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1. Introduction     

A central goal in signal analysis is to extract information from signals that are related to real-
world phenomena. Examples are the analysis of speech, images and signals in medical or 
geophysical application, to name it a few. One reason to analyze such signals is to achieve 
better understanding of the underlying physical phenomena. Another is to find compact 
representations of signals which allow compact storage or efficient transmission of signals 
through real-world environments. The methods of analyzing signals are wide spread and 
range from classical Fourier analysis to various types of linear time-frequency transforms 
and model-based and non-linear approaches. 
Wavelet methods in image processing, analysis, compression, superresolution and 
enhancement are widely present in many researches such as biomedical applications, 
technology, industry, robotics, space explorations, military, etc. Wavelets have evolved over 
years. The theory of the first generation of wavelets (FGW) is originated on filter banks 
theory which includes classical Fourier analysis techniques (Mallat, 1999; Vetterli & 
Kova evi , 1995). Classical Fourier analysis is an irreplaceable tool in many engineering 
fields for years, and was solved many problems of linear-time invariant systems that include 
finding a spectrum of stationary signals (Proakis & Manolakis, 2006). For a non-stationary 
character of measured signal that spectral content is changing over time, classical Fourier 
analysis has shown weaknesses.  The Fourier analysis only partly solves mentioned 
problems, a new approach is needed which will give a new insight into signal properties in 
a different way. Proposed new approach has been time-frequency analysis, i.e. a signal 
representation in time-frequency plane. The most popular time-frequency analyses are the 
short-time Fourier Transform (STFT) which is also called the classical method of time-
frequency analysis and Wavelet Transform (WT or FGW) which is also called the time-scale 
analysis (Mertins, 1999). Wavelet transform brought flexible windows for analysis. The 
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second generation wavelet transform (SGW) is a newly proposed wavelet transform where 
the filters are not designed explicitly, but the transform consists of application of the lifting 
scheme. The sequence of lifting steps could be converted to a regular discrete wavelet 
transform, but it is unnecessary because both design and application is made via the lifting 
scheme (Sweldens, 1996, Daubechies & Sweldens, 1998). Measured signals of the main 
interest are not periodic. The area of the interest is not always finite and one-dimensional 
signals are not always uniformly sampled. At two or more dimensions (i.e. irregular 
surface) even more complicated situation arises. The FGW localize time-frequency well. 
Developed fast algorithms for FGW would be adopted in some way, by giving up 
dilatations and translation. Second generation wavelets (SGW) have updates and 
predictions instead of filter representation, the SGW have polyphase representation (Jansen 
& Oonicx, 2005). Factorization by lifting steps was a new approach, which introduces a new 
quality in computation of wavelet and scaling coefficients. Lifting transform can be applied 
to FGW as well. Then computationally interesting polyphase matrixes are obtained, which 
become triangle or scalar for the FGW. It is possible to construct FGW on the SGW settings 
and vice versa, but the SGW are so powerful that there is no need for transformation of 
SGW to FGW. The nanotechnology is the reason for improvement of SGW. Namely, 
research of nanostructures needs better characterization of atoms. The third generation 
wavelets (TGW) are proposed in (Xiao 2003, Jiang 2003, Vujovi  et al., 2006a; Vujovi  et al., 
2006b). Wavelets have showed they are unlike numerous techniques which only remain 
popular for a short period of time – and they demonstrated ability to adopt.  
Wavelets have shown great potential and abilities in various technical applications (Šoda, 
2005). Nowadays, they are topical in image processing for on and off-line applications 
(computer vision, robot vision, security systems, etc).  
Object segmentation through human-robot interactions in the frequency domain (Arsenio, 
2003) was based on segmentation of windowed FFT. But, windowed FFT can be easily 
transformed to WT. Segmentation of colour images with fast wavelet transform is presented 
in (Chan et al, 2005). 
Interesting application of wavelets for progressive edge detection and edge defection 
prediction has been developed in the XXI century (Abbas & Alsultanny, 2005). It exploits the 
observation that wavelet decomposition at higher levels degrades the image in the sense of 
leaving almost nothing but edges. However, their progressive and predictive detection is 
based on simple ones. It is not preferable in nowadays science, because everyone tries to 
find more and more complicated methods. Authors of this chapter evoke for such approach 
on many occasions. It is the best when you get satisfactory results with simple and elegant 
methods.  
Compression of data, including image compression, is one of the most outstanding 
applications of wavelets. Some older examples are in references (Heer & Reinfelder, 1990; 
Said & Pearlman, 1996; Calderbank et al., 1997; Akay, 1998). Nowadays, influence of 
wavelets in many compression applications is being researched, i.e. in biomedical imaging 
(Vujovi , 2004; Vujovi  et al, 2003.). Powerful compression possibilities of wavelets have 
been exploited in many applications, off and on-line, for single images and for image 
sequences. Wavelets are incorporated in JPEG-2000 standard as well and security (Boles, 
1998; Grosbois, 2003; Dai & Yuen, 2006). However, their ability in denoising and 
compression often depend on thresholding. Automated methods for thresholding are of 
great interest for wavelets. 
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Wavelet compression ability gave rise to the idea of reverse process using them for 
obtaining higher resolutions. A great interest exists for such superresolution issues in the 
military, security, police, etc., as well as scientific community (Candocia, 1998; Nguyen, 
2000; Bose, 2003; Borman, 2004; Chappalli & Bose, 2005). 
This chapter describes an interesting approach in wavelet usage for image processing. 
Superresolution is used for image enhancement before compression by downsampling. The 
entire process is performed on the wavelet coefficients. 

2. Wavelet generations 

Heisenberg principle is interesting in the time-frequency domain, because it states that there 
is a limitation of measurement for time and frequency at the same time. If we can measure 
time and frequency infinitely precisely, the product of time and frequency is bounded 
according to Heisenberg principle. Actually, Heisenberg states that we can measure only 
time or only frequency with infinite precision. The product of time interval, ∆t, and 
frequency interval, ∆f, is constant. 
This window is area in which it is presumed that amplitude is unchanged (of course, that is 
only a rough approximation in practice, which introduces error). The consequence of such 
window size is the worst resolution of time at high frequencies and the worst resolution of 
frequency at lower frequency range. Wavelet analysis is a multiresolution analysis (MRA): 
rectangles are vertically elongated at high frequencies, which means better time resolution 
and horizontally elongated at low frequencies, which means better frequency resolution. 
This limitation is better described by tiling scheme presented in Fig. 1.  

a)                 b) 
Fig. 1.  Tiling scheme: a) STFT – same window for frequency and time for high and low 
frequency range, b) MRA – windows have the same surface, but different edge lengths 

Once a window has been chosen for the STFT, then the time-frequency resolution is fixed 
over the entire time-frequency plane since the same window is used at all frequencies. To 
overcome the resolution limitations of the STFT one can imagine letting the resolution t
and f vary in time-frequency plane in order to obtain a multiresolution analysis. The 
analysis filter bank is then composed of band pass filters with constant relative bandwidth, 
so called "constant Q-analysis". 
The integral transform is one of the most important tools in signal theory (Mertins, 1999). 
Fourier transform is the best known example, but there are many other transforms, such as 
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Hartley and Hilbert, that can be derived from the integral signal representation. In the 
following, we will briefly outline the basic concept of integral transform. 
The basic idea of an integral representation is to describe a signal x(t), that is integrable in 
Lebesque sense and closed on L2(R), via its density X(s), that is also integrable in Lebesque 
sense and closed on L2(R), with respect to arbitrary kernel (t,s):

)(),()()( 2 RLTtdsstsXtx
S

⊆∈= ϕ  (1) 

Using analogous approach, and denoting (s,t) as reciprocal kernel, the density X(s) can be 
calculates in the form: 

⊆∈=
T

RLSsdttstxsX )(),()()( 2θ  (2) 

By substituting (2) in (1) it can be obtained: 

( ) ( , ) ( , )( )
T S

x s t s ds dx t τ θ τ ϕ τ⋅ ⋅ ⋅=  (3) 

In order to state the condition for the validity of (3) in a relatively simple form the so called 
Dirac impulse  (t) is required. A generalized function x (t) then can be presented as follows: 

( ) ( ) ( )
T

x t x t dτ δ τ τ= ⋅ − ⋅  (4) 

Equations (3) and (4) show that the kernel and reciprocal kernel must satisfy: 

( , ) ( , ) ( )
S

s t s ds tθ τ ϕ δ τ⋅ ⋅ = −  (5) 

Similarly, by substituting (1) in (2), and then applying the same approach as above, implies:  

( , ) ( , ) ( )
S

t s t dt sϕ σ ϕ δ σ⋅ ⋅ = −  (6) 

A special category is that of self-reciprocal kernels. That corresponds with orthonormal 
bases in the discrete case and satisfies: 

( , ) ( , )t s s tϕ θ ∗=  (7) 

 Transforms that contain a self-reciprocal kernel are also called unitary transforms.  
Let x (t) be a real or complex-valued continuous-time signal which is integrable in Lebesque 
sense. For such signals the Fourier transform exists: 

( ) ( ) j tX x t e dtωω
+∞

− ⋅ ⋅

−∞

= ⋅ ⋅  (8) 

Here ω = 2⋅ π ⋅ f and f is the frequency in Hertz. 
If X ( ) is also integrable in Lebesque sense, x (t) can be reconstructed from X ( ) via the 
inverse Fourier transform: 
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1
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+∞
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−∞

= ⋅ ⋅
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The kernel used is: 

1
( , ) ,

2

j tt e Tωϕ ω
π

⋅ ⋅= ∈ −∞ +∞
⋅

 (10) 

and for reciprocal kernel we have 

( , ) ,j tt e Sωθ ϖ − ⋅ ⋅= ∈ −∞ +∞  (11) 

From the equations (10) and (11) it can be seen that trigonometric functions form a basis that 
span the Fourier space. Trigonometric functions satisfy (5), i.e. they form the orthonormal 
basis on Fourier space. Also, the support of trigonometric functions is infinite in the time 
domain, which means that localization in the time is poorly determined, i.e. time resolution 
is poor. Unlike to time domain, in frequency domain Fourier transform gives perfect 
resolution, since trigonometric functions can be described with Dirac impulse. Heisenberg 
principle of uncertainty does apply here too. 
The wavelet transform W (a, b) of a continuous-time signal x (t) is defined as: 

1

2( , ) ( ) ( )
t a

W a b b x t dt
b

ψ
+∞−

∗

−∞

−
= ⋅ ⋅ ⋅  (12) 

Thus, the wavelet transform can be viewed, and is computed, as the inner product of x (t)
and translated and scaled versions of a single function  (t), the so-called wavelet. A wavelet 
function  (t) is a function of zero average. If  (t) is considered to be a bandpass impulse 
response, then the wavelet analysis can be understood as a bandpass analysis. By varying 
scaling parameter b the centre frequency and the bandwidth of the bandpass are influenced. 
The variation of a simple means a translation in time, so for a fixed b the transform (12) can 
be seen as a convolution of x (t) with the time-reversed and scaled wavelet 

1

2( , ) ( ) ( ), ( ) ( )x b b

t
W t b b x t t t

b
ψ ψ ψ

−
∗ −

= ⋅ ∗ =  (13) 

Time and frequency resolution of WT depends of b. For high analysis frequencies, good time 
localization but poor frequency resolution can be achieved. On the other hand, for low 
analysis frequencies, good frequency but poor time resolution can be achieved. When using 
a transform in order to get better insight into the properties of a signal, it should be ensured 
that the signal can be perfectly reconstructed from its representation. Otherwise the 
representation may be completely or partly meaningless. For WT the condition that must be 
met in order to ensure perfect reconstruction is: 

2
( )

C dψ

ψ ω
ω

ω

+∞

−∞

= ⋅ < ∞  (14) 

Where  ( ) denotes FT of the wavelet. This condition is known as the admissibility 
condition for the wavelet  (t).
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Discrete wavelet transform (DWT) is based on multirate filter banks theory. There are two 
possible ways to obtain coefficients of DWT, by applying one of the two MRA algorithms, or 
by sampling CWT coefficients. The following dyadically arranged sampling points are used: 

2 , 2m m

m mn mb a b n T n T= = ⋅ ⋅ = ⋅ ⋅  (15) 

This yields the values Wx (amn, bm) =Wx (2mnT, 2m). Furthermore, 

1
22( ) ( ) 2 (2 )
m

mmn
mn m

m

t a
t b t nT

b
ψ ψ ψ

−−
−−

= ⋅ = ⋅ ⋅ −  (16) 

Finally, (12) becomes: 

( , ) (2 ,2 ) ,m m

x mn m x mnW a b W nT xψ= =  (17) 

The values {Wx (2mnT,2m), m,n ∈ R} form the representation of x (t) with the respect to the 
wavelet  (t) and the chosen grid. We cannot assume that any set mn(t), m, n ∈ R allows 
reconstruction of all signals x(t) ∈ L2(R). For this a dual set )(~

, tnmψ , m, n ∈ R must exist, and 

both set must span L2 (R), any x(t) ∈ L2(R) can be written as: 

( ) , ( )mn mn

m n

x t x tψ ψ
∞ ∞

=−∞ =−∞

= ⋅  (18) 

Alternatively, x(t) can be written: 

( ) , ( )mn mn

m n

x t x tψ ψ
∞ ∞

=−∞ =−∞

= ⋅  (19) 

For a given wavelet (t), the possibility of perfect reconstruction is dependent on the 
sampling interval T. If T is chosen very small i.e. we have oversampling, the values 
{Wx(2mnT,2m), m,n ∈ R} are highly redundant, and reconstruction is very easy. Then the 
functions mn(t), m, n ∈ R are linearly dependent, and an infinite number of dual sets ( )mn tψ

exists. The question of whether a dual set ( )mn tψ exists at all can be answered by checking 

two frame bounds A and B. It can be shown that the existence of a dual set and the 
completeness are guaranteed if the stability condition: 

22 2
, mn

m n

A x x B xψ
∞ ∞

=−∞ =−∞

⋅ ≤ ≤ ⋅  (20) 

with the frame bounds 0 A B< ≤ < ∞  is satisfied (Mertins, 1999). The higher the frame 
bounds are, the smaller is the reconstruction error. In the case of a tight frame, A = B, perfect 
reconstruction with ( ) ( )mn mnt tψ ψ= is possible. With MRA and wavelets resolution is 

degraded or enhanced by necessity. MRA trades off between both resolutions.  
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a)      b) 

Fig. 2. a) Interaction of the single pixel to the neighbours, b) interaction between two pixels 

When talking about images, WT is two-dimensional. The error in image analysis begins 
with digitalization. Namely, in sensors. Sensors are not continuous. They are usually CCD 
arrays. The basic starting point is that light has the same frequency and amplitude over a 
single CCD cell. It is not true. However, it is often a good enough approximation. To obtain 
better image quality, more details must be obtained by some form of interpolation method.  
Interpolation method can be primitive and simple or more sophisticated. Transition from a 
low-resolution image to a more detailed (high resolution image) does not depend only on 
the observed pixel, but also on its neighbouring pixels. But how can the neighbouring pixels 
be accounted for? I.e. are the pixels in diagonal positions less influenced by the observed 
pixel and vice versa? The solution is in introduction of weights for pixels. If this is 
performed on FGW coefficients we call the product “intuitive wavelets”: 

kjkj ddtttxbabaW ,, )()(),(),( =⋅≅ ∗ψρ   (21) 

where ρ(a, b) is the weight function. Observe that if ρ(x, y) is the weight of the pixel, then 
this is propagating through WT into ρ(a, b), because the weight function is just a set of 
constants. Introduction of weights can be interpreted as primitive type of SGW. Therefore it 
can be said that this is the SGW on the FGW settings. However, SGW can be introduced for 
discrete signal and linear filters, which perform perfect reconstruction in z-domain.  
Polyphase representation of signal X(z) = Xp(z2) + z-1Xn (z2) where Xp i Xn even and odd 
samples of the signal x and can be written as:  

[ ] and2)( −=
k

k

p zkxzX [ ] −+=
k

k

n zkxzX 12)(

The final result is the polyphase matrix of the system: 

=
)()(

)()(
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zGzH

zGzH
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nn

pp   (22) 

In simulations and numerical experiments, the result is the estimated matrix P
~

and the error 
P - P

~
has to be minimized. Filtering is directly performed on either even or odd samples, 

which breaks down number of operations by factor 2. 



Vision Systems - Segmentation and Pattern Recognition 250

Fig. 3. Perfect reconstruction in Z-domain

The authors propose that FGW and SGW pass the morphology preprocessing in order to 
emphasize edges. Wavelet coefficients obtained by that manner can be called the third 
generation wavelets (TGW). This will facilitate further enhancement in different 
applications. An algorithm for TGW is proposed in (Vujovi , Kuzmani  & Vujovi , 2006a), 
but it is not the only way. When talking about TGW, another possibility can be to enhance 
wavelet coefficient matrixes by i.e. motion field. If stationary image is processed, then quasi-
superresolution has to be used. 

3. Flexible algorithm 

Many algorithms for edge detection, segmentation or compression exist. Some of them are 
based on wavelets. However, wavelets have some properties which can be used for different 
operations. The proposed algorithm exploits these properties. 

3.1. Wavelet motion field 

Let us consider an image sequence I(pi, t) with pi = (xi, yi) ∈ Ω the location of each pixel in 
the image. The brightness constancy assumption states that the image brightness I(pi, t+1) is 
a simple deformation of the image at time t: 

 I(pi, t) = I(pi + v(pi), t + 1)   (23) 

where v(pi, t) = (u, v) is the optical flow between I(pi, t) and I(pi, t+1). This velocity field can 
be globally modelled as a coarse-to-fine 2D wavelet series expansion from scale L to l (Bruno 
& Pellerin, 2002): 
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where
21 ,, kkLΦ (pi) is the 2D scaling function at scale L and H

kkj 21 ,,Ψ , V

kkj 21 ,,Ψ , D

kkj 21 ,,Ψ are wavelet 

functions which represent horizontal, diagonal and vertical directions. These functions are 
dilated by 2j and shifted by k1 and k2. The solution can be found by usage of some error 
function and minimization, i.e. (Bruno & Pellerin, 2002; Bruno & Pellerin, 2001): 
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and the motion wavelet coefficient vector, θ, is calculated by: 

)(minarg Eθθ =   (26) 

Once motion wavelet coefficients have been estimated for each frame fi of a sequence S
containing M frames, anyone can obtain a feature space spanned by the motion feature 
vectors θi, i = 1, ... M. To temporally segment the feature spaces Ωseg (spanned by θseg), 
(Bruno & Pellerin, 2002) consider a hierarchical classification with a temporal connexity 
constraint. 
Another approach is only formally different (Wu et al, 1998). Approximation of motion 
vector, θ = [u(x,y)  v (x,y)]T, by using two-dimensional basis functions, is a natural extension 
of one-dimensional to two-dimensional basis functions of the tensor product. Accordingly, 
the two-dimensional basis functions are: 

)()(),( 21,,0 21
kykxyxkk −−=Φ φφ   (27) 
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kkj −−=Ψ φψ   (29) 
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kykxyx jjD

kkj −−=Ψ ψψ   (30) 

where the subscripts j, k1 and k2 represent the resolution scale, horizontal and vertical 
translations and the upper subscript H, V and D represent the horizontal, vertical and 
diagonal directions. Two dimensional motion vector can be expressed in terms of linear 
combinations of coarsest-scale function (13) and horizontal, vertical and diagonal wavelets 
(14 - 16) in finer levels. Motion vectors are (Wu, 1998): 
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where uj in all directions is expressed as: 
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v-1 and vi are calculated analogly. Maximum likehood estimates [u(x, y) v(x, y)]T are 
obtained by minimizing: 
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Equations (31 – 35) are easier for implementation than (23 – 26). They can be approximated 
as differences of neighbouring approximation, diagonal, vertical and horizontal coefficients. 
This approximation is used in quasi-superresolution algorithm (Vujovi  et al., 2006a; 
Vujovi  et al., 2006b). 

3.2. Superresolution and quasi-superresolution 

Superresolution includes restoration as a special case. The restoration equation can be 
rewritten within the superresolution framework as (Nguyen & Milanfar, 2000): 

 fk = DCkEkx + nk = Hkx + nk  (36) 

where p is the number of available frames and 1 ≤ k ≤ p, fk is an N x 1 vector representing 
the kth m x n LR image in columnwise order. If l is the resolution enhancement factor in each 
direction, x is an l2N x l vector representing the lm x ln HR image in columnwise order, Ek is 
an l2N x l2N warping matrix that represents the relative motion between frame k and a 
reference frame, Ck is a blur matrix of size l2N x l2N, D is the N x l2N uniform down-
sampling matrix, and nk is the N x 1 vector representing additive noise. Particularly in case 
of quasi-superresolution, only one image is available (k = 1). Than, superresolution problem 
can be replaced with filtering and (36) transforms to: 

  f = DCEx + n = Hx + n   (37) 

Since, only in ideal case n = 0, (37) means that HR image is “less clear”, which is totally 
subjective description. 

3.3. Algorithm flow 

The input image can be processed by morphology operations, but it is optional (block 1 in 
Fig. 4). 
Noise reduction is in the nature of WT, so it is not included in the algorithm. It is also 
possible to combine the original and processed image. Then it must be chosen which 
transformation to use (filter or lifting approach). WT is performed between blocks 3 and 4.  
Thresholding can be performed if necessary as the preprocessing for the compression or 
simple for denoising. This option can be performed automatically or manual. Next step is to 
enhance image incorporating wavelet motion field. When dealing with stationary stand 
alone image (i.e. in biomedical diagnostic images such as X-rays), motion field calculation is 
performed in quasi-superresolution manner (Vujovi  et al, 2006a). This is relative “motion” 
between wavelet coefficients. In on-line sequences quasi-superresolution can be performed 
when higher image resolution is necessary and motion can be resolved in some other way if 
someone do not prefer wavelet motion field. Then we can perform what we need. Edges are 
obtained by adding all four motion matrixes obtained in quasi-superresolution manner. 
When approximation is down-sampled several times and reducing number of colours edges 
can be pointed out as well. When subtraction of motion matrixes from the enhanced original 
(previous steps) is performed, a good segmentation is obtained. If enhanced original is put 
through quasi-superresolution algorithm, HR image can be obtained.  
Compression of images can be performed with or without reconstruction at HR grid. 
Compression can be obtained by thresholding of wavelet coefficients or by downsampling 
of wavelet coefficients. Multiple downsampling is proven to be useful for compression 
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(Vujovi , 2004) in case study about pulmonary X-rays, when downsampling is performed 6 
to 12 times without influence to the medical diagnosis. Of course, it is not generalized. 

Input image

Lifting wavelet 
    transform

Thresholding

Motion field in 
wavelet domain

Reconstruction 
   at HR grid

Morphology (for 
better segmentation)

Discrete FGW 
    transform

Compression from LR

Compression 
from HR

      Multiple 
downsampling

Output data

Segmented 
    image

Edges

1

2

3

4

5

6

7

8

9

Fig. 4. Flexible algorithm for wavelet segmentation, edge detection and compression 

4. Results 

Times of execution depend from computer to the computer, so it is very difficult to 
compare. We executed algorithm on NEC notebook with Athlon XP-M AMD processor with 
1.67 [GHz] and 480 [MB] RAM size with Windows XP operating system. Hard disk is half 
full and Norton Antivirus is active.  
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Fig. 5. Motion field execution on wavelet coefficients in stand alone image with quasi-
superresolution reconstruction to HR grid 

Type of wavelets 
(Matlab

designation)

Time of execution 
of

filtered WT [s] 

Time of execution 
of

lifted WT [s] 

Improvement in 
percentage [%] 

bior1.3 12.768 11.978 6.18 
rbio1.3 12.598 12.528 0.55 

haar 12.128 11.536 4.88 

Table 1. Comparison of wavelet quasi-superresolution execution time 

Fig. 5 to 12 shows some of the results. Figures are chosen to open discussion. There are 
better and worse examples. 

Fig. 6. Reconstruction after wavelet motion field for FGW haar 
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Fig 7. Simple edge detection by usage of only motion field vectors without the original from 
downsampled approximation coefficients 

a)



Vision Systems - Segmentation and Pattern Recognition 256

b)

c)
Fig. 8. A robot perspective: a) original image, b) edge detection by wavelet motion vectors 
with the original colour map, c) edge detection by wavelet motion vectors with the 
increased number of colours 
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a)

b)
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c)
Fig. 9. a) Classic zoom of the approximation, b) quasi-superresolution on approximation 
with FGW, c) quasi-superresolution on approximation by SGW 

a)
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b)

c)
Fig. 10. Addition of motion fields in all directions subtracted from the approximation at the 
first level: a) robot’s view, b) lifting WT, db2, c) lazy wavelet 
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a)

b)
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c)
Fig. 11. Image reconstructed from: a) down-sampled original (motion-vector enhanced 
before), coefficients were not up-sampled (IDWT, db2), b) twice down-sampled original 
(motion-vector enhanced), not up-sampled coefficients (IDWT, db2), c) twice down-sampled 
original (motion-vector enhanced) and not up-sampled coefficients before (ILWT, db2)  

a)     b) 
Fig. 12. a) Original image, b) wavelet motion field edge detection 

5. Example in medical imaging (Vision system for X-rays) 

One of applications of vision systems is in medicine. Every modern hospital has Hospital 
Information System (HIS) or Picture Archiving and Compression System (PACS) at least in 
rudimental way. Telemedicine is old news. Our research started with compression of 
pulmonary X-rays for asbestosis infected patients. The problem was how to compress 
images without changing the diagnosis. In (Vujovi , 2004) the goal is reached for lossy 
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compression by down-sampling. Images were degraded in quality, but diagnostic value is 
preserved. Compression ratio obtained was 1:128 or higher (depending on type of wavelets).  
This was confirmed by three independent medical experts, as required by International 
Labour Organization. 

a)

    
b)
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c)
Fig. 13. a) Original X-ray of randomly chosen patient, b) motion field in wavelet domain 
(quasi- superresolution), c) approximation coefficients 

Fig. 13.a shows original of randomly chosen patient. In Fig. 13.b motion-field enhanced, 
quasi-superresolution image is shown. Fig. 13.c shows approximation coefficients. Fig. 14. 
shows results on compression for wavelet motion field enhanced X-rays. Compression ratio 
for lossless compression is 1 : 8.0211 in Fig. 14.d and 1 : 4.0189 for Fig. 14.c. 
Superresolution and quasi-superresolution are, in nature, processes of obtaining higher 
resolutions and more details. The question in this case is what do the new details mean. Can 
it be beginning useful in prevention of diseases by early diagnosis (when medical experts 
still can not see the illness)? Or is it a cause of error, because the new details do not mean 
illness. The new details could be only math creation without meaning in nature. Which of 
this is true? The second danger is in thresholding, because small shadows (which mean 
illness) can be deleted if not carefully used.  Medical diagnosis is not changed in such 
compression as illustrated. 



Vision Systems - Segmentation and Pattern Recognition 264

a)

b)
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c)

d)
Fig. 14. a) Original X-ray, b) image down-sampled two times after wavelet motion field 
enhancement , c) image down-sampled three times after wavelet motion field enhancement, 
d) image down-sampled four times after wavelet motion field enhancement 

6. Conclusion 

Wavelets have evolved over years. FGW and SGW are still used and they are applied in 
more and more areas of research. Proposed algorithm is flexible, because of many options 
which can be used. It can be simple, but also complex. Disadvantage of many image 
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processing algorithms is that they do not give the same results on every class of images. So, 
they are not generalized. This algorithm has the same fate. It gives the best results for 
pulmonary X-rays with gray scale.
Time of execution is with active Norton Antivirus in Windows and Matlab with half-full 
hard disk. It would be considerable faster if it is executable stand alone application isolated 
and without antivirus application. There are a lot of programming solutions to make faster 
the algorithm. Since it is still in developing phase, we had the main interest in operation 
algorithm. Further work should include improvement of execution time. 
Potential area of application is biomedical imaging, because there is no need to take care of 
execution time. However, it could be used in virtual reality systems and systems of 
augmented reality. This is possible, because it is not necessary to execute the algorithm in 
real-time all the time. Algorithm can be performed occasionally, i.e. when scene is changed. 
In the meantime, only differences in frames can be processed. This can be improved by 
choosing only limited regions of interest for processing. 
It is important not to mix up motion field in an image sequence and in a stationary image. 
Motion field in the image sequence is defined as in section 3.1. Motion field in the stationary 
image is without sense, because there are no two frames to look for motions. However,  
quasi-superresolution states that we can find motion between neighbouring wavelet 
coefficients. So, this motion does not correspond to real motion in the observed scene. This is 
a novel idea, which helps in i.e. medical imaging, finger print analysis, human iris 
recognition, face recognition, etc. Fig. 12. shows potential of wavelet motion vectors in edge 
detection. Further research should be inclusion of colours and colour segmentation. 
Vision systems in medicine must be carefully used, because of misdiagnosis danger. I.e. in 
superresolution, when an un-seen detail shows up, it could mean that illness is discovered 
before medical expert could see it. But, it can be a false positive. If a vision system is used 
instead, the system must be checked by medical experts for any possible case. The algorithm 
could be incorporated in computer hardware and sell as medical vision system. It has to be 
checked by appropriate bodies in different countries before. 
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