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1. Introduction 

The possibility to tune chemical and physical properties in nanosized materials has a 

strong impact on a variety of technologies, including photovoltaics. One of the prominent 

research areas of nanomaterials for photovoltaics involves spectral conversion. 

Conventional single-junction semiconductor solar cells only effectively convert photons of 

energy close to the semiconductor band gap (Eg) as a result of the mismatch between the 

incident solar spectrum and the spectral absorption properties of the material (Green 

1982, Luque and Hegedus 2003). Photons with an energy Eph smaller than the band gap 

are not absorbed and their energy is not used for carrier generation. Photons with energy 

Eph larger than the band gap are absorbed, but the excess energy Eph – Eg is lost due to 

thermalization of the generated electrons. These fundamental spectral losses in a single-

junction silicon solar cell can be as large as 50% (Wolf 1971), while the detailed balance 

limit of conversion efficiency for such a cell was determined to be 31% (Shockley and 

Queisser 1961). Several routes have been proposed to address spectral losses, and all of 

these methods or concepts obviously concentrate on a better exploitation of the solar 

spectrum, e.g., multiple stacked cells (Law et al. 2010), intermediate band gaps (Luque 

and Marti 1997), multiple exciton generation (Klimov 2006, Klimov et al. 2007), quantum 

dot concentrators (Chatten et al. 2003a) and down- and up-converters (Trupke et al. 2002a, 

b), and down-shifters (Richards 2006a, Van Sark 2005). In general they are referred to as 

Third or Next Generation photovoltaics (PV) (Green 2003, Luque et al. 2005, Martí and 

Luque 2004). Nanotechnology is essential in realizing most of these concepts (Soga 2006, 

Tsakalakos 2008), and semiconductor nanocrystals have been recognized as ‘building 

blocks’ of nanotechnology for use in next generation solar cells (Kamat 2008). Being the 

most mature approach, it is not surprising that the current world record conversion 

efficiency is 43.5% for a GaInP/GaAs/GaInNAs solar cell (Green et al. 2011), although 

this is reached at a concentration of 418 times. 
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As single-junction solar cells optimally perform under monochromatic light at wavelength 

opt ~ 1240/Eg (with opt in nm and Eg in eV), an approach “squeezing” the wide solar 

spectrum (300-2500 nm) to a single small band spectrum without too many losses would 

greatly enhance solar cell conversion efficiency. Such a quasi-monochromatic solar cell 

could in principle reach efficiencies over 80%, which is slightly dependent on band gap 

(Luque and Martí 2003). For (multi)crystalline silicon ((m)c-Si) solar cells opt = 1100 nm 

(with Eg = 1.12 eV); for amorphous silicon (a-Si:H) the optimum wavelength is opt = 700 nm 

(with Eg = 1.77 eV). However, as these cells only contain a thin absorber layer, the optimum 

spectrum response occurs at about 550 nm (Schropp and Zeman 1998, Van Sark 2002). 

Modification of the spectrum by means of so-called down- and/or upconversion or -shifting 

is presently being pursued for single junction cells (Richards 2006a), as illustrated in Fig. 1, 

as a relatively easy and cost-effective means to enhance conversion efficiency. In addition, 

so-called luminescent solar converters (LSC) employ spectrum modification as well 

(Goetzberger 2008, Goetzberger and Greubel 1977). Downconverters or -shifters are located 

on top of solar cells, as they are designed to modify the spectrum such that UV and visible 

photons are converted leading to a more red-rich spectrum that is converted at higher 

efficiency by the solar cell. Upconverters modify the spectrum of photons that are not 

absorbed by the solar cell to effectively shift the IR part of the transmitted spectrum to the 

NIR or visible part; a back reflector usually is applied as well. 

 

 

Fig. 1. Schematic drawings of a solar cell with down converter (or down shifter) layer on top 
(left) and a solar cell on top of an upconverter layer. 

In case of downconversion (DC) an incident high-energy photon is converted into two or 

more lower energy photons which can lead to quantum efficiency of more than 100%, 

therefore it is also termed ‘quantum cutting’ (Timmerman et al. 2008, Wegh et al. 1999); for 

upconversion (UC) two or more low energy photons (sub band gap) are converted into one 

high-energy photon (Strümpel et al. 2007), see also Fig. 2. Downshifting (DS) is similar to 

downconversion where an important difference is that only one photon is emitted and that 

the quantum efficiency of the conversion process is lower than unity (Richards 2006a), 

although close to unity is preferred to minimize losses. Downshifting is also termed 

photoluminescence (Strümpel et al. 2007). DC, UC and DS layers only influence solar cell 

performance optically. As DC and DS both involve one incident photon per conversion, the 

intensity of converted or shifted emitted photons linearly scales with incident light intensity. 

UC involves two photons; therefore the intensity of converted light scales quadratically with 

incident light intensity.  
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Fig. 2. Energy diagrams showing photon adsorption and subsequent downconversion, 
downshifting, and upconversion. 

In this chapter a review is presented on the use of nanometer sized particles (including 
quantum dots) in solar spectrum conversion. Modification of the spectrum requires down- 
and/or upconversion or -shifting of the spectrum, meaning that the energy of photons is 
modified either to lower (down) or higher (up) energy. Nanostructures such as quantum 
dots, luminescent dye molecules, and lanthanide-doped glasses are capable of absorbing 
photons at a certain wavelength and emitting photons at a different (shorter or longer) 
wavelength. We will discuss down- and upconversion and -shifting by quantum dots, 
luminescent dyes, and lanthanide compounds, and assess their potential in contributing to 
ultimately lowering the cost per kWh of solar generated power.  

2. Downconversion 

2.1 Principles  

Downconversion was theoretically suggested first by Dexter in the 1950s (Dexter 1953, 
1957), and shown experimentally 20 years later using the lanthanide ion praseodymium Pr3+ 
in an yttrium fluoride YF3 host (Piper et al. 1974, Sommerdijk et al. 1974). A VUV photon 
(185 nm) is absorbed in the host, and its energy is transferred into the 1S0 state of the Pr3+ 
ion, from where two photons (408 and 620 nm) are emitted in a two-step process (1S0→3PJ at 
408 nm followed by 3PJ→3F2 at 620 nm). In this way a single absorbed high energy photon 
results in the emission of two visible photons and a higher-than-unity quantum efficiency is 
realized. Another frequently used ion is gadolinium Gd3+ (Wegh et al. 1997), either single or 
co-doped (Wegh et al. 1999). These lanthanide ions are characterized by a rich and well-
separated energy level structure in the so-called Dieke energy diagrams (Dieke 1968), and 
have been identified as perfect “photon managers” (Meijerink et al. 2006). The energy levels 
arise from the interactions between electrons in the inner 4f shell. Trivalent lanthanides have 
as electronic configuration [Xe]4fn5s25p6. Inside the filled 5s and 5p shells, there is a 
partially filled 4f shell where the number of electrons (n) can vary between 0 and 14. The 
number of possible arrangements for n electrons in 14 available f-orbitals is large (14 over n), 
which gives rise to a large number of different energy levels that are labelled by so-called 
term symbols. Transitions between the energy levels give rise to sharp absorption and 
emission lines. Energy transfer between neighbouring lanthanide ions is also possible and 
helps converting photons that are absorbed to photons of different energy. Based on their 
unique and rich energy level structure, lanthanide ions are promising candidates to realize 
efficient down conversion and recent research in this direction will be discussed below.  
Downconversion in solar cells was theoretically shown to lead to a enlarged conversion 
efficiency of 36.5% (Trupke et al. 2002a) for nonconcentrated sunlight when applied in a 
single junction solar cell configuration, such as shown in Fig. 1. Note that detailed-balance 
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calculations for single junction c-Si cells lead to a maximum efficiency of 31% (Shockley and 
Queisser 1961). These calculations were performed as a function of the band gap and 
refractive index of the solar cell material, for a 6000K blackbody spectrum. The efficiency 
limit is reached for a band gap of 1.05 eV, and asymptotically approaches 39.63% for very 
high refractive indices larger than 10. For c-Si, with refractive index of 3.6, the limit 
efficiency is 36.5%. Analysis of the energy content of the incident standard Air Mass 1.5 
Global (AM1.5G) spectrum (ASTM 2003) and the potential gain DC can have shows that 
with a DC layer an extra amount of 32% is incident on a silicon solar cell (Richards 2006a), 
which can be converted at high internal quantum efficiency. Figure 3 illustrates the potential 
gains for DC and UC.  

 

 

Fig. 3. Potential gain for down- and upconversion for a silicon solar cell. The green part 

reflects the energy conversion of the absorbed part of the solar spectrum for a c-Si solar cell, 

the red part reflects the extra energy conversion if every photon with an energy higher than 

2Eg results in two NIR photons and the beige part reflects the energy gain if every pair of 

photons with an energy between 0.5Eg and Eg is converted to one NIR photon. Note that the 

figure considers no other losses than spectral mismatch losses (Courtesy of F. Rabouw, 

Utrecht University). 

2.2 State of the art 

The most promising systems for downconversion rely on lanthanide ions. The unique and 
rich energy level structures of these ions allow for efficient spectral conversion, including 
up- and downconversion processes mediated by resonant energy transfer between 
neighboring lanthanide ions (Auzel 2004, Wegh et al. 1999). Considering the energy levels of 
all lanthanides, as shown in the Dieke energy level diagram (Dieke 1968, Peijzel et al. 2005, 
Wegh et al. 2000) it is immediately evident that the energy level structure of Yb3+ is ideally 
suited to be used in down conversion for use in c-Si solar cells. The Yb3+ ion has a single 
excited state (denoted by the term symbol 2F5/2) some 10,000 cm-1 above the 2F7/2 ground 
state, corresponding to emission around 1000 nm. The absence of other energy levels allow 
Yb3+ to exclusively ‘pick up’ energy packages of 10,000 cm-1 from other lanthanide ions and 
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emitting ~1000 nm photons that can be absorbed by c-Si. Efficient downconversion using 
Yb3+ as acceptor requires donor ions with an energy level around 20,000 cm-1 and an 
intermediate level around 10,000 cm-1. From inspection of the Dieke diagram one finds that 
potential couples are (Er3+, Yb3+), (Nd3+, Yb3+) and (Pr3+, Yb3+) for a resonant two-step 
energy transfer process. Also, cooperative sensitization is possible where energy transfer 
occurs from a high excited state of the donor to two neighboring acceptor ions without an 
intermediate level.  
The first report on efficient downconversion for solar cells was based on cooperative energy 
transfer from Tb3+ to two Yb3+ ions in YbxY1-xPO4:Tb3+ (Vergeer et al. 2005), as shown 
schematically in Fig. 4. The 5D4 state of Tb3+ is around 480 nm (21,000 cm-1) and from this 
state cooperative energy transfer to two Yb3+ neighbors occurs, both capable of emitting a 
980 nm photon.  

 

 

Fig. 4. Cooperative energy transfer from Tb to two Yb ions. From the 5D4 state of one Tb ion 
two neighbouring Yb ions are excited to the 2F5/2 state from where emission of 980 nm 
photons can occur (after Meijerink et al. 2006, Vergeer et al. 2005). 

The same efficient down conversion process was observed in other host lattices: Zhang et al. 
(Zhang et al. 2007) observed cooperative quantum cutting in (Yb,Gd)Al3(BO3)4:Tb3+ and 
quantum efficiencies up to 196% were reported. Cooperative downconversion for other 
couples of lanthanides was also claimed. For the couple (Pr, Yb) and (Tm, Yb) co-doped into 
borogermanate glasses a decrease of the emission from higher energy levels of Pr and Tm was 
observed (Liu et al. 2008). In case of Pr3+ the starting level for the cooperative down conversion 
is the 3P0 level while for Tm3+ the 1G4 is at twice the energy of the 2F5/2 level of Yb3+. The 
efficiency of the downconversion process was estimated from the decrease of the lifetime of 
the donor state. For the Tm3+ emission a decrease from 73 µs (for the sample doped with Tm 
only) to 45 µs (for a sample co-doped with 20% of Yb) was observed, giving a transfer 
efficiency of 38%. For the same glass co-doped with Pr and Yb a 65% decrease of the lifetime 
was observed, implying a 165% quantum yield. Similar results were found for the (Pr, Yb) 
couple in aluminosilicate glasses (Lakshminarayana et al. 2008). More recent work on the (Pr, 
Yb) couple confirmed the presence of downconversion, but the mechanism involved was 
pointed out to be a resonant two-step energy transfer rather than a cooperative energy transfer 
(Van der Ende et al. 2009a, b). For the (Pr, Yb) couple an intermediate level (1G4) is available 
around 10,000 cm-1, which makes a two-step resonant energy transfer process possible. This 
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first-order process will have a much higher probability than the second-order (cooperative) 
transfer process. The results demonstrated efficient quantum cutting of one visible photon into 
two NIR photons in SrF2:Pr3+, Yb3+. Comparison of absorption and excitation spectra provided 
direct evidence that the downconversion efficiency is close to 200%, in agreement with a two-
step energy transfer process that can be expected based on the energy level diagrams of Pr3+ 
and Yb3+. This first order energy transfer process is effective at relatively low Yb3+ 
concentrations (5%), where concentration quenching of the Yb3+ emission is limited. 
Comparison of emission spectra, corrected for the instrumental response, for SrF2:Pr3+ (0.1%) 
and SrF2:Pr3+ (0.1%), Yb3+ (5%) revealed an actual conversion efficiency of 140%. 
An important aspect for downconversion is the incorporation in a solar cell. The solar 
spectrum has to be converted before entering the solar cell. A promising design is 
incorporation of downconverting material in a thin (10-100 nm) transparent layer on top of the 
solar cell. After downconversion the isotropically emitted 1000 nm need to be directed towards 
the solar cell. This can be achieved by a narrow-band reflective coating for 1000 nm NIR on top 
of the downconversion layer, thereby avoiding absorption in the other parts of the spectrum. 
The narrow band emission of the Yb3+ emission allows for a narrow band reflective coating. To 
realize a transparent downconversion layer, the downconverting lanthanide ion couples need 
to be incorporated in nanocrystals with dimensions smaller than ~50 nm to prevent light 
scattering. Chen et al. reported downconversion in transparent glass ceramics with embedded 
Pr3+/Yb3+:β-YF3 nanocrystals (Chen et al. 2008a). Quantum cutting downconversion was 
shown in borate glasses using co-doping of Ce3+ and Yb3+ (Chen et al. 2008b). A UV photon 
(330 nm) excites a Ce3+ ion, and cooperative energy transfer between the Ce3+ and Yb3+ ion 
leads to the emission of two NIR photons (976 nm) with a 174% quantum efficiency, based on 
a 74% energy transfer efficiency calculated from the luminescence decay curves and assuming 
cooperative energy transfer. Recent work on the (Ce, Yb) couple suggests that the energy 
transfer mechanism is not cooperative energy transfer, but single step energy transfer via a 
metal-to-metal charge transfer state. If this is the case, the quantum efficiency is not above 
100%. Efficient downconversion for other lanthanide ion couples has been reported, including 
the (Er, Yb) couple in low phonon hosts (Eilers et al. 2010). Research on new downconversion 
couples continues. It is not straightforward to establish the efficiency of the conversion to NIR 
photons and careful studies providing convincing evidence for the energy transfer mechanism 
and efficiency are required (Van Wijngaarden 2010). 
Timmerman et al. (Timmerman et al. 2008) demonstrated so-called space-separated quantum 
cutting within SiO2 matrices containing both silicon nanocrystals and Er3+. Energy transfer 
from photo exited silicon nanocrystals to Er3+ had been observed earlier (Fujii et al. 1997), but 
Timmerman et al. show that upon absorption of a photon by a silicon nanocrystal a fraction of 
the photon energy is transferred generating an excited state within either an erbium ion or 
another silicon nanocrystal. As also the original silicon NC relaxes from a highly excited state 
towards the lowest-energy excited state, the net result is two electron-hole pairs for each 
photon absorbed. Recent quantum yield measurements as a function of excitation wavelength 
confirmed the occurrence of carrier multiplication in Si nanocrystals (Timmerman et al. 2011). 

3. Downshifting 

3.1 Principles  

Downshifting (DS) or photoluminescence is a property of many materials, and is similar to 
downconversion, however, only one photon is emitted and energy is lost due to non-
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radiative relaxation, see Fig. 2. Therefore the quantum efficiency is lower than unity. DS can 
be employed to overcome poor blue response of solar cells (Hovel et al. 1979), due to, e.g., 
non-effective front surface passivation for silicon solar cells. Shifting the incident spectrum 
to wavelengths where the internal quantum efficiency of the solar cell is higher than in the 
blue can effectively enhance the overall conversion efficiency by ~10% (Van Sark et al. 2005). 
Improvement of front passivation may make down shifters obsolete, or at least less 
beneficial. Downshifting layers can also be used to circumvent absorption of high-energy 
photons in heterojunction window layers, e.g., CdS on CdTe cells (Hong and Kawano 2003). 
A recent review is presented by Klampaftis et al. (2010). 
Downshifting was suggested in the 1970s to be used in so-called luminescent solar 
concentrators (LSCs) that were attached on to a solar cell (Garwin 1960, Goetzberger and 
Greubel 1977). In these concentrators, organic dye molecules absorb incident light and re-
emit this at a red-shifted wavelength. Internal reflection ensures collection of all the re-
emitted light in the underlying solar cells. As the spectral sensitivity of silicon is higher in 
the red than in the blue, an increase in solar cell efficiency was expected. Also, it was 
suggested to use a number of different organic dye molecules of which the re-emitted light 
was matched for optimal conversion by different solar cells. This is similar to using a stack 
of multiple solar cells, each sensitive to a different part of the solar spectrum. The expected 
high efficiency of ~30% (Smestad et al. 1990, Yablonovitch 1980) in practice was not reached 
as a result of not being able to meet the stringent requirements to the organic dye molecules, 
such as high quantum efficiency and stability, and the transparency of collector materials in 
which the dye molecules were dispersed (Garwin 1960, Goetzberger and Greubel 1977).  
Nowadays, new organic dyes can have extremely high luminescence quantum efficiency 
(LQE) (near unity) and are available in a wide range of colors at better re-absorption 
properties that may provide necessary UV stability. Quantum dots (QDs) have been 
proposed for use in luminescent concentrators to replace organic dye molecules: the 
quantum dot concentrator (Barnham et al. 2000, Chatten et al. 2003a,b, Gallagher et al. 2007). 
Quantum dots are nanometer-sized semiconductor crystals of which the emission 
wavelength can be tuned by their size, as a result of quantum confinement (Alivisatos 1996, 
Gaponenko 1998). Recently, both QDs and new organic dyes have been evaluated for use in 
LSCs (Van Sark et al. 2008a). QDs have advantages over dyes in that: (i) their absorption 
spectra are far broader, extending into the UV, (ii), their absorption properties may be tuned 
simply by the choice of nanocrystal size, and (iii) they are inherently more stable than 
organic dyes (Bruchez Jr. et al. 1998). Moreover, (iv) there is a further advantage in that the 
red-shift between absorption and luminescence is quantitatively related to the spread of QD 
sizes, which may be determined during the growth process, providing an additional 
strategy for minimizing losses due to re-absorption (Barnham et al. 2000). However, as yet 
QDs can only provide reasonable LQE: a LQE > 0.8 has been reported for core-shell QDs 
(Peng et al. 1997). Performance in LSCs has been modeled using thermodynamic as well as 
ray-trace models (Burgers et al. 2005, Chatten et al. 2003b, 2004a, b, Chatten et al. 2005, 
Gallagher et al. 2004, Kennedy et al. 2008), and results are similar and also compare well 
with experimental values (Kennedy et al. 2008, Van Sark et al. 2008a). Calculated efficiencies 
vary between 2.4% for an LSC with mc-Si cell at certain mirror specifications to 9.1% for an 
LSC with InGaP cell for improved specifications.  
Alternatives for dye molecules used in LSCs are luminescent ions. Traditionally, efficient 

luminescent materials rely on the efficient luminescence of transition metal ions and 

lanthanide ions. In case of transition metal ions intraconfigurational 3dn transitions are 
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responsible for the luminescence, while in case of lanthanide ions both intraconfigurational 

4fn-4fn transitions and interconfigurational 4fn-4fn-15d transitions are capable of efficient 

emission. In most applications efficient emission in the visible is required and emission from 

lanthanide ions and transition metal ions is responsible for almost all the light from artificial 

light sources (e.g. fluorescent tubes, displays (flat and cathode ray tube, CRT) and white 

light emitting diodes (LEDs) (Blasse and Grabmaier 1995). For LSCs to be used in 

combination with c-Si solar cells efficient emission in the NIR is needed. The optimum 

wavelength is between 700 and 1000 nm, which is close to the band gap of c-Si and in the 

spectral region where c-Si solar cells have their optimum conversion efficiency. Two types of 

schemes can be utilized to achieve efficient conversion of visible light into narrow band NIR 

emission. A single ion can be used if the ion shows a strong broad band absorption in the 

visible spectral range followed by relaxation to the lowest excited state from which efficient 

narrow band or line emission in the NIR occurs. Alternatively, a combination of two ions 

can be used where one ion (the sensitizer) absorbs the light and subsequently transfers the 

energy to a second ion (the activator), which emits efficiently in the NIR. Both concepts have 

been investigated for LSCs by incorporating luminescent lanthanides and transition metal 

ions in glass matrices. The stability of these systems is not a problem, in contrast to LSCs 

based on dye molecules, however, the quantum efficiency of luminescent ions in glasses 

appeared to be much lower than in crystalline compounds, especially in the infrared, thus 

hampering use for LSCs.  

3.2 State of the art 

Chung et al. (Chung et al. 2007) reported downshifting phosphor coatings consisting of 
Y2O3:Eu3+ or Y2O2S:Eu3+ dispersed in either polyvinyl alcohol or polymethylmethacrylate on 
top of mc-Si solar cells: an increase in conversion efficiency was found of a factor of 14 
under UV illumination by converting the UV radiation (for which the response of c-Si is 
low) to 600 nm emission from the Eu3+ ion. The used solar cells used were encapsulated in 
an epoxy that absorbs photons with energy higher that ~3 eV. This protective coating can 
remain in place and down converters or shifters can easily be added. A 2.9% relative 
increase in efficiency has been reported for Eu3+ containing ethyline-vinyl-acetate layers 
(EVA) on top of c-Si cells; this is very relevant as EVA nowadays is the standard 
encapsulating matrix used for c-Si technology. 
Svrcek et al. (Svrcek et al. 2004) demonstrated that silicon nanocrystals incorporated into 
spin-on-glass (SOG) on top of c-Si solar cells are successful as downshifter leading to a 
potential absolute efficiency enhancement of 1.2%, while they experimentally showed an 
enhancement of 0.4% (using nanocrystals of 7 nm diameter with a broad emission centered 
around 700 nm). McIntosh et al. (McIntosh et al. 2009) recently presented results on 
encapsulated c-Si solar cells, of which the PMMA encapsulant contained down-shifting 
molecules, i.e., Lumogen dyes. These results indicate a ~1% relative increase in the module 
efficiency, based on a 40% increase in external quantum efficiency for wavelengths < 400 
nm. Mutlugun et al. (Mutlugun et al. 2008) claimed a two-fold increase in efficiency 
applying a so-called nanocrystal scintillator on top of a c-Si solar cell; it comprises a PMMA 
layer in which CdSe/ZnS core-shell quantum dots (emission wavelength 548 nm) are 
embedded. However, the quality of their bare c-Si cells is very poor. Yuan et al. (2011) 
presented a 14% improved internal quantum efficiency of a silicon oxide layer containing 
silicon nanocrystals on top of c-Si cells. 
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Stupca et al. (2007) demonstrated the integration of ultra thin films (2-10 nm) of 

monodisperse luminescent Si nanoparticles on polycrystalline Si solar cells. 1-nm sized blue 

emitting and 2.85-nm red emitting particles enhanced the conversion efficiency by 60% in 

the UV, and 3 to 10% in the visible for the red and blue emitting particles, respectively, 

similarly to what has been predicted (Van Sark et al. 2005). An 8% relative increase in 

conversion efficiency was reported (Maruyama and Kitamura 2001) for a CdS/CdTe solar 

cell, where the coating in which the fluorescent coloring agent was introduced increased the 

sensitivity in the blue; a maximum increase in efficiency was calculated to be 30-40%. Others 

showed results that indicate a 6% relative increase in conversion efficiency (Maruyama and 

Bandai 1999) upon coating a mc-Si solar cell. The employed luminescent species has an 

absorption band around 400 nm and a broad emission between 450 and 550 nm. As QDs 

have a much broader absorption it is expected that in potential the deployment of QDs in 

planar converters could lead to relative efficiency increases of 20-30%. Downshifting 

employing QDs in a polymer composite has been demonstrated in a light-emitting diode 

(LED), where a GaN LED was used as an excitation source for QDs emitting at 590 nm (Lee 

et al. 2000). Besides QDs, other materials have been suggested such as rare earth ions and 

dendrimers (Serin et al. 2002). A maximum increase of 22.8% was calculated for a thin film 

coating of KMgF3 doped with Sm on top of a CdS/CdTe solar cell, while experimental 

results show an increase of 5% (Hong and Kawano 2003).  

Recent efforts to surpass the historical 4% efficiency limit of LSCs (Goetzberger 2008, 

Wittwer et al. 1984, Zastrow 1994), albeit for smaller area size, have been successful. For 

example, Goldschmidt et al. (2009) showed for a stack of two plates with different dyes, to 

which four GaInP solar cells were placed at the sides, that the conversion efficiency is 6.7%; 

the plate was small (4 cm2), and the concentration ratio was only 0.8. It was argued that the 

conversion efficiency was limited by the spectral range of the organic dyes used, and that if 

the same quantum efficiency as was reached for the 450-600 nm range could be realized for 

the range 650-1050 nm an efficiency of 13.5% could be within reach. They also discuss the 

benefits of a photonic structure on top of the plate, to reduce the escape cone loss 

(Goldschmidt et al. 2009). The proposed structure is a so-called rugate filter; this is 

characterized by a varying refractive index in contrast to standard Bragg reflectors, which 

suppresses the side loops that could lead to unwanted reflections. The use of these filters 

would increase the efficiency by ~20%, as was determined for an LSC consisting of one plate 

and dye. Slooff et al. (2008) presented results on 50x50x5 mm3 PMMA plates in which both 

CRS040 and Red305 dyes were dispersed at 0.003 and 0.01 wt%, respectively. The plates 

were attached to either mc-Si, GaAs or InGaP cells, and a diffuse reflector (97% refection) 

was used at the rear side of the plate. The highest efficiency measured was 7.1% for 4 GaAs 

cells connected in parallel (7% if connected in series).  
As stated above, quantum dots are potential candidates to replace organic dye molecules in 
an LSC, for their higher brightness, better stability, and wider absorption spectrum 
(Barnham et al. 2000, Chatten et al. 2003a, b, Gallagher et al. 2007). In fact, the properties and 
availability of QDs started renewed interest in LSCs around 2000 (Barnham et al. 2000), with 
the main focus on modeling, while more recently some experimental results have been 
presented. Schüler et al. (2007) proposed to make LSCs by coating transparent glass 
substrates with QD-containing composite films, using a potentially cheap sol-gel method. 
They reported on the successful fabrication of thin silicon oxide films that contain CdS QDs 
using a sol-gel dip-coating process, whereby the 1-2 nm sized CdS QDs are formed during 
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thermal treatment after dip-coating. Depending on the anneal temperature, the colors of the 
LSC ranged from green for 250 °C to yellow for 350 °C and orange for 450 °C. Reda (2008) 
also prepared CdS QD concentrators, using sol-gel spin coating, followed by annealing. The 
annealing temperature was found to affect absorption and emission spectrum: luminescent 
intensity and Stokes’ shift both decreased for 4 weeks outdoor exposure to sunlight, which 
probably was caused by aggregation and oxidation. It is known that oxidation leads to blue-
shifts in emission (Van Sark et al. 2002). Blue-shifts have also been observed by Gallagher et 
al. (2007) who dispersed CdSe QDs in several types of resins (urethane, PMMA, epoxy), for 
fabrication of LSC plates.  
Bomm et al. (2011) have addressed several problems regarding incorporation of QDs in an 

organic polymer matrix, viz. phase separation, agglomeration of particles leading to turbid 

plates, and luminescence quenching due to exciton energy transfer (Koole et al. 2006). They 

have synthesized QDSCs using CdSe core/multishell QDs (Koole et al. 2008) (QE = 60%) 

that were dispersed in laurylmethacrylate (LMA), see also Lee et al. (2000) and Walker et al. 

(2003). UV-polymerization was employed to yield transparent PLMA plates with QDs 

without any sign of agglomeration. To one side of this plate, a mc-Si solar cell was placed, 

and aluminum mirrors to all other sides. Compared to the bare cell (5x0.5 cm2) that 

generated a current density of 40.28 mA/cm2 at 1000 W AM1.5G spectrum, the best QDC 

made generated a current of 77.14 mA/cm2, nearly twice as much. The QDC efficiency is 

3.5%. In addition, exposure to a 1000 W sulphur lamp for 280 hours continuously showed 

very good stability: the current density decreased by 4% only, on average. However, re-

absorption may still be a problem, as is demonstrated by a small red shift in the emission 

spectrum for long photon pathways; also absorption by the matrix is occurring. Besides QDs 

also nanorods (NRs) have been dispersed in PLMA, showing excellent transmittance of 93%; 

for long rods (aspect ratio of 6) a QE of 70% is observed, which is only slightly smaller than 

the QE in solution, implying that these rods are stable throughout the polymerization 

process. In addition, these NRs have also been dispersed in cellulosetriacetate (CTA), and a 

~10 Ǎm thin film on a glass substrate was made showing bright orange luminescence 

(Bomm et al. 2010). 

Hyldahl et al. (2009) used commercially available CdSe/ZnS core/shell QDs with QE=57% 

in LSCs, both liquid (QDs dissolved in toluene, between two 6.2x6.2x0.3 cm glass plates) and 

solid (QDs dispersed in epoxy), and they obtained an efficiency of 3.98% and 1.97%, 

respectively. They also used the organic dye Lumogen F Red300, and obtained efficiency of 

2.6% in toluene.  

4. Upconversion  

4.1 Principles  

Upconversion was, like DC also suggested in the 1950s, by Bloembergen (1959), and was 

related to the development of IR detectors: IR photons would be detected through 

sequential absorption, as would be possible by the arrangement of energy levels of a solid. 

However, as Auzel (2004) pointed out the essential role of energy transfer was only 

recognized nearly 20 years later. Several types of upconversion mechanisms exist (Auzel 

2004), of which the APTE (addition de photon par transferts d’energie) or, in English, ETU 

(energy transfer upconversion) mechanism is the most efficient; it involves energy transfer 

from an excited ion, named sensitizer, to a neighbouring ion, named activator (see Fig. 5).  
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Fig. 5. Schematic representation of two upconversion processes and the characteristic time 
response of the up converted emission after a short excitation pulse. (a), (b) Ground state 
absorption (GSA) followed by excited state absorption (ESA). This is a single ion process 
and takes place during the excitation pulse. (c), (d) Upconversion is achieved by GSA 
followed energy transfer between ions and the delayed response is characteristic of the 
energy transfer up conversion (ETU) (from Suyver et al. 2005a). 

Others are two-step absorption, being a ground state absorption (GSA) followed by an 

excited state absorption (ESA), and second harmonics generation (SHG). The latter 

mechanism requires extremely high intensities, of about 1010 times the sun’s intensity on a 

sunny day, to take place (Strümpel et al. 2007). This may explain that research in this field 

with focus on enhancing solar cell efficiency was started only recently (Shalav et al. 2007). 

Upconverters usually combine an active ion, of which the energy level scheme is employed 

for absorption, and a host material, in which the active ion is embedded. The most efficient 

upconversion has been reported for the lanthanide ion couples (Yb, Er) and (Yb, Tm); the 

corresponding upconversion schemes are shown in Fig. 6. The first demonstration of such 

an UC layer on the back of solar cells comprised an ultra thin (3 Ǎm) GaAs cell (band gap 

1.43 eV) that was placed on a 100 Ǎm thick vitroceramic containing Yb3+ and Er3+ (Gibart et 

al. 1996): it showed 2.5% efficiency upon excitation of 256 kW/m2 monochromatic sub-

band-gap (1.391 eV) laser light (1 W on 0.039 cm2 cell area), as well as a clear quadratic 

dependence on incident light intensity. 
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Fig. 6. Up conversion by energy transfer between Yb3+ and Er3+ (left) and Yb3+ and Tm3+ 

(right). Excitation is around 980 nm in the Yb3+ ion and by a two-step energy transfer or 

three-step energy transfer process higher excited states of Er3+ or Tm3+ are populated giving 

rise to visible (red, green or blue) emission. Full, dotted, and curly arrows indicate radiative, 

nonradiative energy transfer, and multiphonon relaxation processes, respectively (from 

Suyver et al. 2005a). 

Upconversion in solar cells was calculated to potentially lead to a maximum conversion 

efficiency of 47.6 % (Trupke et al. 2002b) for nonconcentrated sunlight using a 6000K 

blackbody spectrum in detailed-balance calculations. This optimum is reached for a solar 

cell material of ~2 eV band gap. Applied on the back of silicon solar cells,the efficiency limit 

would be ~37% (Trupke et al. 2002b). The analysis of the energy content of the incident 

AM1.5G spectrum presented in Fig. 3 revealed that cells with an UC layer would benefit 

from an extra amount of 35% light incident in the silicon solar cell (Richards 2006a).  

4.2 State of the art 

Lanthanides have also been employed in upconverters attached to the back of bifacial silicon 
solar cells. Trivalent erbium is ideally suited for up conversion of NIR light due to its ladder 
of nearly equally spaced energy levels that are multiples of the 4I15/2 to 4I13/2 transition (1540 
nm) (see also Fig. 3). Shalav et al. (2005) have demonstrated a 2.5% increase of external 
quantum efficiency due to up conversion using NaYF4:20% Er3+. By depicting luminescent 
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emission intensity as a function of incident monochromatic (1523 nm) excitation power in a 
double-log plot, they showed that at low light intensities a two-step up conversion process 
(4I15/2 → 4I13/2 → 4I11/2) dominates, while at higher intensities a three-step up conversion 
process (4I15/2 → 4I13/2 → 4I11/2 → 4S3/2 level) is involved.  
Strümpel et al. have identified the materials of possible use in up- (and down-) conversion 

for solar cells (Strümpel et al. 2007). In addition to the NaYF4:(Er,Yb) phosphor, they suggest 

the use of BaCl2:(Er3+,Dy3+) (Strümpel et al. 2005), as chlorides were thought to be a better 

compromise between having a low phonon energy and a high excitation spectrum, 

compared to the NaYF4 (Gamelin and Güdel 2001, Ohwaki and Wang 1994, Shalav et al. 

2007). These lower phonon energies lead to lower non-radiative losses. In addition, the 

emission spectrum of Dysprosium is similar to that of Erbium, but the content of Dy3+ 

should be <0.1%, to avoid quenching (Auzel 2004, Strümpel et al. 2007). 

NaYF4 co-doped with (Er3+, Yb3+) is to date the most efficient upconverter (Suyver et al. 

2005a, Suyver et al. 2005b), with ~50% of all absorbed NIR photons up converted and 

emitted in the visible wavelength range. However, the (Yb, Er) couple is not considered 

beneficial for up conversion in c-Si cells, as silicon also absorbs in the 920-980 nm 

wavelength range. These phosphors can be useful for solar cells based on higher band gap 

materials such as the Grätzel-cell (O'Regan and Grätzel 1991), a-Si(Ge):H or CdTe. In that 

case, the 2F5/2 level of Yb3+ would serve as an intermediate step for up conversion (Shalav et 

al. 2007) and IR-radiation between ~700 and 1000 nm that is not absorbed in these wider 

band gap solar cells can be converted into green (550 nm) light that can be absorbed. 

Nanocrystals of NaYF4:Er3+, Yb3+ also show upconversion. An advantage of using 

nanocrystals is that transparent solutions or transparent matrices with upconverting 

nanocrystals can be obtained. An excellent recent review on upconverting nanoparticles 

summarizes the status of a variety of UC materials that are presently available as 

nanocrystals, mostly phosphate and fluoride NCs (Haase et al., 2011). A problem with 

upconversion NCs is the lower upconversion efficiency (Boyer et al., 2010). There is a clear 

decrease in efficiency with decreasing size in the relevant size regime between 8 and 100 nm. 

The decrease in efficiency is probably related to surface effects and quenching by coupling 

with by high energy vibrations in molecules attached to the surface. 

When applying an upconverter, it is advantageous to use it with a cell that with a rather 

high band gap, such as amorphous Si (1.7 eV). A typical external collection efficiency (ECE) 

graph of a standard single junction p-i-n a Si:H solar cell is shown in Fig. 7. These cells are 

manufactured on textured SnO2:F coated glass substrates and routinely have >10% initial 

efficiency. Typically, the active Si layer in the cell has a thickness of 300 nm and the 

generated current is 14.0-14.5 mA/cm2, depending on the light trapping properties of the 

textured metal oxide and the back reflector. After light-induced introduction of the 

stabilized defect density (Staebler-Wronski effect (Schropp and Zeman 1998)), the stabilized 

efficiency is 8.2-8.5%. From Fig. 7 it can be seen that the maximum ECE is 0.8 at ~550 nm, 

and the cut-off occurs at 700 nm, with a response tailing towards 800 nm. The response is 

shown with and without the use of a buffer layer at the front of the cell. The buffer layer 

causes already an improvement at the short wavelengths, and a down converter or shifter 

may not be beneficial. The purpose of an upconverter is to tune the energy of the emitted 

photons to the energy where the spectral response shows a maximum. If the energy of the 

emitted photons is too close to the absorption limit (the band gap edge), then the absorption 

coefficient is too low and the up converted light would not be fully used.  
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Fig. 7. The spectral response for cells with and without a buffer layer at the p/i interface in 
the as deposited state obtained at -1 V bias voltage. Inset: the p-i-n- structure showing the 
position of the buffer layer (from Munyeme et al. 2004). 

The photogenerated current could be increased by 40% if the spectral response was 
sustained at high level up to the band gap cut off at 700 nm and by even more if light with 
wavelengths ǌ>700 nm could be more fully absorbed. These two effects can be achieved 
with the upconversion layer, combined with a highly reflecting back contact. While the 
upconversion layer converts sub-bandgap photons to super-bandgap photons that can thus 
be absorbed, a non-conductive reflector is a much better alternative than any metallic 
mirror, thus sending back both the unabsorbed super-bandgap photons as well as the 
“fresh” super-bandgap photons into the cell. It is estimated that the stabilized efficiency of 
the 8.2-8.5% cell can be enhanced to ~12 %. Besides a-Si, a material denoted as 
protocrystalline Si could be used; this is an amorphous material that is characterized by an 
enhanced medium range structural order and a higher stability against light-induced 
degradation compared to standard amorphous silicon. The performance stability of 
protocrystalline silicon is within 10% of the initial performance; its band gap is slightly 
higher (1.8 eV) than amorphous silicon.  
De Wild et al. (2011) have demonstrated upconversion for a-Si cells with NaYF4 co-doped 
with (Er3+, Yb3+) as upconverter. The upconverter shows absorption of 980 nm (by the Yb3+ 
ion) leading to efficient emission of 653 nm (red) and 520-540 nm (green) light (by the Er3+) 
after a two-step energy transfer process. The narrow absorption band around 980 nm for 
Yb3+ limits the spectral range of the IR that can be used for up conversion. An external 
quantum efficiency of 0.02% at 980 nm laser irradiation was obtained. By using a third ion 
(for example Ti3+) as a sensitizer the full spectral range between 700 and 980 nm can be 
efficiently absorbed and converted to red and green light by the Yb-Er couple. The resulting 
light emission in the green and red region is very well absorbed by the cell with very good 
quantum efficiency for electron-hole generation.  
Upconversion systems consisting of lanthanide nanocrystals of YbPO4 and LuPO4 have been 
demonstrated to be visible by the naked eye in transparent solutions, however at efficiency 
lower than solid state up conversion phosphors (Suyver et al. 2005a). Other host lattices 
(NaXF4, X=Y,Gd,La) have been used and codoping with Yb3+ and Er3+, or Yb3+ and Tm3+ 
appeared successful, where Yb3+ acts as sensitizer. Nanocrystals of <30 nm in size, to 
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prevent scattering in solution, have been prepared and they can be easily dissolved in 
organic solvents forming colloidal solutions, without agglomeration. Further efficiency 
increase is possible by growing a shell of undoped NaYF4 around the nanocrystal; in 
addition, surface modification is needed to allow dissolution in water, for use in biological 
labeling.  
Porous silicon layers are investigated for use as up converter layers as host for rare-earth 
ions, because these ions can easily penetrate the host due to the large surface area and 
porosity. A simple and low-cost dipping method has been reported (Díaz-Herrera et al. 
2009), in which a porous silicon layer is dipped in to a nitrate solution of erbium and 
ytterbium in ethanol (Er(NO3)3:Yb(NO3)3:C2H5OH), which is followed by a spin-on 
procedure and a thermal activation process at 900 ºC. Excitation of the sample at 980 nm 
revealed up-conversion processes as visible and NIR photoluminescence is observed; 
codoping of Yb with Er is essential, doping only with Er shows substantial quenching effects 
(González-Díaz et al. 2008). 
Sensitized triplet-triplet annihilation (TTA) using highly photostable metal-organic 
chromophores in conjunction with energetically appropriate aromatic hydrocarbons has 
been shown to be another alternative up conversion system (Singh-Rachford et al. 2008). 
This mechanism was shown to take place under ambient laboratory conditions, i.e. low light 
intensity conditions, clearly of importance for outdoor operation. These chromophores 
(porphyins in this case) can be easily incorporated in a solid polymer so that the materials 
can be treated as thin film materials (Islangulov et al. 2007). A problem with TTA 
upconverters is the spectral range. No efficient upconversion of NIR radiation at 
wavelengths beyond 800 nm has been reported which limits the use to very wide bandgap 
solar cells (Singh-Rachford et al, 2010). 

5. Modeling of spectral conversion 

An extension to the models described above was presented in a study by Trupke et al. 
(2006), in which realistic spectra were used to calculate limiting efficiency values for up 
conversion systems. Using an AM1.5G spectrum leads to a somewhat higher efficiency of 
50.69% for a cell with a band gap of 2.0 eV. For silicon, the limiting efficiency would be 
40.2%, or nearly 10% larger than the value of 37% obtained for the 6000K blackbody 
spectrum (Trupke et al. 2002b). This increase was explained by the fact that absorption in the 
earths’ atmosphere at energies lower than 1.5 eV (as evident in the AM1.5G spectrum) leads 
to a decrease in light intensity. Badescu and Badescu (2009) have presented an improved 
model, that according to them it appropriately takes into account the refractive index of 
solar cell and converter materials. Two configurations are studied: cell and rear converter 
(C-RC), the usual up converter application, and front converter and cell (FC-C), respectively. 
They confirm the earlier results of Trupke et al. (2002b) in that the limiting efficiency is larger 
than that of a cell alone, with higher efficiencies at high concentration. Also, the FC-C 
combination, i.e., up converter layer on top of the cell, does not improve the efficiency, which 
is obvious. Further, by studying the variation of refractive indexes of cell and converter 
separately, as opposed to Trupke et al. (2002b), it was found that the limiting efficiency 
increases with refractive index of both cell and up converter. In practice, a converter layer may 
have a lower refractive index (1.5, for a transparent polymer: polymethylmethacrylate 
(PMMA) (Richards and Shalav 2005)) , than that of a cell (3.4). Using a material with similar 
refractive index as the cell would improve the efficiency by about 10%.  
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In a series of papers the groups of Badescu, De Vos and co-workers (Badescu and De Vos 
2007, Badescu et al. 2007, De Vos et al. 2009) have re-examined the model for down 
conversion as proposed by Trupke et al. (2002a), and have added the effects of non-radiative 
recombination and radiation transfer through interfaces. Analogous to the model for up 
converters they studied FC-C and C-RC configurations, with down conversion or shifting 
properties. First, neglecting non-radiative recombination, Badescu et al. (2007) qualitatively 
confirm the results presented by Trupke and co-workers (2002a). For both configurations, 
the efficiency of the combined system is larger than that of a single mono-facial cell, albeit 
that the efficiency is smaller (~26%) due to inclusion of front reflections. Second, including 
radiative recombination for both converter and cell does only increase the efficiency for high 
(near unity) radiative recombination efficiency values. Interestingly, they report that in this 
case the C-RC combination cell-rear converter yields a higher efficiency than the FC-C 
combination in high-quality solar cells, while for low quality solar cells, this is reversed. 
More realistic device values and allowing for different refractive indices in cell and 
converter was studied by (Badescu and De Vos 2007), leading to the conclusion that in 
reality down converters may not always be beneficial. However, extending the model once 
more, with the inclusion of anti-reflection coating and light trapping texture, showed a 
limiting efficiency of 39.9%, as reported by De Vos et al. (2009).  
Del Cañizo et al. (2008) presented a Monte Carlo ray-tracing model, in which photon transport 
phenomena in the converter/solar cell system are coupled to non-linear rate equations that 
describe luminescence. The model was used to select candidate materials for up- and down-
conversion, but was set-up for use with rare-earth ions. Results show that for both converters, 
the potential gain in short-circuit current is small, and may reach 6-7 mA/cm2 at intensities as 
high as 1000 suns, in correspondence with earlier work by Shalav et al. (2007). 
Modelling downshifting layers on solar cells was also extended for non-AM1.5G spectra, 
including varying air mass between 1 and 10, and diffuse and direct spectra (Van Sark 2005). 
Here, the PC1D model (Basore and Clugston 1996) was used to model quantum dots 
dispersed in a PMMA layer on top of a multi-crystalline silicon cell (mc-Si) as function of the 
concentration of quantum dots. Annual performance has been modelled by using modelled 
spectra from the model SEDES2 (Houshyani Hassanzadeh et al. 2007, Nann and Riordan 
1991); these spectra can be considered realistic as actual irradiation data is used as input. It 
was found that the simulated short current enhancement, which varies between about 7% 
and 23%, is linearly related with the average photon energy (APE) of the spectra, based on 
hourly spectra of four typical and other randomly selected days throughout the year, and of 
monthly spectra. The annual short circuit increase was determined at 12.8% using the 
annual distribution of APE values and their linear relation (Van Sark 2007), which is to be 
compared with the 10% increase in case of the AM1.5G spectrum. For mc-Si cells with 
improved surface passivation and a concomitant improved blue response the relative short 
current increase has been calculated to be lower (Van Sark 2006). 
Modeling large area LSCs has indicated the importance of top-surface losses that occur 
through the escape cone (Chatten et al. 2007) both through primary emission and through 
emission of luminescence that has been reabsorbed and might otherwise have been trapped 
via total internal reflection or by mirrors. As an example, for an idealized (perfectly 
transparent host, LQE = 1), mirrored (perfect mirrors on one short and two long edges, and 
the bottom surface), 40×5×0.5 cm LSC doped with CdSe/ZnS core-shell QDs with emission 
matched to a GaInP cell, 24% of the AM1.5G spectrum is absorbed. The photon 
concentration ratio, C, which is the ratio of the concentrated flux escaping the right-hand 
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surface of the LSC to the flux incident on the top surface, is 4.18. However, since the 
concentrated flux escaping the right-hand surface is a narrow-band matched to the spectral 
response of the cell it can all be converted and the idealized LSC would produce 8 times the 
current compared to the cell alone exposed to AM1.5G. However, 78% of the luminescence 
is lost through the large top-surface area and only 22% may be collected at the right-hand 
surface. This lead to the use of wavelength-selective cholesteric liquid crystal coatings 
applied to the top surface in order to reduce the losses (Debije et al. 2006), as these coatings 
are transparent to incoming light but reflect the emitted light.  
Ray-tracing for LSCs uses basic ray-tracing principles, which means that a ray representing 
light of a certain wavelength travelling in a certain direction, is traced until it leaves the 
system e.g. by absorption or reflection at the interface (Burgers et al. 2005, Gallagher et al. 
2004). The main extension to the standard ray-tracing model is the handling of the 
absorption and emission by the luminescent species in the LSC. Ray-tracing has been used 
to perform parameter studies for a 5x5 cm2 planar LSC to find attainable LSC efficiencies. 
The concentrator consists of a PMMA plate (refractive index n=1.49, absorption 1.5 m-1) 
doped with two luminescent dyes, CRS040 from Bayer and Lumogen F Red 305 from BASF, 
with a FQE of 95% (Slooff et al. 2006). With the ray-tracing model the efficiency of this plate 
together with a mc-Si solar cell was determined to be 2.45%. Results for attaining efficiencies 
for other configurations are shown in Table 1 (Van Sark et al. 2008a). Replacing the mc-Si 
cell by a GaAs cell or an InGaP cell, will increase the efficiency from 3.8% to 6.5% and 9.1%, 
respectively (based on Voc (FF) values of 0.58 V (0.83), 1.00 V (0.83), and 1.38 V (0.84), for 
mc-Si, GaAs, InGaP, respectively). Thus, the use of GaAs or InGaP cells will result in higher 
efficiencies, but these cells are more expensive. A cost calculation must be performed to 
determine if the combination of the luminescent concentrator with this type of cells is an 
interesting alternative to mc-Si based solar technology.  
 

mc-Si GaAs InGaP parameters 

2.4 4.2 5.9 fixed mirrors, 85% reflectivity, dyes with 95% LQE 

2.9 5.1 7.1 
97% reflectivity “air-gap mirrors” on sides, and 

97% reflectivity Lambertian mirror at bottom 

3.4 5.9 8.3 
reduce background absorption of polymer matrix 

from 1.5 m-1 to 10-3 m-1 

3.8 6.5 9.1 increase of refractive index from 1.49 to 1.7 

Table 1. Calculated efficiencies (in %) for an LSC for various optimized configurations and 
parameters (Van Sark et al. 2008a). A Lambertian mirror is one that reflects radiation 
isotropically. 

Currie et al. (2008) projected conversion efficiencies as high as 6.8%, for a tandem LSC based 
on two single LSCs that consist of thin layer of deposited organic dye molecules onto a glass 
plate to which a GaAs cell was attached. Using CdTe or Cu(In,Ga)Se2 solar cells conversion 
efficiencies of 11.9% and 14.5%, respectively, were calculated. 
Annual performance has been modeled using an LSC of which the properties and geometry 
resulted from a cost-per-unit-of-power optimization study by Bende et al. (2008). A square 
plate of 23.7x23.7x0.1 cm3 was used and in the ray-trace model attached to four c-Si solar 
cells (18.59% efficiency) on all sides. Using a Lumogen F Red 305 (BASF) dye it was 
calculated that 46.5% of all photons in the wavelength range of 370-630 nm were collected, 
leading to an LSC efficiency of 4.24% (Van Sark et al. 2008b). The annual yield of this LSC 
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was determined using realistic spectra representative for the Netherlands from Houshyani 
Hassanzadeh and collaborators (2007) and amounted to 41.3 kWh/m2, and this is equivalent 
to an effective annual efficiency of 3.81%.  

6. Discussion and outlook 

Two issues remain to be solved before downconverters can be applied in solar cells: the 
absorption strength needs to be increased as the transitions involved for the trivalent 
lanthanides are sharp and weak (parity forbidden). A second issue is concentration 
quenching. High Yb-concentrations are needed for efficient energy transfer as every donor 
(Tb, Pr or Tm) needs to have two Yb-neighbours for energy transfer. For these high 
concentrations, energy migration over the Yb-sublattice occurs and trapping of the 
migrating excitation energy by quenching sites strongly reduces the emission output. At 
present research is conducted to resolve these issues. The limited absorption can be solved 
by the inclusion of a sensitizer for the 3P0 level of Pr3+, which is able to absorb efficiently 
over a broad wavelength range (300-500 nm) and subsequent energy transfer to the 3P0 level 
of Pr3+. In principle, such sensitization can be realized in an efficient and cost-effective 
manner by the inclusion of a sensitizer ion. The 4f-5d luminescence of Ce3+, for example, is 
often used to sensitize the Tb3+ luminescence in phosphors for fluorescent tubes. 
Concentration quenching may be limited by optimization of the synthesis conditions (less 
quenching sites) while also the synthesis of nanocrystals may be beneficial. In nanocrystals 
the volume probed by energy migration is limited (due to the small size of the nanocrystal) 
and for defect-free nanocrystals high quantum yields can be expected, similar to the increase 
in quantum yield observed for quantum dots vs. bulk semiconductors.  
For upconverters based on lanthanides absorption strengths need also to be increased and 
quenching decreased. In addition, upconversion could be useful for solar cells with band 
gap higher than that of crystalline silicon; thus, research is directed toward optimum 
matching of NIR absorption and visible emission with the band gap of the solar cell to 
which the up converter is attached.  
Modelling studies on incorporation of conversion layers on top (down converter or down 
shifter) or at the bottom (upconverter) of single junction solar cells have shown that the 
conversion efficiency may increase by about 10% (Glaeser and Rau 2007, Richards 2006b, 
Strümpel et al. 2007, Trupke et al. 2006, Van Sark 2005, Van Sark et al. 2005). This is still an 
experimental challenge. Also, stability of converter materials is a critical issue, as their 
lifetime should be >20 years to comply with present solar module practice. 
The usefulness of down- and upconversion and downshifting depends on the incident 
spectrum and intensity. While solar cells are designed and tested according to the ASTM 
standard (ASTM 2003), these conditions are rarely met outdoors, as discussed by Makrides 
and collaborators in Chapter 8 of this book. Spectral conditions for solar cells vary from 
AM0 (extraterrestrial) via AM1 (equator, summer and winter solstice) to AM10 (sunrise, 
sunset). The weighted average photon energy (APE) (Minemoto et al. 2007) can be used to 
parameterize this; the APE (using the range 300-1400 nm) of AM1.5G is 1.674 eV, while the 
APE of AM0 and AM10 are 1.697 eV and 1.307 eV, respectively. Further, overcast skies cause 
higher scattering leading to diffuse spectra, which are blue-rich, e.g., the APE of the AM1.5 
diffuse spectrum is calculated to be 2.005 eV, indeed much larger than the APE of the AM1.5 
direct spectrum of 1.610 eV. As DC and DS effectively red-shift spectra, the more blue an 
incident spectrum contains (high APE) the more gain can be expected (Van Sark 2005, 2008). 
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Application of DC layers will therefore be more beneficial for regions with high diffuse 
irradiation fraction, such as Northwestern Europe, where this fraction can be 50% or higher. 
Thus, luminescent solar concentrators are expected to be deployed successfully in such 
regions (Van Sark et al. 2008b). In contrast, solar cells with UC layers will be performing 
well in countries with high direct irradiation fractions or in early morning and evening due 
to the high air mass resulting in low APE, albeit that the non-linear response to intensity 
may be limiting.  
The variation of the incident spectra are of particular concern for series-connected multiple 

junction cells, such as triple a-Si:H (Krishnan et al. 2009) and GaAs-based cells. Current-

mismatch due to spectral differences with respect to the AM1.5G standard leads to lowering 

of the conversion efficiency, as the cell with the lowest current determines the total current. 

It has been shown that the calculated limiting efficiency of a GaAs-based triple cell is 

reduced to 32.6% at AM5 while its AM1.5G efficiency was 52.5% (Trupke et al. 2006). A 

single cell with an UC layer, having an AM1.5G efficiency of 50.7%, does not suffer that 

much from an increase in air mass: at AM5 the efficiency is lowered to 44.0% (Trupke et al. 

2006). This so-called spectral robustness is due to the current matching constraints, which 

are much more relaxed in the cell/UC layer case. 

Successfully optimizing absorption strength and quenching in lanthanides based down 

converters will bring the theoretical limits within reach. This also holds for up conversion, 

where, in addition triplet-triplet annihilation and mixed transition metal/lanthanide 

systems (Suyver et al. 2005a) constitute new material systems. 

Future use of DS layers on top of solar cells may be limited as blue response of present cells 

will advance to higher levels (Van Sark 2006). On the other hand, these improvements might 

require additional expensive processing, while application of a DS layer is expected to be 

low-cost, as it only involves coating of a plastic with dispersed luminescent species. 

LSC development will focus on material systems that: 1) absorb all photons with 

wavelength > 950 nm, and emit them red-shifted at ~1000 nm, for use with c-Si solar cells, 2) 

have as low as possible spectral overlap between absorption and emission spectra to 

minimize re-absorption losses; 3) have near unity luminescence quantum yield; 4) have low 

escape cone losses; 5) be stable outdoors for more than 10 years; 6) be easy to manufacture at 

low cost (Rowan et al. 2008). Much progress has occurred, which is illustrated by the recent 

efficiency record of 7.1% (Slooff et al. 2008) for organic dyes in PMMA. The present lack of 

NIR dyes will prohibit further increase of conversion efficiency towards the 30% limit. Here, 

quantum dots or nanorods may have to be used, as their broad absorption spectrum is very 

favourable. However, they should be emitting in the NIR at high quantum efficiency, larger 

than the present ~70-80%, and their Stokes’ shift should be larger. The latter would be 

possible as the size distribution of a batch of QDs influences the Stokes’ shift (Barnham et al. 

2000). Another strategy could be the use of so-called type II QDs, as their Stokes’ shift could 

be very large (~300 nm), however, but their stability and QE are not good enough yet. 

Stability could be improved using multishell QDs (Koole et al. 2008), while interfacial 

alloying can be optimized to obtain type II QDs with desired properties, i.e., a Stokes’ shift 

of ~50-100 nm, without spectral overlap (Chin et al. 2007). An different approach was 

presented recently that employs resonance-shifting to circumvent reabsorption losses 

(Giebink et al. 2011). Also, Eu3+ has been employed succesfully to address self-absorption 

loss (Wang et al. 2011). Alternatively, the originally proposed three-plate stack (Goetzberger 

and Greubel 1977) could be further developed using perhaps a combination of organic dyes 
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and nanocrystals, or even rare earth ions (Rowan et al. 2008), with optimized dedicated solar 

cells for each spectral region.  

7. Conclusion 

The possibility to tune chemical and physical properties in nanosized materials could have a 
transformational effect on the performance of solar cells and one of the prominent research 
areas of nanomaterials for photovoltaics involves spectral conversion. In this chapter we 
reviewed pathways of spectrum modification for application in solar cells by means of 
down- and upconversion, and downshifting. Nanoparticles, based on semiconductors or 
lanthanides, embedded in predominantly polymer layers on top or at the back of solar cells 
are an essential ingredient of spectral conversion mechanisms that may potentially lead to 
higher solar cell conversion efficiencies.  
Increasing the conversion efficiency, while keeping manufacture cost as low as possible is 
the main R&D target in solar photovoltaic energy for the coming decades. Nanomaterial 
synthesis and nanotechnology will play a key role in this.  
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