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1. Introduction 

Mobile communication devices have become a basic need for people today. Mobile devices 
are used by all people regardless of the race, age or nationality of the person. For this reason, 
the total number of mobile communication devices sold was almost 1.6 billion units 
worldwide during 2010 (Gartner Inc., 2011). Manufacturability and the level of quality of 
devices need to be taken into account at the early stages of design in order to enable a high 
volume of production with a high yield. 

It is a common and cross-functional task for each area of technology to build the required level 
of quality into the end product. For effective communication between parties, a common 
quality language is needed and process capability indices are widely used for this purpose. 

The basis for the quality is designed into the device during the system specification phase 

and it is mainly implemented during the product implementation phase. The quality level is 

designed in by specifying design parameters, target levels for the parameters and the 

appropriate specification limits for each parameter. The quality level of the end product 

during the manufacturing phase needs to be estimated with a limited number of 

measurement results from prototype devices during the product development phase. 

Statistical methods are used for this estimation purpose. A prototype production may be 

considered to be a short-term production compared to the life cycle of the end product and a 

long-term performance process is estimated based on the short-term production data. Even 

though statistical process control (SPC) methods are widely used in high volume 

production, the production process may vary within statistical control limits without being 

out of the control leading product to product variation between product parameters.  

Easy to use statistical process models are needed to model long-term process performance 

during the research and development (R&D) phase of the device. Higher quality levels for 

the end product may be expected, if the long-term variation of the manufacturing process is 

taken into account more easily during the specification phase of the product’s parameters.  

2. Product development process 

An overview of a product development process is shown in Figure 1 (based on Leinonen, 
2002). The required characteristics of a device may be defined based on a market and 
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competitor analyses. A product definition phase is a cross-functional task where marketing 
and the quality department and technology areas together define and specify the main 
functions and target quality levels for features of the device. A product design phase 
includes system engineering and the actual product development of the device. The main 
parameters for each area of technology as well as the specification limits for them are 
defined during the system engineering phase. The specification limits may be ‘hard’ limits 
which cannot be changed from design to design, for example governmental rulings (e.g., 
Federal Communications Commission, FCC) or standardisation requirements (e.g., 3GPP 
specifications) or ‘soft’ limits, which may be defined by the system engineering team. 

Customer & Market Needs
Market segmentation

Product Definition
Multi-discipline work

Product Design
System design
Design implementation

Design testing
Prototype testing
Reliability testing

Design reviews:
- Check for all processes & stds.
- Product definition
- Design standards
- Testing Analysis
- Quality Requirements

Manufacturing Process
- Quality assurance e.g.
Statistical process control

Selling & Delivery

Competition Analysis
Minimum Product Requirements Design Standards

- Standardization requirements
(electronic, mechanical…)
- Standard product requirements
- Product reliability / quality requirements
- Approved/Certified parts
- Experience from previous designs
- Design of Experiment
- Failure mode & Effect Analysis
- Design for Manufacturability

 

Fig. 1. An overview of a product development process 

The main decisions for the quality level of the end product are done during the system 
engineering and product design phases. Product testing is a supporting function which 
ensures that the selections and implementations have been done correctly during the 
implementation phase of the development process. The quality level of the end product 
needs to be estimated based on the test results prior to the design review phase, where the 
maturity and the quality of the product is reviewed prior the mass production phase. New 
design and prototype rounds are needed until the estimated quality level reaches the 
required level. Statistical measures are tracked and stored during the manufacturing phase 
of the product and those measures are used as a feedback and as an input for the next 
product development. 

2.1 Process capability indices during the product development 

An origin of process capability indices is in the manufacturing industry where the 
performance of manufacturing has been observed with time series plots and statistical 
process control charts since 1930s. The control charts are useful for controlling and 
monitoring production, but for the management level a raw control data is too detailed and 
thus a simpler metric is needed. Process capability indices were developed for this purpose 
and the first metric was introduced in early 1970s. Since then, numerous process capability 
indices are presented for univariate (more than twenty) and multivariate (about ten) 
purposes (Kotz & Johnson, 2002). The most commonly used process capability indices are 
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still Cp and Cpk which are widely used within the automotive - an electrical component - the 
telecommunication and mobile device industries. An overview of the use of process 
capability indices for quality improvement during the manufacturing process (based on 
Albing, 2008; Breyfogle 1999) is presented in Figure 2. 

Identify a important parameter
Plan the study

Establish statistical control,
Gather data

Initiate the improvement actions

Assess the capability of the process
 

Fig. 2. An improvement process for production related parameters 

The usage of process capability indices has been extended from the manufacturing industry 
to the product development phase, where the improvement of the quality level during 
product development needs to be monitored, and process capability indices are used for this 
purpose. The main product development phases, where product capability indices are used, 
are shown in Figure 3. 

Collect data from a mass production

A new project definitionA data from a pilot production

Implementation of Design
Testing of prototype devices

System design phase e.g.
Tolerance analysis

 

Fig. 3. Product development steps where process capability indices are actively used 

An advantage of process capability indices is that they are unitless, which provides the 
possibility of comparing the quality levels of different technology areas to each other during 
the development phase of the mobile device, for the example mechanical properties of the 
device may be compared to radio performance parameters. Additionally, process capability 
indices are used as a metric for quality level improvement during the development process 
of the device. The following are examples of how process capability indices may be used 
during the product development phase: 

 A common quality level tool between R&D teams during the product definition phase 
and business-to-business discussions 

 An estimate for the expected quality level of the end product during the R&D phase 
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 A robustness indicator of design during the R&D phase and product testing 

 A decision-making tool of the quality level during design reviews 

 A process capability indicator during the mass production phase 

 A tool to follow the production quality for quality assurance purposes 

Process capability indices can be calculated with some statistical properties of data regardless 
of the shape of a data distribution. The shape of the data needs to be taken into account if the 
product capability index is mapped to an expected quality level of the end product. Typically, 
normal distributed data is assumed for simplicity, but in real life applications a normality 
assumption is rarely available, at least in radio engineering applications. One possibility to 
overcome the non-normality of the data is to transform the data closer to the normal 
distribution and to calculate the process capability indices for the normalised data (Breyfogle, 
1999); however, this normalisation is not effective for all datasets. An alternative method is to 
calculate the process capability indices based on the probability outside of the specification 
limits and to calculate the process capability index backwards. 

2.2 RF system engineering during the product development 

RF (Radio Frequency) engineering develops circuitries which are used for wireless 

communication purposes. RF system engineering is responsible for selecting the appropriate 

RF architectures and defining the functional blocks for RF implementations. System 

engineering is responsible for deriving the block level requirements of each RF block based 

on specific wireless system requirements, e.g., GSM or WCDMA standards and regulatory 

requirements such as FCC requirements for unwanted radio frequency transmissions. 

RF system level studies include RF performance analyses with typical component values as 

well as statistical analyses with minimum and maximum values of components. The 

statistical analyses may be done with statistical software packages or with RF simulators in 

order to optimise performance and select the optimal typical values of components for a 

maximal quality level. RF block level analyses with process capability indices are studied in 

Leinonen (1996) and a design optimisation with process capability contour plots and process 

capability indices in Wizmuller (1998). Most of the studied RF parameters are one-

dimensional parameters which are studied and optimised simultaneously, such as the 

sensitivity of a receiver, the linearity of a receiver and the noise figure of a receiver. 

Some product parameters are multidimensional or cross-functional and need a 
multidimensional approach. A multiradio operation is an example of a multidimensional 
radio parameter, which requires multidimensional optimisation and cross-technology 
communication. The requirements for the multiradio operation and interoperability need to 
be agreed as a cross-functional work covering stake holders from product marketing, system 
engineering, radio engineering, testing engineering and the quality department. The 
requirement for multiradio interoperability - from the radio engineering point of view - is a 
probability when the transmission of the first radio interferes with the reception of a second 
radio. The probability may be considered as a quality level, which may be communicated 
with a process capability index value and which may be monitored during the development 
process of the device. A multiradio interoperability (IOP) may be presented with a two-
dimensional figure, which is shown in Figure 4 (based on Leinonen, 2010a). Interference is 
present if the signal condition is within an IOP problem area. The probability of when this 
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situation may occur can be calculated with a two dimensional integral, which includes the 
probabilities of radio signals and a threshold value. The actual threshold value for the 
transmission signal level is dependent on - for example - an interference generation 
mechanism, an interference tolerance of the victim radio and the activity periods of radios. 

f(x)

Minimum 
transmission level

Minimum
reception level

Maximum
reception level

Maximum
transmission level

Multiradio
interoperability OKf(y)

IOP
Problem

 

Fig. 4. Illustration of multiradio interoperability from the RF system engineering point of view 

3. Overview of process capability indices 

Process capability indices are widely used across different fields of industry as a metric of 
the quality level of products (Breyfogle, 1999). In general, process capability indices describe 
a location of a mean value of a parameter within specification limits. The specification limits 
can be ‘hard’ limits, which cannot be changed from product to product, or ‘soft’ limits, 
which are defined during the system engineering phase based on the mass production data 
of previous or available components, or else the limits are defined based on numerical 
calculations or simulations. 

The most commonly used process capability indices within industry are so-called ‘first 
generation’ process capability indices Cp and Cpk. The Cp index is (Kotz S. & Johnson, 1993) 

 
6

p

USL LSL
C




 , (1) 

where USL is an upper specification limit and LSL is a lower specification limit, and σ is a 

standard deviation unit of a studied parameter. Cpk also takes the location of the parameter 

into account and it is defined (Kotz S. & Johnson, 1993) 

 min ,
3 3

pk

USL LSL
C

 
 
    

 
, (2) 

where μ is a mean value of the parameter. The process capability index Cpk value may be 

converted to an expected yield with a one-sided specification limit (Kotz S. & Johnson, 1993) 

 
 Yield 3 pk  C

, 
(3)
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where Φ is a cumulative probability function of a standardised normal distribution. A 
probability outside of the specification limit is one minus the yield, which is considered to 
be a quality level. A classification of process capability indices and expected quality levels 
are summarised in Table 1 (Pearn and Chen, 1999; Leinonen, 2002). The target level for Cpk 
in high volume production is higher than 1.5, which corresponds to a quality level of 3.4 
dpm (defects per million) 

Acceptable level Cpk value Low limit  High limit 
Poor 0.00  Cpk < 0.50 500000 dpm 66800 dpm 

Inadequate 0.50  Cpk < 1.00 66800 dpm 1350 dpm 

Capable 1.00  Cpk < 1.33 1350 dpm 32 dpm 

Satisfactory 1.33  Cpk < 1.50 32 dpm 3.4 dpm 

Excellent 1.50  Cpk < 2.00 3.4 dpm 9.9*10-4 dpm 

Super  Cpk  2.00 9.9*10-4 dpm  

Table 1. A classification of the process capability index values and expected quality level 

The Cpk definition in equation 2 is based on the mean value and the variation of the data, but 
alternatively the Cpk may be defined as an expected quality level (Kotz S. & Johnson, 1993)  

  -1
pk

1

3
C    , (4) 

where γ is the expected proportion of non-conformance units.  

Data following a normal distribution is rarely available in real life applications. In many 
cases, the data distribution is skewed due to a physical phenomenon of the analysed 
parameter. The process capability analysis and the expected quality level will match each 
other if the shape of the probability density function of the parameter is known and a 
statistical analysis is done based on the distribution. The process capability index Cpk has 
been defined for non-normally distributed data with a percentile approach, which has now 
been standardised by the ISO (International Standardisation Organisation) as their 
definition of the Cpk index. The definition of Cpk with percentiles is (Clements, 1989) 

 USL-M M-LSL
min ,

M Mp p

    
   

pkC
U L

, (5) 

where M is a median value, Up is a 99.865 percentile and Lp is a 0.135 percentile. 

A decision tree for selecting an approach to the process capability analysis is proposed in 
Figure 5. The decision tree is based on the experience of the application of process capability 
indices to various real life implementations. The first selection is whether the analysed data 
is a one-dimensional or a multidimensional. Most of the studied engineering applications 
have been one-dimensional, but the data is rarely normally distributed. A transform 
function, such as a Cox-Box or a Johnson transformation, may be applied to the data to 
convert the data so as to resemble a normal distribution. If the data is normally distributed, 
then the results based on equations 2 and 3 will match each other. If a probability density 
function of the parameter is known, then the process capability analysis should be done 
with the known distribution. Applications for this approach are discussed in Chapter 4. The 
process capability analysis based on equation 5 is preferred for most real-life applications.  
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In general, the analysis of multidimensional data is more difficult than one-dimensional 
data. A correlation of the data will have an effect to the analysis in the multidimensional 
case. The correlation of the data will change the shape and the direction of the data 
distribution so that the expected quality level and calculated process capability index do not 
match one another. A definition of a specification region for multidimensional data is 
typically a multidimensional cube, but it may alternatively also be a multidimensional 
sphere, which is analysed in Leinonen (2010b). The process capability analysis may be done 
with analytical calculus or  numerical integration of multidimensional data, if the 
multidimensional data is normally distributed (which is rarely the case). Transformation 
functions are not used for non-normally distributed multidimensional data. A numerical 
integration approach for process capability analysis may be possible for non-distributed 
multidimensional data but it may be difficult with real life data. A Monte Carlo simulation-
based approach has been preferred for non-normally distributed multidimensional data. 
The process capability analysis has been done based on equation 3, where simulated 
probability out of the specification region is converted to a corresponding Cpk value. The 
Monte Carlo simulations are done with computers, either with mathematical or spread sheet 
software based on the properties of the statistical distribution of the data. 

Process performance indices Pp and Ppk are defined in a manner similar to the process 

capability indices Cp and Cpk, but the definition of the variation is different. Pp and Ppk are 

defined with a long-term variation while Cp and Cpk are defined with a short-term variation 
(Harry & Schroeder, 2000). Both the short-term and the long-term variations can be 

distinguished from each other by using statistical control charts with a rational sub-grouping 
of the data in a time domain. The short-term variation is a variation within a sub-group and 

the long-term variation sums up short-term variations of sub-groups and a variation between 
sub-group mean values, which may happen over time. Many organisations do distinguish 

between Cpk and Ppk due to similar definitions of the indices (Breyfogle, 1999). 

Process/Design Capability analysis for continuous data

One-dimensional data

Normal distributed

- Normal 
distribution 
Cpk analysis

Data Normalization

Non-normal distributed

- Cpk analysis with a
known distribution
- Clements's method

Normal distributed Non-Normally distributed

Uncorrelated data

Multi-dimensional data

- Multidimensional Cpk analysis
- Numerical or Simulation based 
analysis
- out of spec. based Cpk

Correlated data

Normal distributed

- Numerical or Simulation 
based analysis
- out of spec. based Cpk

 

Fig. 5. Process capability analysis selection tree 

3.1 Statistical process models for manufacturability analysis 

An overview of the usage of process capability analyses during the product development 
process is shown in Figure 6. Data from a pilot production is analysed in R&D for 
development purposes. These process capability indices provide information about the 
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maturity level of the design and the potential quality level of the design. The pilot 
production data may be considered as a short-term variation of the device as compared with 
a mass production (Uusitalo, 2000). Statistical process models for sub-group changes during 
a mass production process are needed in order to estimate long-term process performance 
based on the pilot production data. A basic assumption is that the manufacturing process is 
under statistical process control, which is mandatory for high volume device production. A 
mean value and a variation of the parameters are studied during mass production. The 
mean values of parameters change over time, since even if the process is under statistical 
process control, statistical process control charts allow the process to fluctuate between the 
control limits of the charts. 

Process performance 
index estimation

Actual Process performance index

Statistical long-term 
process modelling

Process capability
index estimation

A pilot production 
and production data 

A mass production
and production data

Research and development 

Manufacturing

A design of device

 

Fig. 6. Long-term process performance estimation during product development 

An ideal process is presented in Figure 7, where the mean value and the variation of the 
process are static without a fluctuation over time. There are some fluctuations in real life 
processes and those are controlled by means of statistical process control. SPC methods are 
based on a periodic sampling of the process, and the samples are called sub-groups. The 
frequency of sampling and the number of samples within the sub-group are process-
dependent parameters. The size of the sub-group is considered to be five in this study, 
which has been used in industrial applications and in a Six Sigma process definition. The 
size of sub-group defines control limits for the mean value and the standard deviation of the 
process. The mean value of sub-groups may change within +/- 1.5 standard deviation units 
around the target value without the process being out of control with a sub-group size of 
five. The variation of the process may change up to an upper process control limit (B4) 
which is 2.089 with a sub-group size of five. 

The second process model presented in Figure 8 is called a Six Sigma community process 
model. If the mean value of the process shifts from a target value, the mean will shift 1.5 
standard deviation units towards the closer specification limit and the mean value will stay 
there. The variation of the process is a constant over time in the Six Sigma process model, 
but it is varied with a normal and a uniform distribution in Chapter 3.2. 

The mean value of the process varies over time within control limits, but the variation is a 

constant in the third process model presented in Figure 9. The variation of the mean value 

within the control limits is modelled with a normal and a uniform distribution.  

The mean value and the variation of the process are varied in the fourth process model 
presented in Figure 10. The changes of the mean value and the variation of sub-groups may 
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be modelled with both a normal and a uniform distribution. The normal distribution is the 
most common distribution for modelling a random variation. For example, tool wear in the 
mechanical industry produces a uniform mean value shift of the process over time. 

A short-term process deviation is calculated from the ranges of sub-group and a long-term 
variation is calculated with a pooled standard deviation method over all sub-groups 
(Montgomery, 1991). If the number of samples of the sub-group is small - i.e., less than 10 - 
the range method in deviation estimation is preferred due to the robustness of outlier 
observations (Bissell, 1990). For control chart creation, 20 to 25 sub-groups are 
recommended (Lu & Rudy, 2002). It is easier and safer to use a pooled standard deviation 
method for all the data in an R&D environment for the standard deviation estimation to 
overcome time and order aspects of the data. 

...

Grand average

-1.5 short-term deviation units

-3.0 short-term deviation units

Sub-group 1 Sub-group N

Total data
Population

+3.0 short-term deviation units

+1.5 short-term deviation units

Long-term parameter
deviation 

Time

Parameter value

 

Fig. 7. An ideal process model without mean or deviation changes 

...

Grand average

-1.5 short-term deviation units

-3.0 short-term deviation units

Sub-group 1 Sub-group N

Total data
Population

+3.0 short-term deviation units

+1.5 short-term deviation units

Long-term parameter
deviation 

Time

Parameter value

 

Fig. 8. A Six Sigma process model with a constant mean value shift of sub-groups 

...

Grand average

-1.5 short-term deviation units

-3.0 short-term deviation units

Sub-group 1 Sub-group N
Total data
Population

+3.0 short-term deviation units

+1.5 short-term deviation units

Long-term parameter
deviation 

Time
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Fig. 9. A process model with a variable mean value and a constant variation of sub-groups 
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Fig. 10. A process model with a variable mean value shift and variations of sub-groups 

3.2 Process model effect to one-dimensional process performance index 

Long-term process performance may be estimated based on short-term process capability 

with a statistical process model. The easiest model is a constant shift model, which is 

presented in Figure 8. The mean value of sub-groups is shifted with 1.5 deviation units with 

a constant variation. The process performance index is (Breyfogle, 1999)  

 min 0.5, 0.5
3 3

pk

USL LSL 
 
     

 
P ,  (6) 

where σ is a short-term standard deviation unit.  

A constant variation within sub-groups with a varied mean value of sub-groups is presented 

in Figure 9. It is assumed that the variation of the mean value of sub-groups is a random 

process. If the variation is modelled with a uniform distribution within statistical control limits 

(+/- 1.5 standard deviation units), then long-term process standard deviation is 

 
  2

2 2
Long term

1.5 1.5 7
1.330

12 2
    

 
      (7) 

and a corresponding long-term process performance index Ppk is 

 min , min ,
3 1.330 3 1.330 3.99 3.99

pk

USL LSL USL LSL   
   

              
P . (8) 

The second process model for the variation of the mean values of the sub-groups of the 

process presented in Figure 9 is a normal distribution. The process is modelled so that the 

process control limits are assumed to be natural process limits or the process is within the 

control limits with a 99.73% probability. Thus, the standard deviation of the mean drift is 0.5 

standard deviation units and the total long-term deviation with normal distributed sub-

group mean variation is 

  22
long term 0.5 1 0.25 1.118          (9) 

A corresponding long-term process performance index Ppk is 
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  min , min ,
3 1.118 3 1.118 3.35 3.35

pk

USL LSL USL LSL   
   

              
P . (10) 

The effects of the process models to the process performance indices are summarised in 
Figure 11. The Six Sigma process is defined in that the process capability 2.0 corresponds 
with the process performance 1.5. The same relationship for process capability 2.0 can be 
seen if the sub-group means are varied with a uniform distribution. If the process capability 
is less than 2.0, then the process performance index based on a normal distribution model is 
clearly higher than with other process models. This may be taken into account when 
specification limits are defined for the components during the R&D phase. A tolerance 
reserved for manufacturability may be reduced if a normal distribution may be assumed for 
the process model instead of the uniform distribution or the constant mean shift, based on 
previous experience. The process capability Cp value 2.0 is mapped to a process 
performance index Ppk 1.66 with a normal distribution, and only to 1.50 with the constant 
mean shift and the uniform distribution models. The estimated quality levels for the process 
with a process capability Cp value 2.0 are 3.4 dpm with the constant mean shift, 2.9 dpm 
with the uniform distribution and 0.048dpm with the normal distribution.  
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Perfect stabile process

Sub-group means varied with a normal distribution (N)

Sub-group means varied with an uniform distribution (U)

Constant 1.5 sigma sub-group mean shift process

 

Fig. 11. The effect of the statistical model of sub-group mean value to the process 
performance index 

A realistic statistical process model is presented in Figure 10, where both the mean value 
and the variation of the sub-groups are varied within the control limits of the control charts 
for both mean values (Xbar-chart) and variations (s-chart). The effects of the variation within 
the sub-groups are modelled with both a normal and a uniform distribution. the effect of the 
variation distribution for the variation within the sub-groups is calculated for a process with 
a constant mean value, and the combined effect of the variation of the sub-group means and 
sub-group variations are simulated. 
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Firstly, the mean value of the process is assumed to be a constant, and a long-term standard 
deviation is calculated by combining within sub-groups and between sub-groups’ variations. 
The variation within sub-groups is modelled to be one and a standard deviation between sub-
groups is defined so that a probability exceeding an UCL (Upper Control Limit) of the s-chart 
is 0.27 per cent, or the UCL limit is three standard deviation units away from the average 
value. The UCL (or B4 value) value for the s-chart is 2.089 when a sub-group size 5 is used and 
a Lower Control Limit (LCL) is zero. The long-term variation can be calculated by 

   2

2 2
Long term

2.089 1
1.064

3
   

  
   

 
 (11) 

A corresponding long-term process performance index Ppk is 

 min , min ,
3 1.064 3 1.064 3.19 3.19

pk

USL LSL USL LSL   
 

              
P .  (12) 

The second process model is a uniform distribution for the variation between sub-groups. 
The uniform distribution is defined so that the variation may drift between the control limits 
of the s-chart, where the UCL is 2.089 and the LCL is zero. The variation within the sub-
group is assumed to be normally distributed with a standard deviation of one. The long-
term variation is  

  2
2 2

Long term

2.089 0
1.168

12
   


     (13) 

A corresponding long-term process performance index Ppk is 

 min , min ,
3 1.168 3 1.168 3.50 3.50

pk

USL LSL USL LSL   
 

              
P .  (14) 

The combined effects of the variations of the sub-group mean value and the variation are 
simulated with Matlab with ten million observations ordered into sub-groups with five 
observations within each sub-group. The results of the combined effects of variations of the 
mean and variation of the sub-groups are presented in Figure 12. The results based on a 
normal distribution process model for the mean value are closest to the perfect process. The 
results based on a uniform distribution process model for variation give the most 
pessimistic quality level estimations.  

New equations for process performance indices with various statistical process models are 
presented in Table 2. It is assumed that the upper specification limit is closer to the mean 
value in order to simplify the presentation of equations without losing generality. The top 
left corner equations are used in the literature for process performance indices and others 
are based on the results from Figures 11 and 12. Short term data models the long term 
process performance based on these equations. These equations may be used with measured 
data from the pilot production or during the system engineering phase when component 
specifications are determined. The short-term data during the system engineering phase 
may be generated based on Monte Carlo–simulations. A system engineer may test the 
effects of different statistical process models to the specification limit proposals with these 
simple equations and estimate a quality level.  
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 Constant 
variation 
  

Normal distributed 
variation between 
sub-groups 

Uniformly distributed 
variation between sub-
groups 

Perfect stabile 
process 3.00

USL 



 
3.19

USL 



 
3.50

USL 



 

Constant 1.5s 
deviation units 
mean shift 

0.50
3.00

USL 



  0.47
3.19

USL 



  0.41
3.50

USL 



  

Normally 
distributed sub-
group mean shift 

3.35

USL 



 
3.51

USL 



 
3.92

USL 



 

Uniformly 
distributed sub-
group mean shift 

3.99

USL 



 
4.10

USL 



 
4.45

USL 



 

Table 2. Equations to include statistical process model effects for one-dimensional Ppk 
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Fig. 12. The combined effects of statistical processes models to the process performance index 

3.3 Multidimensional process capability indices 

The research into multivariable process capability indices is limited in comparison with one-

dimensional ones due to a lack of consistency regarding the methodology for the evaluation 

of the process’s capability (Wu, 2009). In the multidimensional case, the index gives an 

indication about the problem, but the root cause of the indicated problem needs to be 

studied parameter by parameter. In general, multidimensional process indices are 
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analogous to univariate indices when a width of variation is replaced with a volume. A 

multivariable counterpart of Cp is Cp (Kotz & Johnson, 1993) 

  Cp =
Volume of specification region

Volume of region containing 99.73% of values of X
, (15) 

where volume of specification is 

 i i
1

USL LSL
i





 .  

where USLi and LSLi are upper and lower specification limits for i:th variable. For 

multidimensional Cpk there is no analogous definition as with single dimensional Cpk. For 

multidimensional cases, a probability outside of the specification can be defined and it can 

be converted backwards to a corresponding Cpk value which can be regarded as a 

generalisation of Cpk. (Kotz & Johnson, 1993). A definition for a multidimensional Cpk is 

(Kotz & Johnson, 1993) 

  items econformanc-non of propotion expected
3

1 1-

pk C  (16) 

3.4 Process model’s effect on two-dimensional process capability indices 

Statistical process models of long-term process variation for the two-dimensional case are 

similar to those presented in Figures 6 through to 9. An additional step for two-dimensional 

process capability analysis is to include a correlation of two-dimensional data into the 

analysis. The correlation of the data needs to be taken into account in both the process 

capability index calculation and statistical process modelling. 

A two-dimensional process capability analysis for a circular tolerance area has been studied 

in reference to Leinonen (2010b). The circular tolerance area may be analysed as two 

separate one-dimensional processes or one two-dimensional process. One-dimensional 

process indices overestimate the quality level for circular tolerance since one-dimensional 

tolerances form a square-type tolerance range. Additionally, correlation of the data cannot 

be taken into account in analysis with two separate one-dimensional process indices. 

In order to overcome the problems of one-dimensional process indices with a circular 

tolerance, a new process capability index has been proposed (Leinonen, 2010b), as shown in 

Figure 13. The one-dimensional Cpk process capability indices for X and Y dimensions are 

marked with and, respectively. The one-dimensional specification limits for the X and Y axis 

are shown in Figure 13 and the circular tolerance area has the same radius as one-

dimensional specifications. A two-dimensional process capability index estimates the 

process capability based on a probability outside of the circular specification limit. One-

dimensional process capability indices overestimate the process capability of the circular 

tolerance area and they may be regarded as upper bounds for the two-dimensional process 

capability. 
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Fig. 13. Cpk definitions with circular specification limits 

The analysed two-dimensional data distribution is a non-central elliptical normal 
distribution, and the probability inside of a circular acceptance limit can be calculated 
(Leinonen, 2010b) 

 
 

2 2

2 2 2

2 2

1
2

2 1

4
2

1

2 1

Y YX X

X X Y Y

y m y mx m x m
R

R x

R x
R X Y

p e dxdy


   

  

                            
 






  . (17) 

The process capability index is specified with a probability outside of the circular and it may 

be calculated based on (16)  

  -1
pk 4

1
1-

3
RC p   . (18) 

A long-term process performance for a two-dimensional process with a circular tolerance 

may be modelled with a similar statistical model (a normal and a uniform distribution) 

which were used in Chapter 3.2 for the one-dimensional case. However, the correlation of 

the mean shift of sub-groups is added. Two assumptions are analysed: the first is that 

there is no correlation between variations of sub-group mean values and the second is 

that the sub-group mean values are similarly correlated than the individual observations.  

The analysed numerical cases are based on Leinonen (2010b) and these are summarised in 

Table 3. A graphical summary of the numerically analysed two-dimensional Cases 1, 2 and 3 

is shown in Figure 14. 

The location of the data set is in the first quadrant of the plane in Cases 1, 2 and 3, while the 

location is on the X-axis in Case 4. The variation of the data is the same in both directions in 

Cases 1 and 4, while the variation is non-symmetrical in Cases 2 and 3. The location of the 

data set is defined with mean values mX and mY, and the variation with sX and sY. One-

dimensional process capability indices  and  are calculated for each case and the smaller one 

is regarded as the one-dimensional Cpk value.  
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Fig. 14. A graphical representation of a two-dimensional process capability case-study 

 
Case 1 Case 2 Case 3 Case 4 

USL 0.45 0.45 0.45 0.45 
LSL -0.45 -0.45 -0.45 -0.45 
mX 0.225 0.225 0.225 0.225 
mY -0.2 -0.2 -0.2 0.0 
sX 0.05 0.025 0.05 0.05 
sY 0.05 0.05 0.025 0.05 

Distribution shape, main direction Circle Ellipse, y-axis Ellipse, x-axis Circle 

 1.50 3.00 1.50 1.50 

 1.67 1.67 3.33 3.00 

Cpk = min (,) 1.50 1.67 1.50 1.50 

Table 3. Input data for a two-dimensional process capability case study 

The effects of statistical process models of the variation of the mean values of sub-groups in 

the two-dimensional process performance index are simulated with Matlab with ten million 

observations ordered into sub-groups with five observations within each sub-group. The 

same process performance index name is used for both indices, whether based on the short- 

or the long-term variation. 

A significant effect of data correlation to the process’s capability may be seen in Figure 15, 

which summaries the analysis of the example in Case 1. The X-axis is the correlation factor ρ 

of the data set and the Y-axis is the  value. The process capability index  is calculated with a 

numerical integration and simulated with a Monte Carlo-method without any variation of 

the sub-groups for reference purposes (Leinonen, 2010b). The one-dimensional Cpk value is 

1.5, and it may be seen that the two-dimensional process performance is maximised and 

approaching 1.5 when the correlation of data rotates the orientation of the data set in the 

same direction to that of the arch of the tolerance area.  
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The statistical process models have a noticeable effect on the expected quality level. If the 
mean values of the sub-groups are varied independently, with a normal distribution in both 
the X and Y directions, the effect varies between 0.05 and 0.25. If the mean values vary 
independently with a uniform distribution in both directions, then the process model has a 
significant effect up to 0.45 to the with a correlation factor value of 0.6. If the maximum 
differences in  values are converted to the expected quality levels, then the difference ranges 
from 13 dpm to 2600 dpm. The uniform distribution model suppresses the correlation of 
data more than normal distribution, and for this reason the long-term process performs 
worse. If the sub-group’s mean values are varied with normal distribution and correlated 
with the same correlation as the observations, then the long-term performance is a shifted 
version of the original process’s performance and the effect of the correlated process model 
on average is 0.1 units. 

The results for Case 2 are shown in Figure 16. The variation in the X-axis direction is a half 
of the variation of the Y-axis direction and the one-dimensional Cpk value is 1.66. The two-
dimensional index approaches the one-dimensional value when the correlation of data 
increases. If the correlation is zero, then the circle tolerance limits the process performance 
to 1.2 as compared with the one-dimensional specification at 1.66. If the mean values of the 
sub-groups are varied independently, either with a normal or a uniform distribution, the 
process performs better than with the correlated process model. In this case, the correlated 
mean shift model changes the distribution so that it points out more from the tolerance area 
than the uncorrelated models. It may be noted that when the correlation changes to positive, 
then the normal distribution model performs closer to the original process than the uniform 
distribution model. 
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Closed form equation results for static process

Simulated results for static process

Mean value varied with correlated N distribution
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Fig. 15. The effect of the variation of the mean value of sub-groups on a two-dimensional , 
Case 1 
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Closed form equation results for static process

Simulated results for static process

Mean value varied with correlated N distribution

Mean value varied indepenently for X and Y with N distribution

Mean value varied independently for X and Y with U distribution

 

Fig. 16. The effect of the variation of the mean value of sub-groups on a two-dimensional , 

Case 2 

The example of Case 3 shows half of the variation in the Y-axis direction as compared with 
the X-axis direction, and the one-dimensional Cpk value is 1.50. The results for Case 3 are 
presented in Figure 17. If the sub-group mean values are varied with correlated normal 
distributions, then the process capability with negative correlations is the best since the 
correlated process model maintains the original correlation of the data. The uncorrelated 
normal distribution has an overall data correlation between -0.8 to 0.8, and the uncorrelated 
uniform distribution has a correlation between -0.57 and 0.57. The uncorrelated uniform 
distribution model has an effect from 0.25 up to 0.42 of the value. 

The results for the Case 4 are presented in Figure 18. The example provided by Case 4 has a 
symmetrical variation and the distribution is located along the X-axis. For these reasons, the 
correlation has a symmetrical effect on the two-dimensional process performance indices. 
The one-dimensional Cpk value is 1.50 and the close form equation result without the 
correlation has a value of 1.45. Both normally distributed process models have a value of 
1.31 with the correlation factor at zero. The correlated process model differs from the 
uncorrelated one with high correlation factor values. The uniform distribution model clearly 
has the biggest impact on the estimated quality level up to 0.3. The process performance 
indices maintain the order of the quality level estimations over the correlations due to the 
symmetrical distribution and location.  

As a conclusion, it is not possible to derive similar easy-to-use process capability indices, 
including the effects of the statistical process models of two-dimensional process 
performance indices as compared with one-dimensional ones based on the results presented 
in Chapter 3.2.  
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Closed form equation results for static process

Simulated results for static process

Mean value varied with correlated N distribution
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Fig. 17. The effect of the variation of the mean value of sub-groups on a two-dimensional , 
Case 3 
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Closed form equation results for static process
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Fig. 18. The effect of the variation of the mean value of sub-groups on a two-dimensional , 
Case 4 
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4. Usage of process capability indices in radio engineering 

Most of the parameters which are studied during the RF system design phase do not follow 
a normal distribution. Monte Carlo-simulations have been carried out for the most 
important RF block level parameters and - based on the simulations results - none of the RF 
block level parameters follow a normal distribution (Vizmuller, 1998). This is due to fact that 
the dynamic range of signal levels in radio engineering is huge and typically a logarithm 
scale is used for signal levels. Unfortunately, in most cases the signal levels do not follow a 
normal distribution on such a scale. In order to perform a process capability analysis 
properly for radio engineering parameters, the analysis should be done according to specific 
distributions, as shown in Figure 5. If a production quality level estimation of an RF 
parameter is done based on a process capability index with a normal distribution 
assumption, then the quality level may be significantly under- or overestimated. The 
problem is that the underlying distributions for all important RF parameters are not 
available or known and the analyses are based on measured results. The problem with a 
measurement-based approach is that the properties of the data distributions may change 
during the development cycle of the device.  

Another problem with a measurement-based approach for process capability analysis is that 
a measurement error of an RF parameter may change the properties of the data distribution. 
The measurement error based on the RF test equipment on the process capability indices has 
been studied (Moilanen, 1998). Based on the study of the effect of RF, test equipment needs 
to be calibrated out and the analysis should be done with actual variation which is based on 
product-to-product variation. An actual number of RF measurements cannot be reduced 
based on mathematical modelling, since most RF parameters do not follow the normal 
distribution and the accuracy of the modelling is not good enough for the purposes of 
design verification or process capability analysis (Pyylampi, 2003). 

Some work has been done in order to find the underlying functions for some critical RF 

parameters. The statistical properties of the bit error rate have been studied and a statistical 

distribution of it would follow an extreme value function on a linear scale or else it would 

follow a log-normal distribution on a logarithm scale with a DQPSK modulation (Leinonen, 

2002). In order to validate this result in real life, an infinitive measurement result and 

measurement time would be needed. It has been shown that, based on measurement results, 

a peak phase error of a GSM transmission modulation would follow - statistically - a log-

normal distribution (Leinonen, 2002). The statistical distribution of a bit error rate of a QPSK 

modulation has been studied and, with a limited measurement time and measurement 

results, the distribution of the bit error rate is a multimodal distribution (Leinonen, 2011). 

The multimodal distribution has a value of zero and a truncated extreme value function 

distribution part on a linear scale or else a truncated extreme value function distribution on 

a logarithm scale. Based on the previous results, the process capability analysis of the bit-

error rate based on known statistical distribution functions has been studied (Leinonen, 

2003, 2011).  

Process capability indices give an indication of the maturity level of the design even though 
the process capability indices may over- or underestimate the expected quality level. The 
maturity levels of multiple designs may be compared to each other, if the calculation of the 
indices has been done in a similar manner.  
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Process capability indices are used as a communication tool between different parties 
during the development process of the device. Different notation for the process capability 
index may be used in order to create differences between a process capability index based 
on a normal distribution or those based on a known or non-normal distribution assumption. 
One proposal is to use the C*pk notation if the process capability index is based on non-
normal distribution (Leinonen, 2003). 

Typically, the studied parameters during the RF system engineering and R&D phases are 
one-dimensional parameters, and multiradio interoperability may be considered to be one 
of the rare two-dimensional RF design parameters. Multiradio interoperability in this 
context is considered to be purely defined as a radio interference study, as shown in Figure 
4. Multiradio interoperability may be monitored and designed in the manner of a process 
capability index (Leinonen, 2010a). A new capability index notation MRCpk has been 
selected as a multiradio interoperability index, which be defined in a manner similar to the 
process capability index in equation 16, at least for communication purposes. In order to 
make a full multiradio interoperability system analysis, all potential interference 
mechanisms should be studied. A wide band noise interference mechanism has been 
studied with an assumption that the noise level is constant over frequencies (Leinonen, 
2010a). Typically, there is a frequency dependency of the signal level of the interference 
signals and new studies including frequency dependencies should be done. 

The effects of statistical process models on normally distributed one- and two-dimensional 
data has been studied in 3.2. and 3.4. Unfortunately, most of RF parameters are, by nature, 
non-normally distributed and thus previous results may not apply directly. More studies 
will be needed in order to understand how simple statistical process models will affect non-
normally distributed parameters. If the manufacturing process could be taken into account 
more easily during the system simulation phase, either block level or component level 
specifications could - potentially - be relaxed. If the manufacturing process cannot be 
modelled easily, then the block level and component level specifications should be done in a 
safe manner which will yield the over-specification of the system. If the system or solution is 
over-specified, the solution is typically more expensive than the optimised solution.  

5. Conclusion 

In high volume manufacturing, the high quality level of the product is essential to maximise 
the output of the production. The quality level of the product needs to be designed during 
the product development phase. The design of the quality begins in the system definition 
phase of product development by agreeing upon the most important parameters to follow 
during the development phase of the device. Block level and component level specifications 
are defined during the system engineering phase. The actual specifications and how they are 
specified are main contributors towards the quality level of the design.  

The maturity and potential quality level of the design may be monitored with process 
capability indices during the product development phase. The process capability indices 
had originally been developed for the quality tools for manufacturing purposes. Multiple 
parameters may be compared to each other, since process capability indices are 
dimensionless, which is an advantage when they are used as a communication tools 
between technology and quality teams. 
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Components may be defined using previous information regarding the expected variation 
of the parameter or based on the calculation and simulation of the parameters. If the 
component specifications are only defined when based on calculations and simulations, then 
the variability of the manufacturing of the component and a variability of a device’s 
production need to be taken into account. The manufacturability margin for parameters 
needs to be included, and one method for determining a needed margin is to use statistical 
process variation models. Statistical process control methods are used in high volume 
production and they allow the actual production process to vary between the control limits 
of statistical control charts. The control limits of the control charts are dependent on a 
number of samples in a sample control group, and the control limits define the allowable 
process variation during mass production. A constant mean shift process model has been 
used in a Six Sigma community to model mass production variation. The effects of a 
constant process shift model and normal distribution- and uniform distribution-based 
process models are compared with each other and with the one-dimensional normally 
distributed data. Based on the simulation results, the constant shift and the uniform 
distribution models expect a similar quality level with a process capability index value of 2, 
while at a lower process capability level a constant shift process estimates the lowest quality 
level. The normal distribution model of the manufacturing process expects a higher quality 
level than other process models with a one-dimensional parameter. New equations for one-
dimensional process capability indices with statistical process models based on calculations 
and simulations have been presented in the Chapter 3.2. 

Process capability indices have been defined according to multidimensional parameters 

which are analogous to one-dimensional process capability indices. One of the main 

differences between one- and two-dimensional process capability index analyses is that a 

correlation of the data with two-dimensional data should be included into the analysis. 

Another difference is the definition of the specification limit, which may be rectangular or 

circular or else a sub-set of those. A rectangular tolerance area may be considered if the two-

dimensional data is uncorrelated, and the specifications may be considered to be 

independent of each other. Otherwise, the tolerance area is considered to be circular. The 

effects of statistical process models for two-dimensional process capability indices with a 

correlated normal distribution with a circular tolerance area have been studied. The 

correlation of the data has a significant effect on the expected quality level based on the 

simulation results. The location and the shape of the data distribution have an additional 

effect when statistical process models are applied to the data. Easy to use equations which 

take the statistical process models into account with two-dimensional data cannot be 

derived due to multiple dependences in terms of location, shape and the correlation of the 

data distribution. 

Most radio performance parameters are one-dimensional and they are not distributed with a 

normal distribution, and so the process capability analysis should be carried within known 

statistical distributions. A process capability analysis based on a normality assumption may 

significantly under- or overestimate the expected quality level of the production. The 

statistical distributions of some RF parameters are known - e.g., the bit error rate - but more 

work will be needed to define the others. Also, a multiradio interoperability may be 

considered to be a two-dimensional parameter which may be analysed with process 

capability indices. 
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