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1. Introduction

The solar wind provides a fascinating laboratory for the investigation of a wide range
of plasma physical nonlinear processes, such as, e.g., turbulence, intermittency, magnetic
reconnection and plasma heating. One of the key aspects for a deep understanding of
these phenomena is the plasma behaviour at small scales. This chapter is intended as a
discussion forum on the role played by small scales in solar wind plasma dynamics and/or
evolution. Processes occurring at large scales are anyhow responsible for the generation of
small scale kinetic fluctuations and structures that in turn have important feedback on the
global system evolution. In particular, we will focus our attention on two topics, namely
magnetic reconnection and kinetic effects at short spatial scales.

For instance, magnetic reconnection occurring at non-MHD scales is linked to the small
scale solar wind discontinuities. In particular, recent studies have shown that current sheets
produced by turbulence cascade and discontinuities observed in the solar wind have very
similar statistical properties and they are connected to intermittency.

Furthermore, the solar wind offers the best opportunity to study directly collisionless plasma
phenomena and to attempt to address fundamental questions on how energy is transferred
from fluid-large to small scales and how it is eventually dissipated. The processes by which
energy is transferred from the fluid-scale inertial range into, ultimately, heating of ions and
electrons are not well understood yet: there is growing evidence that multiple processes
operate in the solar wind, either simultaneously or in different regimes. Kinetic effects (such
as, for example, wave-particle resonant interaction) that presumably govern the short-scale
dynamics are considered the best candidates to replace collisional processes in "dissipating"
the energy at small wavelengths and in heating the plasma.

The aim of this chapter is to review the state of the art on these topics and their possible
implications on space weather, both under theoretical and numerical standpoints, and
comparing theoretical results with recent observations.

The chapter consists of two sections, at the end of which we give our conclusions.

2. Magnetic reconnection as an element of turbulence

Magnetic reconnection is a process that occurs in many astrophysical and laboratory
plasmas (Moffatt, 1978). Systems like the solar surface (Parker, 1983), the magnetosphere
(Sonnerup et al., 1981), the solar wind (Gosling & Szabo, 2008), and the magnetosheath
(Retinò et al., 2007; Sundkvist et al., 2007) represent just some of the classical systems in which
magnetic reconnection occurs. Another underlying common feature of the above systems is
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2 Will-be-set-by-IN-TECH

the presence of turbulence (Bruno & Carbone, 2005), so a simultaneous description of both
reconnection and turbulence is needed.

In the past 60 years, most of the theoretical effort has been addressed to the study of the
basic physics of reconnection, concentrating on idealized two-dimensional (2D) geometries.
Generally, these 2D models are characterized by a strong current density peak, where a
magnetic X-type neutral point is found (Dungey, 1958). A well-known description of this
process was provided by Sweet (Sweet, 1958) and Parker (Parker, 1957). In their work,
employing conservation of mass, pressure balance and constancy of the electric field, the
essential large scale dynamics of magnetic reconnection was described. In this configuration, a
narrow layer called the “diffusion region” forms, and here the field-lines break and reconnect.
This process produces a plasma flow into the layer, accompanied by an outflow along the
neutral sheet.

In many cases the reconnecting system has been idealized as occurring in a limited spatial
region, employing a “rigid-box” topology in which the magnetic field is often arbitrarily
chosen to be straight at the inflow-side boundaries. Moreover, simplified “outflow”
boundaries are employed. However, such idealized conditions rarely occur in nature, since
plasmas may frequently experience turbulence (Bruno & Carbone, 2005). In turbulence,
magnetic reconnection may behave in a less predictable way, departing considerably from
rigid-box models.

We view reconnection as an element of turbulence itself: it would be difficult to envision
a turbulent cascade that proceeds without change of magnetic topology. Furthermore,
turbulence provides a natural boundary condition, as opposed to arbitrary (imposed)
conditions. Although some suggestions have been made regarding both the general
role of reconnection in magnetohydrodynamic (MHD) turbulence (Carbone et al., 1990;
Dmitruk & Matthaeus, 2006; Matthaeus & Lamkin, 1986; Veltri, 1999)) and the impact of
small scale turbulence on reconnection of large structures (Lapenta, 2008; Malara et al., 1992;
Matthaeus & Montgomery, 1980; Matthaeus & Lamkin, 1986; Veltri, 1999)), only recently a
quantitative study of reconnection in turbulence has been presented (Servidio et al., 2009;
2010a). In the scenario proposed in these papers, multiple-reconnection events are present
in turbulence. The properties of these events depend on the local topology of the magnetic
field and the local turbulence conditions.

Our ideas on magnetic reconnection have broad applications, and one of them is the turbulent
solar wind. In the free solar wind, in fact, strong magnetic discontinuities are commonly
observed (Burlaga, 1968; Tsurutani & Smith, 1979). These consist of rapid changes of the
magnetic field, across narrow layers. It is natural to ask whether these discontinuities
are related to the process of reconnection. In recent works by Greco et al. (2008; 2009);
Servidio et al. (2011) a link between these rapid changes of the magnetic field and the presence
of intermittent current sheets was proposed. In the present book chapter we retrace these ideas
providing evidence that reconnection and discontinuities may be different faces of the same
coin.

2.1 Overview on 2D MHD turbulence

The investigations described here are carried out in the limited context of incompressible 2D
MHD, for which the turbulence problem, as well as the well-resolved reconnection problem,
are already very demanding.

196 Exploring the Solar Wind
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Small Scale Processes in The Solar Wind 3

Fig. 1. Shaded contour of the current density j together with the line contours of the magnetic
potential a at t∗ = 0.3 .

The 2D incompressible MHD equations can be written in terms of the magnetic potential
a(x, y) and the stream function ψ(x, y). By choosing a uniform mass density ρ = 1, the
equations read:

∂ω

∂t
= − (v ·∇)ω + (b ·∇) j + Rν

−1
∇

2ω, (1)

∂a

∂t
= − (v ·∇) a + Rµ

−1
∇

2a, (2)

where the magnetic field is b=∇a × ẑ, the velocity v=∇ψ × ẑ, the current density j=−∇
2a,

and the vorticity ω = −∇
2ψ. Eqs. (1)-(2) are written in Alfvén units with lengths scaled to

L0. The latter is a typical large scale length such that the box size is set to 2πL0. Velocities and
magnetic fields are normalized to the root mean square Alfvén speed VA and time is scaled to
L0/VA. Rµ and Rν are the magnetic and kinetic Reynolds numbers, respectively (at scale L0.)
The latter coefficients are reciprocals of kinematic viscosity and resistivity.

Eqs. (1)-(2) are solved in a periodic Cartesian geometry (x, y), using a well tested dealiased
(2/3 rule) pseudo-spectral code. We employ a standard Laplacian dissipation term with
constant dissipation coefficients. The latter are chosen to achieve both high Reynolds numbers
and to ensure adequate spatial resolution. A detailed discussion of these issues has been given
by Wan et al. (2010). We report on runs with resolution from 40962 up to 163842 grid points,
reaching Reynolds numbers Rν =Rµ ∼ 10000. Time integration is second order Runge-Kutta
and double precision is employed.

Considering a representation of the fields in the Fourier space, for a particular run, the energy
is initially concentrated in the shell 5 ≤ k ≤ 30 (wavenumber k in units of 1/L0), with mean
value E = 1

2 〈|v|2 + |b|2〉 ≃ 1, 〈...〉 denoting a spatial average. Random uncorrelated phases are
employed for the initial Fourier coefficients. The latter implies that the cross helicity, defined
as Hc = 1/2〈v · b〉, is negligible. The kinetic and the magnetic energy at the beginning of the
simulation are chosen to be equal.

We consider for the statistical analysis the state of the system at which the mean square current
density 〈j2〉 is very near to its peak value. At this instant of time the peak of small scale
turbulent activity is achieved.

197Small Scale Processes in the Solar Wind
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4 Will-be-set-by-IN-TECH

When turbulence is fully developed, coherent structures appear. They can be identified as
magnetic islands (or vortices). A typical complex pattern of 2D MHD turbulence is shown in
Fig. 1, at high Reynolds numbers . In the figure is represented a contour plot of the current
j, together with the in-plane magnetic field (line contour of a). The current density j becomes
very high in narrow layers between islands.

In Fig. 2-(a), a zoom into the turbulent field is represented, showing that the current is
bursty in space. This behavior of the current is related to the intermittent nature of the
magnetic field (Mininni and Pouquet, 2009) and can be interpreted as a consequence of fast
and local relaxation processes (Servidio et al., 2008). The probability distribution function
(PDF) of the current density strongly departs from a Gaussian, as shown in Fig. 2-(b). These
coherent structures interact non-linearly, merge, stretch, connect, attract and repulse each
other. Reconnection is a major element of this complex interaction.

Fig. 2. (a) Shaded-contour of the current density j in a sub-region of the simulation box; (b)
PDF of the current density, normalized to its variance, for high Reynolds number turbulence
(black bullets). The Gaussian distribution is the red-dashed line.

2.2 Local reconnection events in turbulence

The reconnection rate of two islands is given by the electric field at the X-point. This is related
to the fact that the magnetic flux in a closed 2D island is computed as the integrated magnetic
field normal to any contour connecting the central O-point (maximum or minimum of a) with
any other specified point. Choosing that point to be an X-point bounding the island, we find
that the flux in the island is just a(O − point), −a(X − point). Flux is always lost at the O-point
in a dissipative system, so the time rate of change of the flux due to activity at the X-point is

∂a

∂t
= −E× = (R−1

µ j)×, (3)

where E× is an abbreviation for the electric field measured at the X-point (analogously for the
current j×). Eq. (3) follows from the Ohm’s law

E = −v× b+ R−1
µ j, (4)

which in 2D involves only the out of plane component Ez = −(v × b)z + R−1
µ j. Therefore, in

order to describe the local processes of reconnection that spontaneously develop in turbulence
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Small Scale Processes in The Solar Wind 5

Fig. 3. Contour plot of the magnetic potential a with the position of all the critical points:
O-points (blue stars for the maxima and red open-diamonds for the minima) and X-points
(black ×).

we examine the topology of the magnetic potential studying the Hessian matrix of a, defined
as

Ha
i,j(x) =

∂2a

∂xi∂xj
, (5)

which we evaluate at the neutral points of the magnetic field. Further details on the
methodology are provided in Servidio et al. (2010a). Here we briefly summarize the main
steps of the analysis:

1. Identify critical points at x∗, where ∇a = 0
2. Compute the Hessian matrix, given by Eq. (5), at x∗

3. Compute eigenvalues λ1 and λ2 of Ha
i,j(x

∗), with λ1 > λ2

4. Classify the critical point as maximum (both λi < 0), minimum (both λi > 0) and saddle
points (or X-points) (λ1λ2 < 0).

5. Compute eigenvectors at each X-point. The associated unit eigenvectors are ês and êl ,
where coordinate s is associated with the minimum thickness δ of the current sheet, while
l is associated with the elongation ℓ. Note that the local geometry of the diffusion region
near each X-point is related to the Hessian eigenvalues λ1 = ∂2a

∂s2 and λ2 = ∂2a
∂l2 .

6. According to Eq. (3), the reconnection rates are given by the electric field at the X-points.
These rates are then normalized to the mean square fluctuation δb2

rms, appropriate for
Alfvènic turbulence.

In Fig. 3 we show the magnetic potential a with the critical point locations, obtained with
the above procedure. In this complex picture the X-points link islands with different size and
energy.

From a scaling analysis ℓ

δ ≃
√

λR, where λR =
∣

∣

∣

λ1
λ2

∣

∣

∣
. In the case in which the reconnection

is in a stationary state, the rate depends on the above aspect ratio λR, satisfying the scaling
E× ∼ ℓ

δ ∼
√

λR. In Fig. 4, a scatter plot of the reconnection rates against the aspect ratio λR

is shown. There is a clear trend in this figure, showing that the expression for E× is satisfied.
This suggests that locally the reconnection processes depend on the geometry and that they
therefore are in a quasi steady-state regime.

199Small Scale Processes in the Solar Wind
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6 Will-be-set-by-IN-TECH

Fig. 4. Scatter plot (black full squares) of the reconnection rates vs the geometry of the
reconnection region (ratio of the eigenvalues λR). The presence of a power-law fit (red line)
demonstrates that there is a relation between the reconnection rate and the geometry of the
diffusion region. The relative “randomized" reconnection rate is reported with (gray) crosses.

The approximate power-law scaling seen in Fig. 4 at larger values of λR suggests that the
expression for E× holds for the fastest reconnection events. The weaker reconnection events
evidently follow a different scaling. We now show that the collection of slowly reconnecting
(or even non-reconnecting) X-point regions is associated with a distribution of magnetic
fields that is Gaussian. As described by Servidio et al. (2009; 2010a), we now employ a
phase-randomizing procedure: the original turbulent field is compared with a hybrid field that
has the same spectrum but random phases. The coherency of a turbulent pattern is, in fact,
hidden in the phases of the Fourier expansion. Using this technique, one can distinguish
between slow (Gaussian) and fast (non-Gaussian) reconnection events (Servidio et al., 2010a).
As it can be seen from Fig. 4, the reconnection rates of the incoherent randomized magnetic
field are on average much weaker than for the original case and they do not manifest any
dependence on the aspect ratio of the eigenvalues. In fact the part of the distribution where we
found the strongest reconnection sites and the scaling relation with aspect ratio is completely
absent in the Gaussianized case. We would like to stress that phase-coherency analysis are
widely used in the literature, and they are generally adopted to identify coherent structures
(Hada et al., 2003; Sahraoui & Goldstein, 2010).

2.3 The link between magnetic reconnection and turbulence

Now we will take a closer look at the reconnection sites, trying to link them to the
characteristic scales of MHD turbulence. Because of the complexity of the geometry we will
focus only on the X-lines with higher reconnection rates, identified as described above. We
need at this point to find a methodology to quantitatively characterize every reconnection
region and extrapolate important information such as δ and ℓ. Since we know the ratio of the
eigenvalues obtained from the Hessian matrix analysis, using ℓ

δ ≃ √
λR, the problem reduces

to find just one of these lengths, say δ.

We call bt(s) and bn(s) the normal and the tangential component of the magnetic field,
respectively. These components are obtained by projecting the in-plane magnetic field into the
system of reference given by {êl , ês}, that is bt = êl · b, bn = ês · b. Using the eigensystem of
the Hessian matrix (λi and êi), together with local fit-functions, the up-stream magnetic field
can be estimated, locally, for each reconnection region. Note that, the process of reconnection
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Small Scale Processes in The Solar Wind 7

Fig. 5. (a) histograms of thicknesses (δ, gray bars) and elongations (ℓ, blue bars). Vertical lines
are average values 〈δ〉 (dashed gray) and 〈ℓ〉 (full blue). (b) the magnetic field
auto-correlation function (solid black line) is represented. The arrows (left to right) represent
respectively: dissipation scale λdiss, Taylor micro-scale λT and correlation length λC.

in turbulence is often asymmetric, so we define two upstream magnetic fields b1 and b2 (we
suppressed subscript t).

The PDFs of δ and ℓ are reported in Fig. 5-(a), showing that they are well separated.

The present goal is to look for possible links between the reconnection geometry and the
statistical properties of turbulence. In order to get more information about these associations
we computed the auto-correlation function of the magnetic field. The correlation length is
defined as λC =

∫ ∗
0 C(r)dr, where

C(r) =
〈b(x+ r) · b(x)〉

〈b2〉 , (6)

where the direction of displacement r is arbitrary for isotropic turbulence in the plane, and
the upper limit is unimportant if the distant eddies are uncorrelated. The correlation length
λC is a measure of the size of the energy containing islands. The auto-correlation function is
illustrated in Fig. 5-(b). In the same figure 〈δ〉, 〈ℓ〉 are reported as vertical lines for comparison.
The dissipation length, at which the turbulence is critically damped, is defined as λdiss =

R
− 1

2
µ 〈ω2 + j2〉− 1

4 , while the Taylor micro-scale, a measure of mean-square gradients, is λT =
√

〈|b|2〉
〈j2〉 . The above lengths are represented in Fig. 5-(b).

It appears that the average elongation ℓ is strongly related to the correlation length where
C(r) → 0. For all simulations, we found that the values of diffusion layer thickness δ is
distributed in the range between the Taylor scale and the dissipation scale, while the length ℓ,
though broadly scattered, scales with λC (c.f. Fig. 5). The main features of this ensemble of
reconnecting events, including the key length scales, are evidently controlled by the statistical
properties of turbulence, setting the range of values of length and thickness of the diffusion
regions according to the correlation length and the dissipation scale. Note that a correlation
between diffusion width and dissipation was discussed experimentally by Sundkvist et al.
(2007).

2.4 Applications to the turbulent solar wind

The statistical properties of reconnection have been investigated in the previous sections,
leading to the conclusion that strong reconnection events can locally occur in 2D MHD

201Small Scale Processes in the Solar Wind
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Fig. 6. Contour lines of the magnetic field (or line contour of a) together with the diffusion
regions (blue shaded map), and with the one-dimensional path s (green solid line). On the
same plot, the discontinuities identified by PVI technique with a threshold θ = 5 in Eq. (8)
(open magenta squares) are represented. Bullets (black) are discontinuities which correspond
to reconnection sites.

turbulence. In this section we will review some of the main results about the link between
solar wind discontinuities and local magnetic reconnection processes.

A well-known feature of solar wind observations is, in fact, the appearance of sudden
changes in the magnetic field vector, defined as directional discontinuities (DDs), which are
detected throughout the heliosphere (Burlaga, 1968; Ness & Burlaga, 2001; Neugebauer, 2006;
Tsurutani & Smith, 1979). These changes are often seen at time-scales of 3 to 5 minutes,
although similar discontinuities are seen at smaller time scales (Vasquez et al., 2007). In
addition to identification based on characterization of discontinuities, coherent structures
have also been identified using other approaches, such as wavelets (Bruno et al., 2001;
Veltri & Mangeney, 1999) or phase coherency analysis (Hada et al., 2003; Koga et al., 2007;
Koga & Hada, 2003).

One interpretation of magnetic discontinuities is that they are the walls between filamentary
structures of a discontinuous solar wind plasma (Borovsky, 2006; Bruno et al., 2001; Burlaga,

Fig. 7. Left: Spatial signal ℑ(∆s, ℓ, s) (PVI) obtained from the simulation by sampling along
the trajectory s in the simulation box, with ∆s ≃ 0.67λdiss and ℓ ≃ 535λC . Right: Same
quantity obtained from solar wind data, with ∆s = 20 s and ℓ ≃ 500λC .

202 Exploring the Solar Wind
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Small Scale Processes in The Solar Wind 9

1969), while another is that some strong discontinuities are fossils from the birth of
the solar wind (Borovsky, 2008; Burlaga, 1968). An alternative possibility is that the
observed discontinuities are the current sheets that form as a consequence of the MHD
turbulent cascade (Matthaeus & Montgomery, 1980; Veltri, 1999)). Recent studies on magnetic
discontinuities show that their statistical properties are very similar to distributions obtained
from simulations of MHD turbulence (Greco et al., 2008; 2009). This line of reasoning argues
that thin current sheets are characteristic coherent structures expected in active intermittent
MHD turbulence (Mininni and Pouquet, 2009), and which are therefore integral to the
dynamical couplings across scales. Therefore, solar wind discontinuities are one of the best
applications of our theory of reconnection-in-turbulence.

In this perspective, one is led naturally to suspect that at least some of the current sheets
that are a common feature of the solar wind at 1 AU may be participating in small-scale
magnetic reconnection (Gosling & Szabo, 2008; Phan et al., 2010; Sundkvist et al., 2007), as
well as inhomogeneous interplanetary plasma dissipation and heating (Leamon et al., 2000;
Osman et al., 2011). To further establish the relationship between current sheets and small
scale reconnection in turbulence, some quantitative connection is needed.

We have in mind the particular question: If one identifies a current sheet in turbulence, how
likely is it to be also an active reconnection site? Here we show, using MHD simulation
data, that methods for identifying intermittent current sheet-like structures, when quantified
properly, can identify sets of structures that are likely to be active reconnection regions.

For the present statistical analysis we will consider a 40962 run. Anticipating possible
applications to spacecraft data, we focus on properties of discontinuities that are recorded
by magnetic field measurements at a single spacecraft in interplanetary space. We adopt a
spacecraft-like sampling through the simulation domain [see Fig. 6 and Greco et al. (2008)],
and we call s this trajectory. In particular, we can define a set whose elements consist of
the segments of a trajectory that passes through any reconnection zone, identified by the
cellular automaton method (Servidio et al., 2010a;b). In this way we can build a set of strong
reconnection site encounters (RS) associated with a trajectory. Fig. 6 shows an example of
reconnection sites together with the one-dimensional path s.

Interpolating the magnetic field data along the one-dimensional path s Greco et al. (2008), we
can identify discontinuities (TDs) with the following procedure:

1. First, to describe rapid changes in the magnetic field, we look at the increments

∆b(s, ∆s) = b(s + ∆s)− b(s), (7)

where ∆s the spatial separation or lag. For this simulation we choose a small scale lag,
∆s ≃ 0.67λdiss, which is comparable to the turbulence dissipation scales (see previous
sections).

2. Second, employing only the sequence of magnetic increments, we compute the normalized
magnitude

ℑ(∆s, ℓ, s) =
|∆b(s, ∆s)|

√

〈|∆b(s, ∆s)|2〉
ℓ

, (8)

where 〈•〉ℓ = (1/ℓ)
∫

ℓ
•ds denotes a spatial average over an interval of length ℓ, and ∆s

is the spatial lag in Eq. (7). The square of the above quantity has been called the Partial
Variance of Increments (PVI) (Greco et al., 2008) and the method abbreviated as the PVI
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Method θ # ITD # IRS efficiency (%) goodness (%)
ℑ1 1 378 37 100 9.8
ℑ5 5 40 23 62.2 57.5
ℑ8 8 13 13 35.1 100

Table 1. First column: label of the method ℑθ . Second column: threshold θ imposed on PVI,
cf., Eq.(9). Third column: #ITD, number of discontinuities identified by the method. Fourth
column: #IRS, number of reconnection sites found by the method. Fifth column: #IRS/#RS,
the relative efficiency of the method, identified reconnection sites as percent of all the
reconnection sites present along the path. Last column: #IRS/#ITD, the relative goodness of
the method, percent of identified reconnection events in set of identified discontinuities.

method. For the numerical analysis performed here ℓ ≃ 535λC , where λC = 0.18 is the
turbulence correlation length - a natural scale for computing averages.

The PVI time series, evaluated using Eqs. (7)-(8) is reported in Fig. 7. The illustration spans
more than 500 correlation lengths. This spatial signal has been compared to a time signal
measured by a ACE solar wind spacecraft, near 1 AU, over a period of about 20 days (right
panel of the figure). In order to facilitate the comparison, we converted the time signal to
a spatial signal, using the average velocity of the flow, and then normalized to a solar wind
magnetic correlation length of 1.2 × 106 km.

The PVI increment time series is bursty, suggesting the presence of sharp gradients and
localized coherent structures in the magnetic field, that represent the spatial intermittency
of turbulence. These events may correspond to what are qualitatively called “tangential
discontinuities” and, possibly, to reconnection events.

Imposing a threshold θ on Eq. (8), a collection of stronger discontinuities along the path s can
be identified. That is, we select portions of the trajectory in which the condition

ℑ(∆s, ℓ, s) > θ (9)

is satisfied, and we will employ this condition to identify candidate reconnection sites. In
Fig. 6, an example of the location of discontinuities along s, selected by the PVI method
with a particular threshold θ, is shown. One can immediately see in Fig. 6 that there is an
association, but not an identity, between the set of “events” identified using Eq. (9), and the
encounters of the trajectory with reconnection regions. We will now study this association
quantitatively using different values of threshold θ. To understand the physical meaning of
the threshold θ, we recall Greco et al. (2008; 2009) that the probability distribution of the PVI
statistic derived from a nonGaussian turbulent signal is empirically found to strongly deviate
from the pdf of PVI computed from a Gaussian signal, for values of PVI greater than about
3. As PVI increases to values of 4 or more, the recorded “events" are extremely likely to be
associated with coherent structures and therefore inconsistent with a signal having random
phases. Thus, as θ is increased, stronger and more rare events are identified, associated with
highly nonGaussian coherent structures.

We now adopt a procedure to count how many of the identified TDs [from Eq. (9)] are also
reconnection sites (i.e., elements of the set RS), as follows: Every discontinuity is characterized
by a starting and an ending point along the synthetic trajectory s. A set of discontinuities is
identified, and a certain number of these discontinuities intersect reconnection regions. To
automate the determination of the reconnection regions, we make use of a map (Servidio et al.,
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2010b) that is generated using the cellular automaton procedure. The latter, in summary, is a
2D matrix that has 0 values in all cells outside of the diffusion regions, or values of 1 inside
the diffusion regions. For this simulation, and for the selected trajectory (see Fig. 6), there are
37 reconnection sites along the path s. When at least one point of the identified candidate
discontinuity overlaps with one point of the identified reconnection region, the event is
counted as a “success”. Otherwise the TD is not identified as an RS, and is a “failure”. In the
latter case the method is detecting a non-reconnecting, high-stress, magnetic field structure.
However, such points are not associated with a region of strong reconnection, and therefore
are not of interest in this analysis.

As an example, using θ = 5 in Eq. (9), 40 discontinuities have been identified and 23 overlap
a reconnection site and correspond to successful identification of a reconnection region. The
goodness (quality) of this method can be defined as the number of the successes over the total
number of identified discontinuities. For this example, the goodness is ≃ 57.5%. An example
of discontinuities, together with the reconnecting regions, is shown in Fig. 6.

Following the above procedure summarized by Eq. (9), we impose different threshold θ for the
PVI signal. Each threshold characterizes a different set of discontinuities or “events”, and we
can label each algorithm as ℑθ . The parameters of different PVI-based algorithms are listed in
Table 1, all of which use ℑ(∆s = 0.76λdiss, ℓ = 535λC). It can be seen that for higher values of
θ an increasing fraction of the identified TDs corresponds to a reconnection site. That is, the
goodness increases as the threshold θ is increased (Servidio et al., 2011).

For high θ, all the TDs correspond to reconnection sites. Once each reconnection site has
been identified, the characteristic width δ′ can be measured, as described by Servidio et al.
(2011). For each TD captured by ℑ, we measured each δ′, and taking the average we obtained
〈δ′〉 = 1.45 × 10−2. From the 2D simulation, the average diffusion region thickness is 〈δ〉 =
1.44 × 10−2. The estimation 〈δ′〉 is therefore in very good agreement with the average size of
the diffusion region 〈δ〉.
Other information such as the direction or orientation of each TD can be estimated. Using
the assumption that the structures are one dimensional, in fact, there is a way to determine
the normal vector to the discontinuity surface if single point measurements are used, namely
the minimum variance analysis (MVA) technique (Sonnerup & Cahill, 1967). We will now test
this technique, making use of the fact that we have a fully 2D picture of each RS from the
simulation (see Fig. 6). In each TD detected with the PVI and expanded using the W-field,
we compute the matrix Sij = 〈bibj〉 − 〈bi〉〈bj〉, where here 〈. . . 〉 denotes an average on the
trajectory within the TD. Then we compute the eigenvalues (λ1, λ2) and the normalized
eigenvectors (n̂, t̂), where λ1 is the maximum eigenvalue and n̂ (t̂) is the normal (tangential)
eigenvector. The values of the ratio λ1/λ2 is very large for all the discontinuities selected by
ℑ8, that is 100 < λ1/λ2 < 107. Another feature is that the normal component bn is almost null
and constant, while bt is strongly changing sign.

2.4.1 An example from solar wind

We have computed the PVI time series using ACE 1 second resolution magnetic field data
from the interval 2004 May 1 to 18 (Osman et al., 2011). The increment (∆s) is 20 seconds and
the averaging interval in the denominator in Eq. (8) is the entire data period. The average
velocity was around 400 km/s. In Fig. 7, the PVI time series is shown. In order to facilitate
the comparison with simulation, we converted the time signal to a spatial signal, using the
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Fig. 8. Examples of discontinuities selected by the PVI method. Panel a: the three
components of the magnetic field vector in solar wind data in the RTN reference frame; Panel
b: magnitude of the magnetic field vector in solar wind data. The discontinuity, centered
around zero, lasts few tens seconds. Panel c: the two components of the magnetic field vector
in simulation data; Panel d: magnitude of the magnetic field vector in simulation data. ∆ is
the resolution data.

Fig. 9. Probability density function of the spatial signal ℑ (PVI) obtained from ACE
measurements (blue line) and simulation (red line). The error bar ±σ is displayed in the
legend and the value of σ is the expected fractional error in the PDF due to counting statistics.

average velocity of the flow, and then normalized to a solar wind magnetic correlation length
of 1.2 × 106 km. Imposing a threshold θ > 8 on Eq. (8), 704 events are identified. One of
these TDs is illustrated in Fig. 8 along with an example of TD from the 2D MHD simulation.
Finally, in Fig. 9, we show the probability distribution functions of the PVI signal for both
the observational and simulation data. The comparison tells us that there is a great similarity
within the errors. In general, we suggest that the methods developed here may have many
applications to the the solar wind data, where the coexistence of turbulence and magnetic
reconnection cannot be discarded.

2.5 Conclusion

In these sections we have assembled a digest of recent works that has examined magnetic
reconnection, not as an isolated process that occurs in idealized, controlled conditions, but as
a necessary ingredient in the complex nonlinear dynamical process that we call turbulence.
Much of the progress in three dimensional (3D) non-steady or turbulent reconnection has
been either experimental (e.g., Ren et al., 2005) or in a 3D numerical setup that is in effect
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nearly 2D (Daughton et al., 2011). It is noteworthy that the fully 3D case is substantial more
complex and less understood, both theoretically (Priest and Pontin, 2009), and in numerical
simulations (Dmitruk & Matthaeus, 2006). However, for weakly 3D setups, it has been amply
confirmed that turbulence effects (Matthaeus & Lamkin, 1986; Servidio et al., 2009) persist
(Daughton et al., 2011). While important aspects of the physics of reconnection revealed in
the 2D paradigm can carry over to 3D, it is likely also that there are essential physical effects
that occur only in a strongly 3D system or with kinetic effects at the small scales.

Most of the progress reviewed here has been in the context of nonlinear dynamics of magnetic
reconnection in turbulence, investigated through direct numerical simulations of decaying
2D MHD. The reconnection is spontaneous but locally driven by the fields and boundary
conditions provided by the turbulence.

The turbulent cascade produces a distribution of reconnecting islands. Computing the electric
field at the X-points, we see that turbulence produces a broad range of reconnection rates. In
addition, the strongest reconnection rates vary in proportion to ℓ/δ, the aspect ratio of the
reconnection sites. This scaling appears superficially to differ greatly from classical laminar
theories (Parker, 1957; Sweet, 1958). These results explain how rapid reconnection occurs in
MHD turbulence in association with the most intermittent non-Gaussian current structures,
and also how turbulence generates a very large number of reconnection sites that have very
small rates.

In contrast to laminar reconnection models that provide a single predicted reconnection rate
for the system, turbulent resistive MHD gives rise to a broad range of reconnection rates that
depend on local turbulence parameters. Many potential reconnection sites are present, but
only a few are selected by the turbulence, at a given time, to display robust reconnection
electric fields. In this way, the present problem differs greatly from studies of reconnection
that assume that it occurs in isolation or as a spontaneous process.

We have seen that reconnection becomes an integral part of turbulence, as suggested
previously (Carbone et al., 1990; Matthaeus & Montgomery, 1980). This perspective on
reconnection in turbulence that we have reviewed here seems to be potentially very relevant
to space and astrophysical applications such as the turbulent solar wind (Gosling & Szabo,
2008; Sundkvist et al., 2007). On the basis of the current results, we would expect to find in
the turbulent corona and solar wind a broad distribution of size of interacting islands, with a
concomitantly broad distribution of reconnection rates. Furthermore a useful extension will be
to employ models that are suited to low collisionality plasmas, where for example anomalous
resistivity, or kinetic effects, may be important.

3. The electrostatic character of the high-frequency energy spectra in the solar
wind

The interplanetary medium, the bubble of plasma that is generated by the Sun and that fills
the Heliosphere, is known to be hotter than expected in an expanding plasma. Understanding
how energy from the Sun can be dissipated into heat in such a collision-free system represents
a top priority in space physics. The Sun injects energy into the Heliosphere through large
wavelength fluctuations (Alfvén waves). This energy is then channeled towards short scales
through a turbulent cascade until it can be transferred to the plasma particles in the form of
heat.
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The study of the short-wavelength region of the solar-wind turbulent cascade represents
nowadays a subject of active interest in space plasma physics. Many experimental works
(Alexandrova et al., 2009; Bale et al., 2005; Sahraoui et al., 2009), focused on the analysis of the
solar-wind data from spacecraft, aim to investigate how the energy of the large-scale Alfvénic
fluctuations can be transferred towards short scales and eventually turned into heat. Within
this scenario a crucial point is the identification of the fluctuations that channel the energy
from large to short wavelengths along the turbulent cascade.

Long ago it has been shown (Matthaeus et al., 1986) that in the solar wind the
Magnetohydrodynamics fluctuations are mainly composed by two populations: the first one
with wavevectors predominantly perpendicular to the ambient magnetic field (2D turbulence)
and the second one with wavector aligned to the background field (slab turbulence). As
recently discussed, for example, by means of Gyrokinetics simulations (Howes et al., 2008)),
2D turbulence seems to give rise, at length scales below the ion-gyro scale, to transverse
electromagnetic fluctuations whose features are consistent with the so-called kinetic Alfvén
waves. These results provide a significant interpretation to solar-wind observations from
the Cluster spacecraft (Sahraoui et al., 2009) in which a quasi-two-dimensional cascade into
kinetic Alfvén waves seems to be identified. This cascade represents then a channel available
to bring energy from large to small scales.

The second population (slab turbulence) can produce a second channel, in the form of
electrostatic fluctuations, for the transport of energy towards small scales. The first insights
into the nature of this kind of phenomenon date back to the late seventies, when solar
wind measurements from the Helios spacecraft (Gurnett & Andreson, 1977; Gurnett & Frank,
1978; Gurnett et al., 1979) have shown that the high-frequency (few kHz) range of the solar
wind turbulent cascade is characterized by the presence of a significant level of electrostatic
activity identified as ion-acoustic waves propagating parallel to the ambient magnetic field.
The energy level of these fluctuations shows a certain correlation to the electron to proton
temperature ratio Te/Tp and surprisingly survives even for small values of Te/Tp, for which
linear Vlasov theory (Krall & Trivelpiece, 1986) predicts strong Landau dissipation. The
propagation of these fluctuations seems to be correlated to the generation of non-Maxwellian
proton velocity distributions that display the presence of beams of accelerated particles in the
direction of the ambient magnetic field, moving with mean velocity close to the local Alfvén
speed. More recent data from the WIND (Lacombe et al., 2002; Mangeney et al., 1999) and
the CLUSTER (Pickett et al., 2004) spacecraft allowed to analyze in more detail the features of
this electrostatic activity at high frequency in the solar wind. Subsequent experimental space
observations confirmed that the particle velocity distributions show a general tendency to
depart from the Maxwellian equilibrium configuration, displaying temperature anisotropy
(Hellinger at al., 2006; Holloweg & Isenberg, 2002; Marsch et al., 2004) and generation of
field-aligned accelerated beams (Heuer & Marsch, 2007; Marsch et al., 1982; Tu et al., 2004)).

These experimental results support the idea that kinetic effects are at work in the solar
wind plasmas at short spatial scale lengths, but many aspects of the experimental evidences
discussed above still need a convincing physical interpretation: (i) how electrostatic
fluctuations of the ion-acoustic type can survive against damping in the case of cold electrons
(Te ≃ Tp), (ii) why the mean velocity of the field-aligned beam of accelerated protons is
commonly observed to be of the order of the local Alfvén speed.
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Recently, many authors used kinetic numerical simulations to reproduce the solar-wind
phenomenology described above, that is the generation of longitudinal proton-beam
velocity distributions associated with the propagation of electrostatic fluctuations. In
particular, Araneda et al. (2008) presented one-dimensional hybrid Particle In Cell (PIC)
simulations in which ion-acoustic (IA) fluctuations, generated through parametric instability
of monochromatic Alfvén-cyclotron waves, produce field-aligned proton beams during the
saturation phase of the wave-particle interaction process. More recently, Matteini et al. (2010)
analyzed in detail the relationship between the kinetic aspects of the parametric instability
of Alfvén waves (in the case of monochromatic pump waves and of a spectrum of waves)
and the evolution of the proton distribution functions, again making use of numerical PIC
simulations in hybrid regime.

The parametric instability of left-handed polarized Alfvén waves, considered in the papers
referenced above, is efficient in producing IA fluctuations in regimes of low values of the
proton plasma beta βp (Longtin & Sonnerup, 1986) and for large values of the electron to
proton temperature ratio, since IA waves are heavily Landau damped for small Te/Tp

(Krall & Trivelpiece, 1986). >From the solar wind observations, the mean velocity of the
longitudinal proton beam is typically of the order of the local Alfvén speed. As discussed by
Araneda et al. (2008); Matteini et al. (2010), the IA fluctuations, produced through parametric
instability, trap resonant protons and dig the particle velocity distribution in the vicinity of the
wave phase speed, thus creating the field-aligned beam; it follows that, in order to generate

a beam with a mean velocity close to V
A

through this mechanism, the phase velocity v
(I A)
φ of

the IA fluctuations must be of the same order of VA [v(I A)
φ ≃ VA ]. Taking into account that

the phase speed of the IA waves is v
(I A)
φ ≃

√

Te/mp, the condition necessary to produce a

beam with mean velocity of the order of V
A

is Te/mp ≃ V2
A
⇒ Te/Tp ≃ mpV2

A
/Tp ≃ 1/βp ,

or, equivalently, (Te/Tp)βp ≃ 1. Large values of Te/Tp, needed for IA fluctuations to survive
against Landau damping, require low values of βp to keep this condition valid. This range
of parameters is unusual for the solar wind plasma, where the electron to proton temperature
ratio varies in the range 0.5 < Te/Tp < 4 (Schwenn & Marsch, 1991), while βp is typically
of order unity. Moreover, it is not clear why the electrostatic activity in the high frequency
region of the solar-wind energy spectra is observed even at low values of Te/Tp and why the
secondary proton beam has a mean velocity always of the order of the local Alfvén speed.

Beside the numerical simulations described above, a newly developed Eulerian hybrid
Vlasov-Maxwell code (Valentini et al., 2007)) has been used to propose a different mechanism
for the generation of the proton-beam distributions associated to the short-scale electrostatic
activity in the solar wind. This code solves numerically the Vlasov equation for the protons,
while the electrons are considered as a fluid; a generalized Ohm’s equation for the electric
field, where the Hall term and the electron inertia terms are retained, is integrated. The
Faraday equation, the equation for the curl of the magnetic field (where the displacement
current is neglected) and an isothermal equation of state for the electron pressure close the set
of equations. The quasi-neutrality assumption is considered.

These hybrid Vlasov-Maxwell simulations in 1D-3V phase space configuration (one
dimension in physical space and three dimensions in velocity space) (Valentini et al., 2008);
Valentini & Veltri, 2009)) were focused on a physical situation where Magnetohydrodynamics
turbulence evolves to a state where a significant amount of energy is stored in
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longitudinal wavevector modes (slab turbulence) (Carbone et al., 1995; Dobrowolny et al.,
1980; Matthaeus et al., 1986). The turbulent energy cascade is triggered by nonlinear
wave-wave interaction of large scale ion-cyclotron (IC) waves. The numerical results from
these simulations gave evidence that for large values of the electron to proton temperature
ratio (Te/Tp = 10) the tail of the turbulent cascade at short scales is characterized by the
presence of electrostatic fluctuations, propagating in the direction of the mean magnetic
field. The Fourier k − ω spectrum of the numerical signals revealed that, beside the IA
branch, a new branch of waves with phase speed close to the proton thermal speed and
with acoustic dispersion relation appears. These new waves have been dubbed ion-bulk
(IBk) waves. It has been shown that the diffusive plateaus, created in the longitudinal proton
velocity distribution through resonant interaction of protons with IC waves (Heuer & Marsch,
2007; Kennel & Engelmann, 1966), are responsible for the excitation of the IBk waves. This
phenomenology leads to the generation of a beam of accelerated protons in the direction
of the ambient field with mean velocity close to VA . These results have been confirmed
through hybrid-Vlasov simulations in 2D-3V phase space configuration (Valentini et al.,
2010)). Moreover, in 2011 Valentini et al. (2011)) the existence of the IBk waves has also been
demonstrated by means of electrostatic kinetic simulations, in which an external driver electric
field is used to create a longitudinal plateau in the proton velocity distribution.

Here, we review the main results of a series of 1D-3V hybrid Vlasov-Maxwell simulations
(in physical situation of slab turbulence), in which the development of the turbulent cascade
towards short spatial lengths is investigated in terms of the electron to proton temperature
ratio. This analysis allows to demonstrate that the electrostatic fluctuations at short
wavelengths, generated as the result of the turbulent cascade, can last in typical conditions of
the solar-wind plasma, that is even for low values of Te/Tp. Moreover, through our numerical
simulations we describe a physical mechanism leading to the generation of a field-aligned
proton beam with mean velocity close to the Alfvén speed that works even for small values of
Te/Tp provided the proton plasma beta is of order unity.

3.1 Numerical results

As discussed in the Introduction, we numerically follow the kinetic dynamics of protons
in 1D-3V phase space configuration (periodic boundary conditions are imposed in physical
space). In the following, times are scaled by the proton cyclotron frequency Ωcp, velocities
by the Alfvén speed VA = B0/

√

4πρ (B0 being the magnetic field and ρ the mass density),
lengths by the proton skin depth λp = V

A
/Ωcp and masses by the proton mass mp.

We assume that at t = 0 the plasma has uniform density and is embedded in a background
magnetic field B0 = B0ex , with superposed a set of Alfvén waves, circularly left-hand
polarized in the plane perpendicular to the mean magnetic field and propagating along
it. The explicit expressions for the velocity and magnetic perturbations [δuy(x), δuz(x),
δBy(x) and δBz(x)] were derived from the linearized two-fluid equations (Valentini et al.,
2007)). The first three modes in the spectrum of velocity and magnetic perturbations are
excited at t = 0, in such a way that the maximum perturbation amplitude is A = 0.5.
No density disturbances are imposed at t = 0. The initial Maxwellian ion distribution is
f (x, v, t = 0) = A(x) exp

[

− (v − δu)2/βp
]

, where βp = 2v2
tp/V2

A
(vtp =

√

Tp/mp being the
proton thermal speed and Tp the proton temperature); A(x) is such that the velocity integral
of f gives the equilibrium density n0 = 1. The value of the proton plasma beta is fixed at
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Fig. 10. Left: Time evolution of E for Te/Tp = 10 [black line (1)], Te/Tp = 6 [red line (2)],
Te/Tp = 3 [blue line (3)] and Te/Tp = 1 [green line (4)]; right: k-ω spectrum of the parallel
electric energy for the case Te/Tp = 1.

βp = 0.5 (the proton thermal velocity is vtp = 0.5) and the system evolution is analyzed for
different values of the electron to proton temperature ratio (Te/Tp = 1, 3, 6, 10). The mass ratio
is me/mp = 1/1836. The length of the physical domain is Lx ≃ 40.2 (the fundamental wave
number is k1 = 2π/Lx ≃ 0.156), while the limits of the velocity domain in each direction are
fixed at vmax = 5vtp . We use 2048 gridpoints in physical space, and 513 in velocity space and
a time step ∆t = 10−3. The simulation is carried up to t = 400.

The nonlinear three-wave interactions at large scales trigger the turbulent energy cascade.
When the energy is carried at frequencies close to Ωcp, the resonant interaction of the protons
with the IC waves produces the formation of a diffusive plateau in the longitudinal velocity

distribution in the vicinity of the phase speed v
(IC)
φ of the IC waves (Valentini et al., 2008)).

For parallel propagating IC waves one has v
(IC)
φ ≃ VA for frequencies smaller than Ωcp (or,

equivalently for small wave numbers) and v
(IC)
φ < V

A
for frequencies close to Ωcp. If βp is

of order unity one gets v
(IC)
φ ≤ VA ≃ vtp, this means that the diffusive plateau is created in

the vicinity of the proton thermal speed, or, equivalently, in the bulk of the proton velocity
distribution.

When the proton velocity distribution is flattened in the vicinity of vtp, the IBk waves can be
excited (Valentini et al., 2008); Valentini & Veltri, 2009); Valentini et al., 2011)) and the energy
is transferred from large to short wavelengths along the IBk channel. From the analysis of
the numerical results, one realizes that in the range of large wavenumbers, say k > 10λ−1

p ,
the parallel electric energy is the dominant component of the energy spectrum, this meaning
that the tail at short wavelengths of the turbulent cascade is characterized by the presence
of electrostatic activity. On the left in Fig. 10, we report in semi-logarithmic plot the early
time evolution (0 < t < 100) of the longitudinal electric energy at small scales evaluated
as E(t) = ∑k |Ekx

|2 with k > 10λ−1
p . The black line (1) corresponds to a simulation with

Te/Tp = 10, the red line (2) to Te/Tp = 6, the blue line (3) to Te/Tp = 3 and the green line (4)
to Te/Tp = 1. It is clear from this figure that, during the system evolution, E displays a sudden
exponential growth and then a saturation phase. We notice that for Te/Tp = 1 the exponential
growing phase is somewhat delayed with respect to the case with Te/Tp = 10, 6, 3.
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The physical mechanism responsible for this exponential growth consists in an instability
process of the beam-plasma type (Valentini et al., 2011)): the resonant interaction of protons
with IC waves of large amplitude creates regions of positive slope (small bumps) instead of flat
plateaus in the longitudinal proton velocity distribution at vtp; this triggers the growth of high
wavenumbers electric field components in parallel propagation with phase speed comparable
to vtp. As recently shown by Valentini et al. (2011)), the IBk waves can be excited only when
a plateau in the longitudinal proton velocity distribution is generated in the vicinity of vtp. In
the present hybrid Vlasov-Maxwell simulations, a diffusive longitudinal plateau is generated

at v
(IC)
φ ≤ VA , as the result of the resonant interaction between IC waves and protons; when βp

is of order unity one gets v
(IC)
φ ≤ VA ≃ vtp, this meaning that the plateau can be produced at

vtp and the IBk waves can be excited. We considered different simulations with 0.5 ≤ βp ≤ 2
obtaining the same qualitative system evolution. On the other hand, the mechanism described
above cannot work for small values of βp.

The growth of E corresponds to the excitation of electrostatic fluctuations at high
wavenumbers. The energetic level of these fluctuations after the saturation of the exponential
growth depends on Te/Tp; the largest saturation value of E is found for Te/Tp = 10, but even
at Te/Tp = 1 a significant level of fluctuations is recovered. On the right of Fig. 10 we show the
k-ω spectrum of the parallel electric energy for the simulation with Te/Tp = 1. The acoustic

branch visible in this spectrum is the branch of the IBk waves with phase speed v
(IBk)
φ ∼ 1.2vtp

(black dashed line in the figure). As shown by Valentini et al. (2008)); Valentini & Veltri
(2009)), for a simulation with Te/Tp = 10 the branch of IA waves also appears in the k-ω
spectrum of the parallel electric energy beside the IBk branch. For such a large value of Te/Tp,
the IA fluctuations generated in the early stage of the system evolution by ponderomotive
effects can survive against Landau damping up to the end of the simulation. Nevertheless,
here we show that, when decreasing the value of Te/Tp these IA waves are Landau damped
quite soon and disappear from the k-ω spectrum, as it is clear from the right plot of Fig. 10 for
Te/Tp = 1.

Fig. 11. At the top: parallel electric field Ex versus x at t = 100; at the bottom: longitudinal
phase space level lines of the proton distribution function at t = 100.
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Fig. 12. vx-vy contour lines of the proton distribution function integrated over vz and
averaged over x in the region corresponding to the trapped particle population, for
Te/Tp = 1 (a), Te/Tp = 3 (b), Te/Tp = 6 (c) and Te/Tp = 10 (d).

Fig. 13. vx-vy contour lines (left) together with the surface plot (right) of the proton
distribution function integrated over vz and averaged over x in the region corresponding to
the trapped particle population, in the case Te/Tp = 10, at t = 200.

In the top frame of Fig. 11 we show the electric field Ex as a function of x at the end of the
simulation for the case Te/Tp = 3. As it is easily seen from this plot, a short-scale localized
wavepacket is generated as the results of the phenomenology described above. We point out
that for simulations with Te/Tp = 1, 6, 10 we observed the generation of similar structures,
with amplitude that depends on Te/Tp (the largest amplitude is found for Te/Tp = 10). These
electrostatic signals propagate with phase velocity vφ ≃ vtp (independent on Te/Tp) and trap
resonant protons moving with velocity close to vtp. This is shown in the bottom frame of Fig.
11, where the contour lines of the longitudinal phase space proton distribution function are
represented at t = 100 for Te/Tp = 3; the region of trapped particles is delimited in space by
the vertical white dashed lines and moves with mean velocity close to vtp = 0.5.
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In order to show how the generation of a trapped particle population affects the proton
velocity distribution, in Fig 12 we report the vx-vy level curves of f , integrated over vz and
averaged over x in the interval corresponding to the trapping region (see the white dashed
lines at the bottom in Fig. 11), for Te/Tp = 1 (a), Te/Tp = 3 (b), Te/Tp = 6 (c) and
Te/Tp = 10 (d), at t = 100. In each plot of Fig. 12 a beam of accelerated protons is generated
in the direction of the ambient magnetic field. We point out that the mean velocity of this
secondary beam (of the order of VA = 1) as well as its height is independent on the value of
Te/Tp. We emphasize that this numerical evidence provides a reliable interpretation of the
physical mechanism leading to the generation of field-aligned beams of protons in the solar
wind velocity distributions. The beam of accelerated particle in the direction of the mean
magnetic field is very stable and long lived structure in time as wine show in Fig. 13, where
the vx-vy contour lines of the proton distribution (left) together with a surface plot of the same
distribution are displayed for the case Te/Tp = 10 at t = 200.

Fig. 14. Time evolution of E for a simulation with Te/Tp = 10, for A = 0.5 [black line (1)],
A = 0.2 [red line (2)].

As a next step, we consider a new simulation with Te/Tp = 10 in which we decreased the
amplitude of the initial Alfvénic perturbations to the value A = 0.2 and compare the results
of this new simulation with those of the old simulation with A = 0.5. In Fig. 14 we report
the time evolution of E (as defined above) for the case with A = 0.5 [black line, (1)] and
A = 0.2 [red line (2)] up to t = 160. We point out that decreasing the amplitude of the initial
perturbations corresponds to a delay in the exponential growth of the electrostatic fluctuations

Fig. 15. k-ω spectrum of the parallel electric energy for a simulation with Te/Tp = 10, for
A = 0.5 (a) and A = 0.2 (b).
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at small scales and also to a decrease of the growth rate of E . Moreover, the saturation level
of E results about two orders of magnitude lower for A = 0.2 with respect to A = 0.5.
Except for the differences discussed above, Fig. 14 would suggest that the system dynamics
is qualitatively similar for both cases A = 0.2 and A = 0.5; nevertheless, analyzing in more
detail the numerical results, we realized that this is not true.

In Fig. 15 we show the k-ω spectra of the longitudinal electric energy for the two simulations
with Te/Tp = 10 and A = 0.5 (a) and A = 0.2 (b). As already shown by Valentini et al.
(2008)), for A = 0.5 we distinguish two different branches of acoustic waves, the IA waves
(upper branch) and the IBk waves (lower branch). The upper dashed line in the top plot of
Fig. 15 represents the theoretical prediction for the ion-sound speed cs (Krall & Trivelpiece,

1986), while the lower dashed line represents the IBk waves phase speed v
(IBk)
φ ∼ 1.2vtp. As

we discussed earlier, the IA waves are produced by ponderomotive effects. On the other hand,
it is clear from the bottom plot of Fig. 15 that, when decreasing the amplitude of the initial
perturbations to the value A = 0.2, the branch of the IA waves disappears. This is due to
the fact that decreasing the amplitude of the perturbation produces a decrease in the density
fluctuations generated through ponderomotive effects, thus making the IA fluctuations too
weak to survive against Landau damping.

The numerical results shown in Fig. 15 allow to conclude that the IBk waves represent the
main component of the longitudinal electric energy spectrum at short scales. The IA waves can
represent an additional ingredient when the amplitude of the perturbations is large enough
to allow ponderomotive effects to produce high level density fluctuations, but they disappear
in the weak perturbation limit.

3.2 Conclusion

In these sections, we discussed numerical results of hybrid Vlasov-Maxwell simulations
of turbulence at short scale in the solar wind. The system dynamics in the tail at
short wavelengths of the turbulent cascade is analyzed in terms of the electron to proton
temperature ratio. Our numerical results show that the electrostatic activity in the termination
at small spatial scalelengths of the energy spectra, also recovered in the solar-wind data from
spacecraft, mainly consists of a novel branch of waves, called ion-bulk waves, that propagate
with phase speed comparable to the proton thermal velocity along the direction of the ambient
magnetic field. The peculiarity of these electrostatic fluctuations is that, at variance with the
usual ion-acoustic waves, they do not undergo Landau damping even at low values of the
electron to proton temperature ratio, since they are sustained by the presence of diffusive
plateaus in the longitudinal proton velocity distribution. We emphasize that this numerical
evidence can be of strong impact for the case of the solar-wind plasma, where the ratio
between electron and proton temperature is typically of order unity.

From the analysis of the numerical results of our hybrid Vlasov-Maxwell simulations, we
also found that in correspondence with the propagation of the ion-bulk waves the proton
velocity distribution displays the generation of a field-aligned beam of accelerated particles
with mean velocity close to the local Alfvén speed. We point out that the mean velocity of
this beam does not depend on the electron to proton temperature ratio and for βp of order
unity, appropriate value for the case of the solar wind, it always remains close to VA, in
agreement with the experimental data from observations. We emphasize that previously
proposed mechanisms (Araneda et al., 2008; Matteini et al., 2010), based on the excitation of
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IA fluctuations by parametric instability of large scale Alfvén waves, succeeds in reproducing
the generation of the field-aligned proton beam at v ≃ VA for a different range of plasma
parameters [large Te/Tp, low βp and (Te/Tp)βp ≃ 1].

On the other hand, the mechanism discussed in the present paper, based on the excitation of
the electrostatic IBk branch, naturally works in the physical conditions of the interplanetary
medium, even for small values of the electron to proton temperature ratio, provided the
proton plasma beta is of order unity. These numerical results describe a reliable mechanism
to explain the complex phenomenology detected in many solar wind measurements from
spacecraft and thus can be of relevant importance in the study of the evolution of solar-wind
turbulence towards short wavelengths.
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