Rydberg 
J et al., 2000). As a result, lymph nodes of 5 mm or less in diameter can be detected. In 
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combination with powered injectors for rapid bolus administration of intravenous contrast 
medium, focal extra-nodal lesions on the order of a few millimeters can be identified (Lucey 

BC et al., 2005; Vinnicombe SJ and RH Reznek, 2003). Intravenous contrast medium 
facilitates nodal recognition in the neck and in the retroperitoneum in patients with a 

paucity of adipose tissue. The importance of adequate bowel opacification with dilute oral 
contrast (so as to avoid confusion with intra-abdominal and pelvic masses) was well 

recognised (Kwee TC, Kwee RM et al., 2008). However, contrast-enhanced CT is not very 
helpful in differentiating normal from malignant lymph nodes. CT has limitations in 

differentiating malignant from benign small lymph nodes or, after treatment, neoplastic 
tissue from fibrosis.  

CT remains the basic imaging modality for initial staging malignant lymphomas because of 
its widespread availability and relatively low cost. However, the limited specificity of CT is 
still a fundamental problem in oncology, e.g. to detect pathological changes in normal-sized 
structures, to detect lesions that have poor contrast with surrounding tissue. At initial 
staging, determination of nodal involvement by CT is based on size criteria. Lymph nodes 
viewed on CT are considered as pathological if the maximum allowed long-axis diameter of 
15 mm is exceeded, and/or if the short-axis diameter is more than 10 mm. In addition, nodal 
involvement is presumed if clustering of normal-sized lymph nodes is present in the 
anterior mediastinum or mesentery, or if lymph nodes of any size are visualized in areas 
where they normally are not observed (Vermoolen MA et al., 2011). CT evaluation on the 
basis of nodal size has historically been regarded as the reference standard imaging tech-
nique for staging, with a reported sensitivity and specificity for nodal disease of 87.5% and 
85.6%, respectively (la Fougere C et al., 2006). General criteria for extra-nodal involvement 
are any focal density alterations or mass lesions involving soft tissues, bones, parenchymal 
organs and serosal cavities (Vermoolen MA et al., 2011). Comparing current with previous 
CT scans may improve diagnostic reliability. Nevertheless, the use of CT alone in restaging 
malignant lymphoma can be limited, since it is not able to differentiate residual viable 
tumor tissue from therapy-induced fibrosis. Following treatment of lymphoma by 
chemotherapy and/or radiation, up to 40% of patients with nodal disease have a residual 
mass on CT. Previous studies have shown that only 10 - 20% of such patients will have 
disease in these residual masses (Hampson FA and AS Shaw, 2008). In early response 
assessment, CT is not an ideal diagnostic tool, as morphological changes may lag behind 
rapid functional changes in response to therapy. Another weakness of CT is the limited 
sensitivity for detecting bone marrow involvement, which, if present, by definition indicates 
stage IV disease (Vinnicombe SJ and RH Reznek, 2003) (Figure 1).  

Major disadvantages of CT are exposure of the patient to ionizing radiation and the 
administration of iodinated contrast agents, which may induce secondary cancers and cause 
allergic reactions, respectively (Kwee TC et al., 2009). Nevertheless, contrast-enhanced 
diagnostic CT remains the base for initial measurements of involved sites and detection of 
complications such as adjacent organ compression, although combined FDG-PET/CT is 
increasingly applied for initial staging of malignant lymphomas.  

5.2 FDG-PET 

Positron emission tomography was developed in the 1970s soon after CT (Phelps ME et al., 
1975). It is based on the use of positron-emitting radiopharmaceuticals and the detection in 
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coincidence of the 2 nearly collinear 511 keV photons emitted following positron 
annihilation with an electron. Fluorodeoxyglucose (FDG), an analogue of glucose; is taken 
up by high-glucose-using cells. After transport into tumour cells, 18F-FDG is phosphorylated 
to 18F-FDG-6-phosphate that cannot be further metabolised. It will take approximately 60 
minutes for the radiotracer to travel through the body and to be absorbed by the organ or 
tissue being studied. Thus, 60 minutes after intravenous injection, the concentrations of 18F-
FDG tracer give tissue glucose metabolic activity, in terms of regional glucose uptake. 
Cancer imaging by 18F-FDG-PET is based on the observation that most cancers, including 
many lymphomas, metabolize glucose at an abnormally high rate (Warburg O, 1956). The 
most aggressive tumors require greater glucose consumption to maintain their accelerated 
growth. Imaging of malignant lymphoma with FDG was first described in the 1980s (Paul R, 
1987), and the first reports on FDG-PET as a whole-body staging method in malignant 
lymphoma was published in the 1990s (Moog F et al., 1997). PET technology has improved 
dramatically since its development. Initial patient imaging units had a system resolution 
greater than 15 mm, whereas current units have a 4 to 5 mm resolution. Raw data should be 
reconstructed by means of iterative expectation maximization algorithms, which provide 
superior signal-to-noise ratio compared with filtered back-projection images (Kwee TC, 
Kwee RM et al., 2008). When one (or both) of the annihilation photos scatters in the body, it 
is prevented to be detected appropriately, which is called attenuation. Attenuation effects 
produce regional nonuniformities, distortions of intense structures, and edge effects. To 
improve anatomical delineation, additional transmission scanning for attenuation correction 
using an external radiation source is required. Attenuation correction also allows for 
semiquantitative evaluation, which offers a more objective way to assess FDG uptake. 
Nonattenuation corrected images should also be evaluated, because the attenuation 
correction itself may also introduce image artifacts (Rohren EM et al., 2004).  

FDG-PET imaging protocols vary from institution to institution, which highlights the need 

for standardization. In the most frequently used protocol, patients fast for 4 - 6 hours prior 

to the injection of FDG. Imaging commences approximately 60 minutes after the injection of 

a typical FDG dose of 370 MBq. Serum glucose levels of less than 150 mg/dl are desirable. 

Patients are also instructed to avoid any kind of strenuous activity prior to the examination 

and following injection of the radioisotope to avoid physiological muscle uptake of FDG.  

Visual analysis of an FDG-PET scan can characterize the intensity of metabolic activity as 

low, moderate or high. In many cases visual image interpretation is sufficient to identify 

malignant lesions. Any focus of visually elevated FDG uptake relative to the background 

(surrounding normal tissue), not located in areas of physiologically increased uptake, is 

regarded as positive for malignant lymphomas (Vermoolen MA et al., 2011). In organs with 

physiological FDG uptake (e.g., spleen and liver), focal or inhomogeneous uptake patterns 

are considered to be indicative of malignant lymphoma (Figure 1). Nevertheless, 

quantitative analysis of FDG uptake may complement visual image interpretation because it 

provides objective criteria, thus minimizing interobserver variability in image 

interpretation. The FDG uptake can also be assessed semiquantitatively using the 

standardized uptake value (SUV). The standardized uptake value, an index of glucose 

metabolism on FDG-PET image, is the ratio between the measured and expected uptake if 

FDG were distributed evenly throughout the body. The maximum standardized uptake 

value (SUVmax) has been used in daily clinical setting to evaluate the degree of malignancy, 
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metabolic response to therapy, and early detection of disease recurrence (Ngeow JY et al., 

2009; Schoder H et al., 2005; Spaepen K et al., 2002; Wu X, P Dastidar et al., 2011). 

Measurements of metabolic burden, which incorporate both FDG uptake and PET lesion 

volume may prove more useful for risk stratification and response assessment (Berkowitz A 

et al., 2008).  

Owing to its high diagnostic accuracy, FDG-PET has become an established imaging 
modality in addition to CT for the initial staging, response assessment, and detection 
recurrence of lymphomas [4]. Previous studies have demonstrated that FDG-PET is superior 
to CT in staging HD and high-grade NHL, with sensitivity, specificity, and accuracy 
reported at 85 - 98% (Hampson FA and AS Shaw, 2008; la Fougere C et al., 2006). As a 
consequence a significant number of patients will have a change of stage, with many of 
these having their management revised (Hampson FA and AS Shaw, 2008). Most commonly 
this results in the disease being upstaged, since patients with true early stage disease are 
differentiated by FDG-PET from those with otherwise occult advanced disease.  

FDG-PET is useful in lymphoma classification or grading, as well as guiding biopsy. Several 
studies have shown that standardized uptake value correlates with the degree of 
malignancy in lymphomas, and in patients with NHL and an standardized uptake value 
greater than 10 are quite likely to have aggressive disease (Okada M et al., 2010). The degree 
of FDG uptake by lymphoma cells may be a biomarker for disease biology: e.g. different 
histopathological subtypes of HD who have exhibited significantly different levels of FDG 
uptake (Hutchings M et al., 2006). Similarly, grade III follicular lymphomas appear to have 
significantly higher FDG uptake than grade I or II follicular lymphomas (Tang B et al., 2009). 
FDG uptake is lower in indolent lymphoma compared to aggressive lymphoma. 
Histological transformation of indolent lymphoma occurs in 20 – 30% of the patients. Recent 
study has shown that FDG-PET can be used as an accurate guide for biopsies in suspected 
transformed tissues (Bodet-Milin C et al., 2008). The standardized uptake value varies 
considerably in different tumors of the same lymphoma patients, and biopsies should be 
performed in the site with the maximum standardized uptake value of the whole body (the 
highest malignancy) that represents the malignancy of the disease (Bodet-Milin C et al., 2008; 
Wu X, P Korkola et al., 2011). However, histological analysis remains the gold standard to 
confirm the transformation, since there is considerable overlap in the range of maximum 
standardized uptake values for different subtypes of lymphomas.  

The main advantage of FDG-PET over anatomical imaging techniques, such as CT, is its 
ability to detect metabolic changes in malignant lymphoma lesions before structural changes 
become visible. A pretreatment FDG-PET scan may identify additional focal bone marrow 
lesions that would be missed by bone marrow biopsy or CT examination (Figure 1). 
Furthermore, FDG-PET surpasses CT in differentiating residual viable tumor tissue from 
therapy-induced fibrosis, and this allows PET performed at the end of treatment to provide 
a more accurate response classification than assessment by CT. Therefore, when FDG-PET 
results are used to make treatment decisions at initial staging and response assessment, 
outcome may improve, particularly in patients with HD and aggressive NHL. In addition, 
early- and mid-treatment PET studies have been shown to be a good predictor of 
progression-free survival and overall survival. However, the value of FDG-PET for staging 
certain indolent NHLs that are not FDG-avid may be limited, and CT imaging remains the 
modality of choice in these subgroups (Vermoolen MA et al., 2011). Routinely, FDG avid 
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malignant lymphomas (HD, diffuse large B-cell lymphoma, follicular lymphoma, and 
mantle cell lymphoma) are well visualized both in initial staging and restaging. However, 
some subtypes of NHL, predominantly low-grade lymphomas, may have low or even no 
uptake of FDG. Nodal and extra-nodal marginal zone lymphomas, small lymphocytic 
lymphomas, primary duodenal follicular lymphoma, cutaneous T-cell lymphomas, and 
peripheral T-cell lymphomas all have been reported to be possibly FDG negative (Kwee TC, 
Kwee RM et al., 2008). Caution is warranted in these histological subtypes of NHL because a 
negative FDG-PET scan could not rule out malignant lesions. It is also considered 
mandatory to perform a pretreatment FDG-PET scan in these variable FDG avid NHLs, 
since comparison of a post-treatment FDG-PET scan to a pretreatment FDG-PET scan will 
lead to more accurate restaging (Kwee TC, Kwee RM et al., 2008).  

A major drawback of FDG-PET is its lack of detailed anatomical information, which 
impedes precise localization of sites with FDG uptake. In addition, FDG-PET is not cancer 
specific; there is possibility of FDG uptake in benign conditions with increased glycolysis 
such as inflammation and granulomatous disease. Additionally, high physiological uptake 
within the brain, myocardium, gastrointestinal tract, urinary tract, muscle, brown fat, 
salivary glands, and thymus may obscure or mimic the presence of tumor deposits. Caution 
also is warranted in patients receiving chemotherapy in conjunction with cytokines, such as 
granulocyte colony stimulating factor, because these patients may have increased bone 
marrow FDG uptake up to 3 weeks after the last dose of cytokines (Kazama T et al., 2005). 
Therefore, a careful evaluation of FDG-PET findings, along with a patient's accurate history 
and clinical examination, is necessary to minimize the number of false-positive 
interpretations. Another disadvantage of FDG-PET is exposure of the patient to ionizing 
radiation.  

In conclusion, 18F-FDG-PET is the imaging technique of choice for initial staging and end-of-
treatment evaluation. However, 18F-FDG is not specific for tumoral tissue. Several factors 
can make the interpretation of PET studies challenging. Chief among these factors are the 
variable physiological uptake of FDG by normal tissues, FDG uptake related to 
inflammation, occasional malignant lesions with low avidity for FDG, limited resolution of 
small lesions, altered biodistribution of FDG related to hyperglycemia or hyperinsulinemia, 
and, in particular, bone marrow activation commonly encountered in cancer patients after 
treatment. It should be kept in mind that also FDG-negative lymphomas exist, and a 
negative 18F-FDG-PET cannot exclude minimal residual disease. The interpretation of PET 
information requires therefore a thorough understanding of the normal physiological 
distribution of FDG in the body, and one should always correlate PET findings with clinical 
and laboratory data, other imaging modalities, and/or a biopsy.  

5.3 FDG-PET/CT fusion 

Advances in the scanner and computer technology enabled the development of PET/CT 
hybrid systems with a hardware-oriented approach to image fusion. With this type of 
scanner, accurately registered anatomical and functional images can be acquired in a single 
examination, and CT data can be used for attenuation correction of PET images. Although 
performed in one imaging section, the two examinations are by no means performed 
simultaneously. Rather, it is typically for the CT scan to be performed first, and the PET scan 
performed immediately after the CT scan has finished (or vice versa). Obviously, any 
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patient motion between the PET and CT scans would lead to inaccurate attenuation 
correction and unreliable fusion. Several manufacturers are now offering integrated FDG-
PET/CT systems combining different models of high-resolution dedicated PET scanners 
and multidetector-row CT scanners in line with a common imaging bed (Blodgett TM et al., 
2007; von Schulthess GK et al., 2006). A computer platform (workstation) is used to 
reconstruct CT and PET data and create fused PET/CT images in the transaxial, coronal, 
and sagittal planes for interpretation. CT attenuation value and the maximum standardized 
uptake value are calculated at this workstation. PET/CT has been shown to increase both 
the accuracy of interpretation and the confidence level of the readers, and it has already 
been proven as an important diagnostic tool in several cancer types, including lymphomas, 
for initial staging, assessing prognosis, therapy monitoring, as well as detection of 
recurrence.  

FDG-PET and CT provide functional and anatomical information, respectively. Integration 

of both modalities may outperform both FDG-PET alone and CT alone in initial staging and 
restaging of malignant lymphoma. FDG-PET/CT fusion, using a combined PET/CT 

scanner, allows more accurate localization of foci with increased FDG uptake than stand-
alone PET, and this may reduce the problems of physiological FDG uptake being 

misinterpreted as pathological and false localization of disease. An additional advantage of 
combined PET/CT is the use of the CT images for attenuation correction of the PET 

emission data, which reduces whole-body scanning time to 30 minutes. This approach also 
provides low-noise attenuation correction factors compared with those from standard PET 

transmission measurements using an external radiation source, and eliminates bias from 
emission contamination of post-injection transmission scans (Kwee TC, Kwee RM et al., 

2008). A pitfall of CT-based attenuation correction, however, is that the use of concentrated 
CT contrast agents, CT beam-hardening artifacts due to metallic implants, and physiological 

motion can result in the alterations of standardized uptake value in lesions or the 
appearance of artifactual lesions. Thus, images without attenuation correction also should 

be evaluated to avoid misinterpretations (Blodgett TM et al., 2007; von Schulthess GK et al., 
2006). In general, integrated PET/CT without iodinated contrast material or contrast-

enhanced CT without PET is used for initial staging of lymphomas. Previous study has 
shown that PET/CT is more sensitive and specific than contrast-enhanced CT and suggested 

that PET/CT performed without intravenous contrast media is sufficient for staging patients 
with HD and aggressive NHL (Schaefer NG et al., 2004). PET/CT in particular is 

recommended for primary diagnosis and follow-up because it is a whole-body imaging 
modality and provides both anatomical and metabolic information. Furthermore, PET/CT 

allows earlier detection of relapse than does morphological imaging with CT or MRI alone, 
and it is frequently used to detect relapse at follow-up of patients with lymphomas. 

Radiation dose is a point of concern in FDG-PET/CT fusion, although the CT portion of a 
PET/CT scan is usually performed at different settings than a standard diagnostic CT to 

decrease the radiation burden.  

5.4 Whole-body magnetic resonance imaging 

The high spatial resolution and excellent soft-tissue contrast make MRI an ideal tool for the 

detection of parenchymal and osseous lesions. However, because of long imaging time, MRI 

was previously used only as a tool to image limited anatomical areas of the body. Recent 
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improvements in MRI technology have resulted in the availability of sufficiently fast and 

with diagnostic image quality sequences for whole-body MRI. As a result, whole-body MRI 

has become feasible for staging malignancies, including malignant lymphomas (Lauenstein TC 

and RC Semelka, 2006). Similar to MRI of limited body regions, whole-body MRI is sensitive to 

susceptibility artifacts, predominantly in the thoracic region, and motion artifacts in the 

abdomen (breathing and peristalsis) and thorax (breathing and cardiac motion). Image 

acquisition under breath-holding or respiratory triggering should therefore be applied.  

Several studies have shown that whole-body MRI is feasible in both adults and children, 
and it may play an important role in staging and follow-up of various cancers, including 
malignant lymphomas (Kwee TC et al., 2009; Lauenstein TC and RC Semelka, 2006; Schmidt 
GP et al., 2009). A major advantage of whole-body MRI in malignant lymphomas is the 
possibility of completely evaluating the spread of disease throughout the entire body, 
including nodal, extra-nodal, and bone marrow involvement, in one examination 
(Vermoolen MA et al., 2011). A disadvantage of whole-body MRI is that the image quality 
may be inferior to that of MRI examinations of limited body regions because the former 
allows less time to acquire different MRI sequences and imaging planes, and generally 
employs a greater slice thickness and lower spatial resolution. The use of a phased-array 
surface coil is preferred because it provides an increased signal-to-noise ratio and spatial 
resolution compared with an integrated body coil. There is no standard whole-body MRI 
protocol for staging malignant lymphomas yet; data regarding preferred sequence and 
imaging plane are lacking. A commonly recommended approach for tumor staging in 
general is the application of fat-suppressed T1-weighted gradient echo sequences before and 
after the administration of intravenous gadolinium, and fat suppressed T2-weighted 
sequence (Figure 2). Previous studies has shown that the fluid-sensitive fat-suppressed T2-
weighted short-tau-inversion-recovery (STIR) sequence is useful for the assessment of the 
skeletal system and the pelvis (Lauenstein TC and RC Semelka, 2006). STIR is a particularly 
sensitive for detecting parenchymal and bone marrow lesions, which are generally 
visualized as structures of high signal intensity on images acquired with this sequence 
(Kwee TC, Kwee RM et al., 2008). However, malignant lymph nodes can not be 
differentiated from benign nodes on the basis of signal intensity, neither on T1- nor on T2-
weighted images.  

Although MRI inherently provides superior soft-tissue contrast to CT and has the potential 
to characterize lesions on the basis of signal characteristics, assessment of nodal involvement 
is still based on size criteria. General criteria for extra-nodal involvement are any signal 
abnormalities or mass lesions involving soft tissues, bones, parenchymal organs, and serosal 
cavities. MRI is superior to CT for imaging the liver, whereas CT is superior to MRI for the 
assessment of mediastinal and pulmonary lymphomatous lesions (Lauenstein TC and RC 
Semelka, 2006). In addition, CT may be more attractive than MRI in patients with reduced 
health status, as it is a faster study and requires less patient cooperation.  

Whole-body MRI is a feasible technique for staging malignant lymphomas, and whole-body 
MR imaging after gadolinium contrast injection can improve contrast and may facilitate 
detection of nodal and extra-nodal lymphomatous lesions (Schmidt GP et al., 2009). 
However, disadvantages of gadolinium application include increased examination time and 
costs, and the potential risk of developing nephrogenic systemic fibrosis in patients with  
renal failure (Vermoolen MA et al., 2011). In contrast to CT, FDG-PET, and FDG-PET/CT 
fusion, MRI has the advantage of not exposing the patient to ionizing radiation, which is  
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Fig. 2. MR images in a 57 year-old male patient with diffuse large B-cell lymphoma.  
Multiple lymph node lesions in the cervical region are shown: A coronal slice of T2-
weighted image without fat-suppression (a) and the corresponding coronal slice of T2-
weighted image with fat suppression (b). An axial slice of T1-weighted image before 
contrast agent injection and the corresponding axial slice of T1-weighted image with 
contrast enhancement (d). An axial slice of T2-weighted image without fat suppression (e) 
and the corresponding axial slice of T2-weighted image with fat suppression (f).  

especially important in children. However, MRI cannot be performed in patients with 

pacemakers, defibrillators, or other implanted electronic devices, and in case of 

claustrophobia. Another limitation of conventional (anatomical) MRI is the lack of 

functional information, which may result in failure to detect pathological changes in 

normal-sized structures. However, it may be overcome with recently developed functional 
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MRI techniques, such as DWI. DWI highlights areas with restricted diffusion that occurs in 

many malignant tumors, including malignant lymphoma, without using contrast agent 

(Schmidt GP et al., 2009; Wu X, PL Kellokumpu-Lehtinen et al., 2011).  

5.5 Diffusion-weighted imaging  

Diffusion-weighted imaging enables the visualization of the random extra, intra, and 
transcellular motion of water molecules in biological tissues (Le Bihan D, 1995). DWI 
provides information on extracellular space tortuosity, tissue cellularity, and the integrity of 
cellular membranes. It can be used for the detection and characterization of pathological 
processes, including determination of lesion aggressiveness and monitoring response to 
therapy of malignant tumors, and it may therefore be of value in staging and follow-up 
evaluation of malignant lymphomas. The signal properties of DWI indicate both the T2 
relaxation time and water diffusion, and reflect the microstructure and physiological state of 
tissue. Thus, subtle changes in tissue architecture can be seen by DWI. In order to create an 
ADC map, at least two datasets with different degrees of diffusion-weighting (i.e. b-values) 
have to be acquired. The ADC value derived from DWI is independent of the magnetic field 
strength and can overcome the effects of ‘T2 shine-through` (an area with a very high T2 
relaxation time may remain as a high signal in DWI and may be mistaken for restricted 
diffusion), thus allowing a more meaningful comparison of results from different studies. In 
general, malignant tissues tend to be hypercellular, with enlarged hyperchromatic nuclei 
and abundant macromolecular proteins (Wang J et al., 2001). These factors reduce the 
diffusion space for water molecules in the extra and intracellular compartments, resulting in 
a decrease in ADC values (Herneth AM et al., 2003; Sumi M et al., 2007). In contrast, the 
breakdown of diffusion barriers in necrotic tissue allows the relatively unhindered diffusion 
of water molecules, resulting in high ADC values (Herneth AM et al., 2003).  

DWI using single-shot echo-planar imaging (EPI) is a well-established method to examine 
the brain. Extra-cranial DWI, however, did not become a clinical standard because the use of 
EPI was complicated by magnetic susceptibility artifacts and severe image distortion in the 
body (Ichikawa T et al., 1998, 1999; Muller MF et al., 1994). Recently introduced parallel 
imaging techniques, such as sensitivity encoding (Bammer R, 2003; Glockner JF et al., 2005), 
and the development of stronger gradients and multichannel coils have largely overcome 
this problem; DWI of adequate quality can now be performed in the body at b-values of 500 
- 1000 s/mm² (Koh DM and DJ Collins, 2007; Thoeny HC and F De Keyzer, 2007). Despite 
the above-mentioned breakthroughs in DWI, breathhold or respiratory triggered scanning 
was still considered necessary, since it was widely accepted that respiratory motion was an 
impediment for DWI of (moving) visceral organs (Low RN and J Gurney, 2007) .  

DWI can be performed quickly and does not require a contrast agent. DW-MRI is not just 
sensitive to microscopic water movements but also to physiological motions of greater 
magnitude, such as blood, cerebrospinal fluid and ductal flows. At low b-values (< 50 - 100 
s/mm2) bulk water movement will be the predominant factor determining the ADC; at 
higher b-values, bulk water motion has less a role in the continued signal attenuation. Thus, 
it is possible to differentiate between the contributions made by water populations of high 
and low mobility by varying the experimental conditions for calculation of the ADC. It is 
generally accepted that with the high b-values used on clinical scanners (up to 500 - 1000 
s/mm2), ADC reflects water diffusion in the extracellular space (Patterson DM et al., 2008). 
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The limitations of DWI include the sensitivity to artifacts (e.g. respiration and peristalsis 
movements), and therefore optimization is required to maximize the signal-to-noise ratio 
and to minimize artifacts. Above all, DWI is not specific to cancer. In order to interpret DWI 
correctly, both DW images and ADC maps should be evaluated with caution and compared 
with corresponding anatomical images when necessary.  

Takahara et al. reported a unique concept of whole-body DWI, called “diffusion-weighted 
whole-body imaging with background body signal suppression” (DWIBS) (Takahara T et al., 
2004). This technique intentionally uses free breathing scanning rather than breathholding 
or respiratory triggering to visualize (moving) visceral organs and their lesions. In a study 
comparing pre- and post-chemotherapy FDG-PET with DWIBS, Kwee et al. found that 
DWIBS has higher spatial resolution for the imaging of patients with lymphomas, although 
it has only limited ability to help detect mediastinal lesions (Kwee TC, T Takahara et al., 
2008). In addition, whole-body DWI offers a high lesion-to-background contrast, making it a 
sensitive technique for the detection of lesions (Kwee TC et al., 2009). When DWIBS is added 
to whole-body MRI, both anatomical and functional information can be provided within a 
single examination. A limitation of DWIBS is that the evaluation of structures close to the 
heart, such as mediastinal lymph nodes and the left liver lobe, may be compromised because 
of signal loss and artifacts due to cardiac motion (Vermoolen MA et al., 2011).  

6. View to future 

6.1 Novel PET tracers  

The development of new tracers and smart probes are the two key points in the 
development of multimodality image and diagnostic imaging in future. FDG is in routine 
diagnostics the most commonly used tracer for lymphoma detection and therapy follow-up, 
but it should be kept in mind that also FDG-negative lymphomas exist. A number of new 
radiotracers have been developed and are under clinical evaluation, e.g. [11C]choline, [18]F-
fluorothymidine (18F-FLT). One characteristic of malignant cells is an increased rate of 
cellular proliferation. There is good evidence that 18F-FLT uptake is closely correlated with 
cellular proliferation (Buck AK et al., 2006). However, high uptake in normal bone marrow 
and the liver may limit the sensitivity of FLT-PET for detection of extra-nodal involvement. 
18F-fluoride is a positron-emitting bone-seeking agent that reflects blood flow and 
remodelling of bone, it is also sensitive for detection of lytic and early marrow-based 
metastases. The instant fusion of increased 18F-fluoride uptake with morphological data of 
CT improves the specificity in cancer patients by accurately differentiating between benign 
and malignant uptake sites (Even-Sapir E et al., 2007).  

6.2 Combination of PET with other modalities than CT: PET/MRI 

Among the above-mentioned imaging techniques, no single modality is perfect and 
sufficient to gain all the necessary information. Therefore, the combination of multiple 
imaging techniques can offer synergistic advantages. Multi-modal imaging can be achieved 
either through the combination of imaging hardware such as PET/CT, through the 
combination of different contrast agents, or through co-registration of images acquired with 
different modalities. With regard to lymphatic imaging, this leads to improved accuracy and 
sensitivity of lymph nodes detection. PET/CT has been matured into an important clinical 
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diagnostic tool. Clinical studies have shown that the combination of anatomical structures 
revealed from CT and the functional information from PET into one image, with high fusion 
accuracy, provides an advanced diagnostic tool and research platform. Although PET/CT is 
already an established clinical tool, it still bears some limitations. A major drawback is that 
CT provides only limited soft tissue contrast and exposes the studied patient to a significant 
radiation dose. Since PET and CT scanner are hard-wired back to back and share a common 
patient bed, PET/CT does not allow simultaneous data acquisition. This temporal mismatch 
causes image artifacts by patient movement or respiration motion between the two scans. To 
overcome these limitations, recent research concentrates on the combination of PET and 
MRI into one single machine. The goal of this development is to integrate the PET detectors 
into the MRI scanner which would allow simultaneous data acquisition, resulting in 
combined functional and morphological images with an excellent soft tissue contrast, good 
spatial resolution of the anatomy, and accurate temporal and spatial image fusion. 
Additionally, since MRI provides also functional information such as DWI, blood 
oxygenation level dependant (BOLD) imaging, or spectroscopy, PET/MRI could even 
provide multi-functional information of pathophysiological processes in vivo. Furthermore, 
the radiation dose for PET/MR will be lower than that for PET/CT, being of particular 
importance for repeated studies aimed to evaluate disease progression and therapy 
response. First experiments with PET/MRI prototypes showed promising results, indicating 
its great potential for clinical imaging (Shao Y et al., 1997; Wagenaar DJ et al., 2006). 
Multimodality imaging techniques will play a leading role in clinical applications and 
development of diagnostic imaging in oncology.  

6.3 High field MRI and new MR contrast agent 

As MRI systems operating at 1.5 T are now widely available and provide high-quality 

whole-body images in a reasonable acquisition time, implementation of whole-body MRI 

into diagnostic protocols for malignant lymphomas is expected in the near future. In 

particular, MRI may be expected to be suitable to replace CT for initial staging and response 

evaluation, as part of radiation-minimizing policies, especially in children and pregnant 

women. Whole-body MRI at higher field strength (3.0 T) may increase the image quality and 

lesion conspicuity with a reduced scan time, since it has higher signal-to-noise ratio. 

However, whole-body MRI at 3.0 T is more sensitive to artifacts and has not yet been proven 

to be diagnostically superior to whole-body MRI at 1.5 T (Schmidt GP et al., 2007).  

Superparamagnetic iron oxide nanoparticles, which are MRI-specific lymphographic agents, 

are currently under investigation and can potentially play a role in staging of malignant 

lymphoma by identifying involved lymph nodes independent of lymph node size (Will O et 

al., 2006).  

7. Conclusion 

In conclusion, making the diagnosis of lymphoma often requires multiple imaging 
modalities, and CT is currently the most commonly used means for staging patients with 
malignant lymphomas. However, CT lacks functional information, which impedes 
identification of disease in normal-sized organs. 18F-FDG-PET and hybrid FDG-PET/CT are 
good alternative diagnostic tools for the initial staging and treatment response assessment of 
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malignant lymphomas. MRI techniques such as whole-body MRI and DW-MRI may be 
good radiation-free alternatives to FDG-PET/CT in lymphoma patients with multiple 
follow-up examinations, which may be particularly relevant for children and those who are 
not suitable for PET/CT exams. Furthermore, in assessment of patients with non-FDG-avid 
lymphomas MRI could become the imaging modality of choice. However, well-designed 
studies are needed to validate the accuracy of whole-body MRI and DWIBS for the staging 
and response assessment of malignant lymphomas.  

8. Take home message 

 Computed tomography remains the most commonly used modality for initial staging 
patients with malignant lymphomas because of its widespread availability and 
relatively low cost. 

 FDG-PET and integrated FDG-PET/CT are the established imaging modalities for 
initial staging and response assessment of lymphomas. Integrated PET/CT has higher 
diagnostic accuracy than CT and FDG-PET alone. 

 Whole-body MRI and DW-MRI are emerging radiation-free alternative imaging 
techniques for initial staging and treatment response evaluation of lymphomas. 
However, large studies are needed to determine the value of whole-body MRI and 
DWIBS.  

 MRI at 3 T and combined PET/MRI may have potential for future clinical applications.  
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