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1. Introduction 

1.1 PET and SPECT imaging 

Positron Emission Tomography (PET) and Single Photon Emission Computed Tomography 
(SPECT) based functional imaging utilize radiolabeled tracers to provide information for 
real time visualization of physiological or biological processes in live animals or humans. 
Disease-related biomarkers involved in initiation and/or progression of a pathological 
condition are imaged by these nuclear imaging technologies which lead to early detection of 
abnormalities prior to the appearance of morphological changes visualized by other imaging 
modalities such as CT or MRI (1-3). Additional advantages of nuclear imaging approaches 
are high sensitivity of detection and high spatial resolution. Further they are either non- or 
minimally invasive and highly quantitative (4). Together, these characteristics of PET and 
SPECT make them an invaluable technique for monitoring some diseases and disorders.  

There are significant differences between PET and SPECT, some of which are highlighted 
below. A major advantage of PET over SPECT is its 2-3 orders of magnitude greater sensitivity 
and quantitative capability (5). PET utilizes radioisotopes that decay via emission of positrons, 
whereas, SPECT radioisotopes decay by electron capture and/or gamma emission (5). Table 1 
lists some of the most commonly used PET and SPECT radioisotopes and their physical 
properties. The synthetic chemistry behind development of these radioisotopes as tracers for 
imaging is dependent on the half-lives. For example, the short decay half-lives (2 – 20 min) of 
the PET radioisotopes: carbon-11, nitrogen-13 and oxygen-15 requires that radiotracer 
synthesis with these radioisotopes be conducted in close proximity to a cyclotron (3-5). On the 
other hand, radioisotopes such as fluorine-18, copper-64, indium-111, iodine-123 and iodine-
124 are sufficiently long-lived to allow transportation from regional commercial sites (3-5). 
Additionally, the radioisotopes gallium-68, copper-62 and technetium-99m can be 
conveniently obtained from an in-house generator (3-5). At the present time, clinical SPECT 

www.intechopen.com



 
Molecular Imaging 304 

imaging is more prevalent than PET imaging due to both its cost effectiveness and the greater 
availability of SPECT scanners at most nuclear medicine clinics. 

Isotope Imaging Mode Production 
Method 

Half-Life Decay Mode(s) 

11C PET Cyclotron 20.4 min ┚+ (99+%) 

13N PET Cyclotron 10 min ┚+ (100%) 

15O PET Cyclotron 2.03 min ┚+ (99.9%) 

18F PET Cyclotron 110 min ┚+ (97%) 
EC (3%) 

124I PET Accelerator 4.2 days EC (74.4%) 
┚+ (25.6%) 

68Ga PET Generator 68.3 min ┚+ (90%) 
EC (10%) 

62Cu PET Generator 9.73 min ┚+ (98%) 
EC (2%) 

64Cu PET Reactor 12.7 hours ┚+ (61%) 
┚- (39%) 

99mTc SPECT Generator 6.02 hours IC (100%) 

111In Gamma 
Scintigraphy 

Accelerator 2.8 days EC (100%) 

123I SPECT Accelerator 13.3 hours ┚+ (100%) 

192Ir SPECT Reactor 73.8 days EC (4.9%) 
┚- (95.1%) 

201Tl SPECT Cyclotron 73 hours EC (100%) 

82Rb PET Generator 1.27 min ┚+ (100%) 

89Zr PET Cyclotron 3.3 days ┚+ (100%) 

┚+ = positron emission; EC = electron capture; IC = isomeric conversion, ┚- = electron emission  

Table 1. Common PET and SPECT Radioisotopes  

In recent years, an effort has been made to combine anatomical imaging modalities (such as 

CT and MRI) with molecular imaging modalities in order to capitalize on the strengths of 

both techniques. These multi-modality approaches can provide both high structural detail 

and high detection sensitivity of pathophysiological changes giving greater insight into the 

dynamic processes of tumor growth and progression. Advances in this field have already 

been made and PET-CT technology is now available for use in many clinics (6-8). Further, 

the recent approval by the US Food and Drug Administration (FDA) of the first PET-MRI 

machine for clinical imaging (9) is a major step forward in multimodal imaging. Compared 

with PET-CT technology, PET-MRI scans demonstrate higher structural detail, especially of 

soft tissues, and additionally permit the use of MRI techniques such as perfusion imaging 

and MR spectroscopy (10). Furthermore, MRI scans (in PET-MRI) use magnetic fields 

instead of x-rays, thereby decreasing patient radiation doses in comparison to PET-CT scans 
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(10). Boss et al. showed the effectiveness and reliability of PET-MRI in scanning intracranial 

tumors using [11C] methionine or [68Ga] DOTATOC (11). 

The past decade has seen the investigation and validation of several radiotracers with 
particular emphasis in oncology. These targets include molecular biomarkers such as 
growth factor receptors, protein kinases, specific receptor over-expression or biological 
events such as angiogenesis, apoptosis, hypoxia and tumor proliferation (1-3). This review 
will highlight recent PET and SPECT radiotracer development for angiogenesis imaging 
with a major focus on their application in oncology. 

1.2 Biology of angiogenesis 

Angiogenesis, the formation of new blood vessels, plays a central role in growth of tumors 

beyond 1-2 mm3 as neovascularization is required to supply oxygen and nutrients and for 

removal of cellular wastes(12-14). Further, neo-angiogenesis is critical to the metastatic 

potential of tumors as it aids in the dispersion of cancer cells to distant organs. Recent 

advances in cellular and molecular biology have led to the identification of novel angiogenic 

biomarkers and molecular dissection of their signaling pathways(13, 15). One of the key 

signaling pathways involved in initiation of new tumor blood vessels is mediated by 

vascular endothelial growth factor (VEGF) and its receptor tyrosine kinase (VEGFR)(16-18). 

Pro-angiogenic signaling mediated by VEGF/VEGFR is critical when tumors outgrow their 

existing blood supply and frequently display oxygen deficiency (hypoxia). Hypoxia is 

known to trigger the secretion of VEGF (19-22). Binding of VEGF to its receptor initiates a 

signaling cascade that promotes the proliferation, migration and survival of endothelial 

cells, ultimately leading to angiogenesis (23-25). The angiogenic effects of the VEGF family 

are believed to be primarily mediated through VEGF-A. To date, VEGF-A (also referred to 

as VEGF) and its receptors are the most characterized signaling pathways in developmental 

and tumor angiogenesis(24, 26-35). 

Alternative splicing of RNA has revealed the existence of at least nine different molecular 

isoforms for VEGF-A, comprising 121, 145, 148, 162, 165, 165b, 183, 189 or 206 amino 

acids(36-43). The angiogenic actions of VEGF-A are mediated primarily via two closely 

related endothelium-specific receptor tyrosine kinases (VEGFR-1 and VEGFR-2)(44-46). All 

of the VEGF-A isoforms bind to both VEGFR-1 and VEGFR-2, of which, VEGFR-2 is the 

major mediator of proliferation and angiogenesis (14). Thus, a variety of solid tumor cells 

overexpress VEGFR-2, which serves as poor prognostic marker for the survival of cancer 

patients (47, 48). Therefore, new therapies based on humanized monoclonal antibodies that 

inhibit VEGF-A are used to treat cancers of colorectal, lung, kidney and eye origin and there 

are many newer therapies under various stages of development (27, 49)  

2. Molecular targets and ligands for PET/SPECT imaging of angiogenesis 

2.1 VEGF receptor and ligands 

PET imaging of VEGFR expression in vivo was first demonstrated using VEGF121 

radiolabeled with 64Cu. Radiolabeling was achieved via 64Cu chelation to a DOTA-VEGF121 

conjugate (DOTA is an abbreviation for 1,4,7,10-tetraazacyclododecane-N,N’,N”,N”’-

tetraacetic acid). In vivo evaluation of 64Cu-DOTA-VEGF121 using microPET imaging of 
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athymic nude mice bearing U87MG human glioblastoma xenografts showed rapid and high 

specific accumulation of the radioligand in small U87MG tumors (16% injected dose per 

gram [ID/g]) at 4 h post-injection. Larger tumors showed significantly lower uptake (1 – 3% 

ID/g). Differences in tumor localization between large and small tumors showed a good 

correlation with tumor VEGF receptor expression (VEGFR-2). In vivo VEGFR-2 specificity of 

the radioligand was also confirmed by pharmacological blocking experiments and ex vivo 

studies (immunofluorescence staining, western blot analysis). This study also demonstrated 

the dynamic nature of VEGFR signaling during tumor growth and proliferation. 

Subsequently, these authors also reported on the development of a 64Cu-labeled 

vasculature-targeting fusion toxin (VEGF121/rGel) composed of a VEGF121 linked 

recombinant plant toxin gelonin construct (rGel) for multimodality imaging and therapy of 

glioblastoma. Sustained tumor accumulation and high signal-to-noise ratios were 

demonstrated by this radioligand in mice bearing glioblastoma xenografts up to 48 h post-

injection. Based on the pharmacokinetic information obtained from the imaging studies, 

therapeutic administration of VEGF121/rGel to mice bearing orthotopic U87MG 

glioblastomas revealed specific tumor neovasculature damage by histological analysis after 

a multiple dose treatment regimen. 

Apart from their role in tumor angiogenesis, VEGF/VEGFR signaling plays a key role in 

other human pathologies. For example, myocardial infarction (MI) is known to activate 

VEGF/VEGFR signaling. PET imaging studies conducted in a rat model of MI with 64Cu-

DOTA-VEGF121 revealed a 3 - 4 higher myocardial uptake of radioactivity for up to 2 weeks 

following infarction as compared to controls (50, 51). In addition, PET imaging of VEGFR 

expression with 64Cu-DOTA-VEGF121 in a rat stroke model showed peak tracer uptake in the 

stroke border zone at approximately 10 days post-surgery indicating neovascularization as 

confirmed by histopathology studies(52).  

111In-labeled recombinant VEGF isoform VEGF165 (111In-hn-Tf-VEGF) was reported by Chan 

and coworkers as a tumor angiogenic marker in experimental mice models. VEGF165 was 

fused through a flexible polypeptide linker to the n-lobe of human transferrin(53). The latter 

construct permitted labeling of the radioligand with 111In at a site remote from the VEGF 

receptor-binding domain. In radioligand stability studies, 111In-hn-Tf-VEGF demonstrated a 

moderate loss of 111In to transferrin in human plasma in vitro over a 72 h period (21.3% ± 

3.4% per day). Radioligand biodistribution studies and whole-body gamma camera imaging 

were conducted in athymic mice bearing subcutaneous U87MG human glioblastoma 

xenografts. 111In-hn-Tf-VEGF displayed tumor and blood radioactivity accumulations of 6.7 

± 1.1 %ID/g and 1.6 ± 0.4 %ID/g, respectively, at 72 h post-injection. Co-administration of a 

100-fold excess of VEGF led to a 15-fold decrease in tumor uptake of radioactivity. High 

uptake of radioactivity was also observed in liver (45.5 ± 7.5 %ID/g), kidneys (39.4 ± 7.0 

%ID/g) and spleen (35.6 ± 4.4 %ID/g) at this time interval. The authors present evidence to 

indicate that uptake of radioactivity in these organs is due to 111In-hn-Tf-VEGF and not due 

to 111In-transferrin via transchelation of 111In from the radioligand to transferrin. 

Along with labeling VEGF-A and its isoforms, efforts have also been made to create anti-

VEGF-A antibodies for imaging and therapeutic purposes. Success in this field was achieved 

with the creation of bevacizumab, a humanized monoclonal antibody that blocks VEGF-

induced endothelial cell proliferation. A radiolabeled form of bevacizumab, 89Zr-
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bevacizumab, was demonstrated to have high tumor uptake in small animal PET imaging 

(54, 55). A phase 1 clinical trial with 124I-labelled HuMV833 showed promising findings as 

well establishing the utility of radiolabeled antibodies in imaging VEGF(56, 57).  

2.2 αVβ3 integrins and RGD peptide 

An indirect approach to angiogenesis imaging has focused on radioligands targeting the 
┙v┚3 class of cell adhesion molecule integrins. Integrin ┙v┚3 receptors are significantly up-
regulated in endothelial cells during angiogenesis but not in mature vessels or non-
neoplastic epithelium (Brooks PC, Science 1994; Pasqualini R, Nat Biotechnol, 1997). Integrin 
┙v┚3 is also expressed in a variety of tumor cells, including melanoma, late-stage 
glioblastoma, ovarian, breast and prostate cancer. The ability to visualize and quantify 
integrin ┙v┚3 expression in vivo would allow for appropriate selection of patients for anti-
integrin treatment and also monitor treatment efficacy in such patients. 

Radioligand development for ┙v┚3 imaging has focused primarily on small RGD peptide 

antagonists. The tripeptide sequence motif, arginine-glycine-aspartate (RGD), is found in 

proteins of the extracellular matrix. Many integrins, including ┙v┚3, link the intracellular 

cytoskeleton of cells with the extracellular matrix via recognition and binding to this RGD 

motif. [18F]GalactoRGD was the first radiotracer used for successful PET imaging of tumor 

┙v┚3 expression in patients. Subsequently, a hydrophilic D-amino acid containing 

tetrapeptide analog was also developed which demonstrated improved pharmacokinetics 

and proteolytic stability. Wu and coworkers have reported on the enhanced ┙v┚3 receptor 

binding characteristics of dimeric and multimeric RGD peptides over monomeric peptides 

which has been attributed to an increased local concentration of RGD domains at the 

receptor vicinity (polyvalency effect). Accordingly, several [18F]- and [64Cu]-labeled dimeric 

and tetrameric RGD peptide analogs have been recently synthesized and evaluated by this 

group for integrin-targeted imaging in lung, brain and breast cancer. As an example, 

microPET imaging studies with a dimeric RGD peptide coupled to 4-[18F]Fluorobenzoate 

{[18F]-FB-E[c(RGDyK)]2} showed predominantly renal excretion and twice as much tumor 

uptake in the same animal model as the monomeric analog [18F]-FB-c(RGDyK). Binding 

potentials derived from tracer kinetic modeling studies showed good correlation with tumor 

integrin expression levels as measured by SDS-PAGE/autoradiography in the six tumor 

models tested. 

Recently, a disulfide-based cyclic RGD called iRGD (internalizing RGD) was reported that 

showed binding affinity to the ┙v┚3 integrin and neurophilin-1 (NRP-1) receptor and 

portrayed the ability to penetrate tumor tissue for both imaging and drug-delivery 

purposes(58). These characteristics of the peptide iRGD (CRGDKGPDC) are achieved 

through a sequence of steps. Initially, iRGD binds to the ┙v┚3 integrins expressed on the 

endothelium of tumor cells through its RGD motif(59). Subsequently, the peptide is 

proteolytically cleaved producing a C-terminal RGDK/R sequence that both increases the 

peptide’s affinity to NRP-1 and decreases its binding activity to ┙v┚3 due to the CendR 

motif(59). This newfound affinity to NRP-1 provides iRGD its tumor penetrating 

capabilities(60). Not surprizingly, iRGD has become a major target for in vivo imaging as it 

can both home to tumor cells and also be internalized making the peptide a more effective 

imaging agent compared with other RGD peptides. iRGD imaging has been achieved using 
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optical fluorescent and MRI agents, but a nuclear imaging agent has yet to be developed for 

this promising peptide(58, 59). 

2.3 Matrix Metalloproteinases (MMP) 

Matrix metalloproteinases (MMP’s), a family of zinc- and calcium-dependent 

endopeptidases, facilitate endothelial cell migration during angiogenesis via the enzymatic 

degradation of connective tissue(61). Within the family of MMP’s, MMP-2 and MMP-9 have 

been most associated with tumor aggressiveness and metastatic potential(62). Consequently, 

several MMP-specific peptides as well as small-molecule inhibitors (MMPI’s) have been 

radiolabeled with 125I, 123I, 64Cu, or 18F for PET or SPECT imaging of angiogenesis(63). For 

example, Koivunen et al. discovered that the decapeptide cyclo(Cys-Thr-His-Trp-Gly-Phe-

Thr-Leu-Cys)(CTT) selectively inhibited MMP-2 and MMP-9 thus suppressing the migration 

of endothelial and tumor cells(63, 64). Subsequent radiolabeling with 64Cu and chelation to 

DOTA showed low tracer accumulation in tumors(63). Studies on other MMP imaging 

agents have shown similar results calling into question their utility for angiogenesis imaging 

due to their low tumor targeting capabilities, nonspecific activity in preclinical trials, and in 

vivo instability(62). 

2.4 Nucleolin and F3 peptide 

It is now commonly believed that different organs and tissues may have a distinct 

vasculature, and molecular profiling studies have revealed that this heterogeneity stems 

from expression of distinct functional biomarkers in endothelial cells and its milieu. 

Similarly, molecular dissections of tumor and tumor vasculature have revealed that the 

angiogenic network of blood vessels in tumor is unique both structurally and 

physiologically. Tumor vasculature expresses unique biomarkers that distinguish it from 

normal blood vessels and allow targeting of cargo of therapeutic or imaging agents (14).  

Phage display peptide libraries contain peptide motifs that can home to the tumor 

vasculature and bind directly to the molecules expressed on tumor vessels (65, 66). Utilizing 

in vivo phage display technology, Ruoslahti's group identified F3 peptide 

(KDEPQRRSARLSAKPAPPKPEPKPKKAPAKK) as a sequence that specifically binds to 

tumor and its angiogenic endothelial cells (67). Later studies identified Nucleolin, as the 

receptor for F3 peptide. Nucleolin is localized both within the nucleus and the cytoplasm 

and is involved in RNA transport and processing. However, in proliferating tumor cells, it is 

cyclically transported from the nucleus to cell surface and back by a specific shuttle 

mechanism (68). Subcellular distribution of fluorescently-labeled F3 peptide shadowed 

nucleolin localization both in vitro and in vivo (Figure 1, (69, 70)). Further, we recently 

performed meta-analysis of microarray data from tumor samples and found that Nucleolin 

is upregulated in brain, head and neck and lung cancers when compared with respective 

normal tissue. Taken together, the overexpression of nucleolin and its unique localization at 

cell surface, suggest that nucleolin may be targeted for tumor imaging and delivery of 

therapeutic agents. 

F3 peptide has been used to deliver fluorescent tags, siRNA, and therapeutic radionuclides 

to tumors (44, 71-75). We have recently demonstrated that this peptide sequence can carry a 
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pay load of 80 nm multifunctional nanoparticles in a tumor specific manner (76) and that 

these reside at the tumor sites longer than the untargeted nanoparticles. Several groups have 

generated a variety of distinct F3-targeted nanoparticles and shown their efficacy in 

targeting mouse tumors or human xenografts in mouse (44, 71-75, 77). We recently reported 

the development of an new F3 peptide with cysteine at the c-terminus. Fluorescently or 

[125I]-labeled conjugates of this peptide localized to tumors in a mouse model, when 

systemically administered (Figure 2).  

 

 

 

 

 

 

 

 

 

 

Fig. 1. Subcellular localization of Fluorescent-labeled F3Cys peptides shadows that of 

nucleolin. MDA-MB-435 cells, in optically clear bottom dishes, cultured in either serum free 

or serum containing media were stained with AF532-F3Cys, counterstained with DAPI and 

monitored under a fluorescent microscope. In cells grown in media containing 10% serum,  

cell surface and nuclear staining of F3Cys was observed while serum starved cells showed 

predominantly nuclear staining without significant membrane staining. This suggests that 

F3Cys localizes to cell surface in actively growing cells.  
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Fig. 2. Fluorescent or SPECT imaging using tagged F3-cys peptide.  Mice bearing A549 (A) 
xenografts were injected i.v. via the tail vein with either AF647-F3Cys or AF647-Control 
peptide and fluorescence images were acquired over time. Tumor specific uptake at 2 h was 
observed only with AF647-F3Cys but not with AF647-Control peptide (A).  Ex vivo 
fluorescence imaging of tumor, kidney and liver harvested 2 h after AF647-F3Cys peptide 
injection in animals bearing A549 Tumor xenografts show that F3 peptide is taken up by 
tumor, kidney and liver while AF647-Control peptide shows no tumor specific fluorescence 
(B). Tumor specific uptake was also seen with MDA-MB-435 (melanoma cancer cells) 
xenografts when AF647-F3Cys and not AF647-Control peptide was administered (C). 
SPECT imaging studies conducted following  i.v. administration of  [125I]IBMF3 to nude 
mice bearing MDA-MB-435 tumor xenografts showed distinct uptake of radioactivity in 
tumor as early as 15 min post-injection and also at 4 h post-injection (D). 
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2.5 Miscellaneous alternate targets 

Prostate-specific membrane antigen (PSMA) is expressed on the neovascular endothelium 

of a majority of solid type tumors and not on endothelial cells of normal tissue. Thus, 

radiolabelled PSMA may be utilized in the detection of tumor-specific angiogenesis(78-

80). For the detection of nodal metastasis in prostate cancer, the FDA approved 

ProstaScint, a PSMA antibody labeled with 111In (81, 82). Another 111In-labeled PSMA 

antibody (J591) in a phase I clinical trial was reported to accumulate in malignant sites of 

tumors associated with kidney, liver, colon, breast and melanomas suggesting a potential 

of PSMA in imaging angiogenesis(81-84).. In a preclinical study, a 11C-labeled small 

molecule ligand for prostate-specific antigen was shown to localize to prostate cancer in 

experimental animal models. 

A number of extracellular matrix (ECM) proteins have also been targeted in the imaging of 

angiogenesis as some of the antigens in ECM have been discovered to be associated with 

neoangiogenic sites. Extra domain B of fibronectin and extra domain C of tenascin have 

been targeted in preclinical model systems to detect neoangiogenesis in malignant sites (63, 

85, 86) 

3. Clinical relevance of imaging angiogenesis 

Radiotracer imaging techniques such as PET and SPECT offer unique advantages for 

investigation of angiogenesis in patients at the molecular level by virtue of its high 

sensitivity and adequate spatial and temporal resolution. At the clinical level, such 

approaches could be useful for lesion detection, to select patients likely to respond to 

therapies directed at such targets, to confirm successful targeting and dose optimization as 

well as treatment monitoring. Additionally, nuclear imaging techniques could also aid in the 

development of new angiogenesis-targeted drugs and their validation. For example, PET 

imaging can provide rapid characterization of a drugs pharmacokinetics and 

pharmacodynamic behavior in both pre-clinical studies and clinical trials thereby improving 

the speed, efficiency and cost of drug development. Taken together, these exciting 

developments will likely play an important clinical role in the management of human 

malignancies. 

3.1 Future outlook on angiogenesis radiotracer design  

The past decade has seen major advances in the field of PET and SPECT radiotracer 
development for visualizing the molecular events associated with angiogenesis. A vast 
majority of these approaches have either focused on radiolabeled analogs of vascular 
endothelial growth factor (VEGF) or RGD small peptide antagonists of the ┙v┚3 class of cell 
adhesion molecule integrins. Despite these achievements, there is still a need for 
improvements in synthetic strategies for existing radiotracers and the development of 
alternate radiotracers for angiogenesis imaging. For example, approaches using radiolabeled 
VEGF are complicated by several factors such as the presence of multiple VEGF isoforms, 
high renal expression of VEGF receptors and the mitogenic activity of VEGF. Additionally, 
clinical trials conducted with RGD-based radiotracers have shown wide heterogeneity in 
tumor binding both within the same patient and between patients (87). Furthermore, RGD 
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peptides may have limitations for tumor imaging due to the limited number of ┙v┚3 integrin 
receptors available per tumor cell and their low binding affinity (87). Thus, new radiotracers 
with improved targeting efficacy and pharmacokinetics are indispensible for successful 
clinical translation.  

Angiogenesis is involved in a multitude of biological processes including, embryogenesis, 
female reproductive cycle, tissue remodeling and wound healing (88). Furthermore, 
imbalances or upregulation of angiogenic processes are observed in numerous disorders 
including rheumatoid arthritis, psoriasis, cardiac restenosis and diabetic retinopathy. 
Accordingly, the future availability of clinically-validated angiogenesis imaging radiotracers 
could have broad applicability in disease management beyond that of oncology.  

4. Summary 

In this review, we have focused on recent developments in the design of new PET and 
SPECT radiotracers for imaging the tumor angiogenic process and their biological 
evaluation in pre-clinical animal models and initial clinical studies. Radiotracers based on 
VEGF and the cell adhesion molecule integrin ┙v┚3 currently form the major focus for 
imaging agent development. Additionally, alternate approaches that focus on radiolabeled 
matrix metalloproteinase and prostate specific membrane antigen (PSMA) inhibitors as well 
as the tumor-homing F3 peptide are described. Molecular imaging techniques such as PET 
and SPECT continue to play an increasingly important role in both disease diagnosis at the 
presymptomatic stage and the monitoring of its progression and response to therapeutic 
intervention. The future availability of improved imaging biomarkers for angiogenesis and 
appropriate animal models for their validation will be crucial for unraveling this complex 
process in health and disease and could lead to important advances in the treatment of 
cancer. 
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