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Robust Microarray Image Processing 

Eugene Novikov, Emmanuel Barillot 
Service Bioinformatique, Institut Curie 

26 Rue d’Ulm, 75248 Paris Cedex 05, 
France

1. Introduction  

High-density microarrays are a rapidly developing technology in molecular biology 
allowing one to measure simultaneously the activity of thousands of biomolecules in the cell 
under different experimental conditions. Two-color comparative microarray experiment is a 
key point of transcriptome (Yang et al., 2002; Herzel et al., 2001; Hegde et al., 2000), CGH 
(comparative genome hybridization, Pinkel et al., 1998, Ishkanian et al., 2004) and, more 
recently, protein (Eckel-Passow et al., 2005)  microarray technologies.  
In a conventional two-color microarray experiment (Fig. 1) two compared samples are 
labeled using different fluorescent dyes (typically the red-fluorescent dye, Cy5, and the 
green-fluorescent dye, Cy3), mixed and then co-hybridized to the DNA clones spotted 
regularly on the microarray. The array is scanned with a high spatial resolution at the 
corresponding fluorescent wavelengths, and at each scanned pixel the fluorescence 
intensities are recorded in two color channels (Cy5 and Cy3). The experiment aims to 
estimate the ratio of the measured intensities for each spot, reflecting differential gene 
(cDNA technology) or protein expression or a change in DNA copy number (CGH 
technology) between the test and control samples for the corresponding gene. These ratios 
are the primary source of information for the subsequent analysis of the microarray data, 
such as normalization, clustering, classification, differential expression analysis, etc. The 
main components of the microarray image analysis pipeline for spots include localization, 
quantification and quality control. 
Spot localization involves: (i) identifying the position of each spot on the array to associate it 
with the spotted clone; and (ii) establishing the borders between the neighboring spots to 
allow further independent data processing (extracting quantitative information) for each 
spot. Although spot localization can in principle be done manually, automating this process 
is essential, as fast and reliable localization increases overall analysis performance and 
allows high-throughput applications. Many localization algorithms (Buhler et al., 2000; Yang 
et al., 2002; Jain et al., 2002; Angulo & Serra, 2003; Brändle et al., 2003; Rueda & 
Vidyadharan, 2006, Ceccarelli & Antoniol, 2006) have been proposed. Some of them require 
either prior knowledge of some image-specific parameters or direct user participation to 
find grids. The others are “fully automatic”, meaning that different images can be processed 
without making adjustments for each particular image. However, even for these algorithms, 
there are always limitations in the automation process because of unpredictable deviations 
from the assumed array design, high contamination levels or large numbers of missing spots 

Source: Vision Systems: Segmentation and Pattern Recognition, ISBN 987-3-902613-05-9,
Edited by: Goro Obinata and Ashish Dutta, pp.546, I-Tech, Vienna, Austria, June 2007

O
pe

n 
A

cc
es

s 
D

at
ab

as
e 

w
w

w
.i-

te
ch

on
lin

e.
co

m



Vision Systems - Segmentation and Pattern Recognition 196

that cannot be tolerated by the algorithms. In fact, each of the “fully automatic” algorithms 
has certain limits, and new attempts will never be stopped to push these limits further.  

Fig. 1. Two-color comparative microarray experiment.  

The aim of the spot quantification is to estimate the ratio. There are two approaches to do 
that. One is a direct arithmetic ratio of the background-corrected fluorescence intensity 
estimates in the two color channels (Yang et al., 2002; Bozinov & Rahnenführer, 2002; 
Angulo & Serra, 2003; Glasbey & Ghazal, 2003; Lehmussola et al., 2006; Axon Instruments, 
Inc. 2005), and the other is the slope of the linear regression plot of the Cy5 versus Cy3 
fluorescence intensities (Jain et al., 2002; Axon Instruments, Inc. 2005). The first approach 
requires the identification of both the foreground — the measured spot — and the 
background — typically the level of non-specific hybridization. Large diversity of the 
algorithms for spot segmentation and background estimation (Lehmussola et al., 2006) 
highlights the complexity of this problem. The second approach, based on linear regression 
methods, does not require precise isolation of the spots and identification of the background 
areas. This method would be rather straightforward, if there were no aberrant or outlier 
pixels that can strongly affect the slope of the linear regression. 
Each ratio estimate should be accompanied by some measure of quality demonstrating the 
level confidence in the obtained ratios. To determine spot quality we need to have a clear 
definition of a good spot, or a list of all possible distortions that may spoil the spot. The 
diversity of instrumental platforms and instrumental and biological factors that may 
influence the result makes formalization difficult and unlikely to be universal. Several 
attempts have been made to approach the problem (Buhler et al., 2000; Brown et al., 2001; 
Wang et al., 2001; Chen et al., 2002; Hautaniemi et al., 2003; Bylesjö et al., 2005). Generally a 
number of parameters characterizing the spot, such as signal-to-noise ratio, size, circularity, 
etc., are introduced. These parameters have to be combined into an overall quality value to 
be used as a confidence level in the follow-up analysis. As individual quality scores 
generally do not contribute equivalently to the composite quality score, we need to evaluate 
the weights that control the input of each individual score. For that, training procedures, in 
which the user classified a set of representative spots into a number of groups ranging from 
good to bad spots, were proposed (Buhler et al., 2000; Hautaniemi et al., 2003; Bylesjö et al., 
2005). This requires an expert to evaluate at least a couple of hundred spots to achieve a 
good approximation, which is a difficult and time-consuming task.  
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In this Chapter, we will present a set of advanced algorithms for microarray spot 
localization, quantification and quality control. We will deal with the rectangular array 
design. This is the most widespread of the designs used and is also exclusively used within 
our Institute. In this design, the spots are aligned horizontally and vertically and can be 
arranged in blocks containing different numbers of spot rows and spot columns. The 
developed algorithms aim at making analysis more resistant to array contamination and at 
eliminating user participation at all stages of image processing. The algorithms can be 
applied to analyze images in one-, two or multi-color microarray experiments. Specific tools 
have been also developed for ratio evaluation in the two-color comparative experiments.  
We present a “fully automatic” spot localization algorithm (Novikov & Barillot, 2006a), 
which is able to process images of different designs without specific user contribution. We 
also aimed to make it robust with respect to contamination and missing spots on the array. 
The developed algorithm is non-supervised and deterministic, ensuring reproducible 
results. It is assumed that the number of block rows and columns and the number of spot 
rows and columns within each block are available for analysis as input values. 
We have developed a statistical procedure that systematically searches and removes 
aberrant or outlier pixels (Novikov & Barillot, 2005b). This gives a higher level of confidence 
in the linear regression ratio estimates. However, as linear regression can give biased 
estimates when there is a high level of statistical noise (a low correlation between the Cy3 
and Cy5 color channels), we still keep estimates from the spot segmentation algorithm. 
However, after removing aberrant pixels the segmentation algorithm also gives more robust 
estimates, and there is a greater agreement in the ratio values obtained for both methods. 
We have developed a two-level segmentation approach: one intensity level is used to 
identify spots and the other one separates background areas. Pixels with intensities between 
these two levels are ignored (buffer zone). We apply the k-means adaptive pixel-clustering 
algorithm (Bozinov & Rahnenführer, 2002) to identify the spot and the background intensity 
levels. Pixels that are used in the adaptive clustering for the spot and background level 
estimation are selected from constrained intensity regions. Spot pixels are subject to further 
geometrical constraints.  
We have developed an original set of spot quality characteristics and a model that maps this 
set into an overall quality value. An automatic training procedure evaluates the contribution 
of each marginal quality characteristic into the overall quality (Novikov & Barillot, 2005a). 
This procedure is based on information from replicated spots, located on the same array or 
over a set of replicated arrays, and assumes that unspoiled replicated spots must have very 
close intensity ratios, whereas poor spots yield greater diversity in the ratio estimates. 
Conceptually this approach can be considered as a combination of the “empirical” (based on 
replicates) and “predictive” (based on quality characteristics) quality assessment methods 
(Ritchie et al., 2006). The obtained weights can then be used to establish a critical limit for 
each quality characteristic, such that if a spot’s characteristic exceeds its critical limit, the 
spot is declared a “bad” spot.  
The applicability of the developed algorithms has been tested and confirmed using 
simulated artificial images and experimental images of different array designs used within 
our Institute and CGH images obtained from the UCSF Cancer Center. These algorithms are 
included in the software package MAIA (http://bioinfo.curie.fr/projects/maia/), which 
offers a complete solution for microarray image analysis.  
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2. Spot Localization 

As for other automatic spot localization algorithms (Jain et al., 2002; Angulo & Serra, 2003), 
we take projections of the intensities in the pixel columns on the X (horizontal) axis and in 
the pixel rows on the Y (vertical) axis. However, instead of taking the overall intensity 
directly, we correct it by the amount of regularity in the corresponding row or column, so 
that bright but very irregular regions are systematically penalized. The developed algorithm 
transforms fluctuations of the intensity in each pixel row or column of the image into a 
special parameter that takes into account the regularity of these fluctuations.  

2.1 Spot regularity profiles 

Regularity components. For each pixel row or column we choose an intensity threshold, T,
and isolate continuous regions of pixels with intensities, Il, higher than T (bright regions): Il

> T, and lower than T (dark regions): Il ≤ T, l=1,…,m, where m is the number of pixels per 

row or column. Each bright region can be characterized by its center position µn(T), length 

λn(T) and mean intensity Fn(T). For each dark region we estimate its mean intensity, Bn(T).
We then define four components based on these estimates that contribute to the regularity 
parameter. The most important component is the overall intensity of the bright regions:  
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where N(T) and NB(T) are the numbers of bright and dark regions at the threshold level, T.
The three following parameters deal with the regularity of the bright regions. The first 
parameter penalizes deviations from the expected spot size, D, of the bright regions:  
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The second parameter ensures that inter-spot distance is not too small. That is, the centers of 

two bright regions (µn(T) and µn+1(T)) should not be closer than the expected spot size, D:
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where (x)+ = x, if x > 0 and (x)+ = 0, if x ≤ 0. The third parameter controls the number of 
bright regions:  

       ( )+−= 1)()(),(3 HNTNHTW     (4) 

where H is the inter-spot distance and N(H) is the expected number of spots in the 
corresponding pixel row or column. N(H) can be estimated by dividing the number of row 
or column pixels by H. As we do not expect the number of bright regions to be more than 
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N(H), this has to be penalized. On the other hand, we cannot impose a lower bound for 
N(T), as some spots may be missing, but the structure is preserved.  
Overall regularity parameter. The intensity component (1) and the three regularity 
components (2), (3) and (4) are combined into an overall regularity parameter:  

{ }),(),(),(exp)(),,( 332211 HTWDTWDTWTSHDTR γγγ −−−=  (5) 

where γ1, γ2 and γ3 are weights determining the contribution of each regularity component. 
Since all these components are relative quantities, we expect that none will be over-

weighted, and hence the weights can be equalized: γ =γ1 =γ2 =γ3, where γ is provided by the 

user. In our analysis we always take γ = 2, and we have had no problems with the 
localization for different experimental designs. However, the robustness of the analysis 

would be increased if γ (or even γ1, γ2 and γ3) were chosen more specifically. 
The threshold level, T, can be best determined using a special optimization procedure which 
searches for T from the interval [Imin;Imax] maximizing R(T,D,H):
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where Imin = min(Il) and Imax = max(Il), l=1,…,m. Eq. (6) represents the final expression for the 
regularity parameter. We then calculate a set of regularity parameters for each pixel row i or 
column j, leading to a regularity profile in the Y (Ri(D,H)) and X (Rj(D,H)) directions.  
Spot size D and inter-spot distance H. Although possibly available from the experimental 
design, spot size, D, and inter-spot distance, H, are not required as prior values. We assume 

only that D and H are related as D = H(1-α), where α is the ratio of the inter-spot gap to the 

inter-spot distance and should be provided by the user. A very precise value of α is not 

essential. We always take α = 0.25, and it appeared to be very stable with respect to different 
array designs. As D is directly available from H, we can omit D from the notation of the 
regularity parameter, so that R(H) will be used instead of R(D,H).
We can obtain H0, an initial approximation for H, by dividing the total number of pixels in 
the X or Y direction of the array by the total number of spots in the corresponding direction. 
This is only a rough estimate, but it is sufficient for building the regularity profiles, Rk(H),
where k = i for the Y direction and k = j for the X direction (Eqs. (5) and (6)).  
We could have, using the profiles obtained, estimated D by dividing the number of pixel 
rows or columns with high regularity by the total number of spots in the Y or X directions, 
respectively. However, the spots are almost never perfectly aligned and they can get mixed 
up and become unrecognizable on the one-dimensional axis irrespective of the cutoff level 
chosen for the regularity profile. This leads to overestimation of the lengths of the regions 
with high regularity and consequently to an overestimate of D.
If all spots within each block overlapped completely in the projections, we could estimate H
as the ratio of the number of pixel rows or columns with a regularity higher than the 
selected level to the total number of spots in Y or X directions, respectively. However, as the 
spots within a block may, even after projecting pixel rows and columns, be separated by 
dark gaps, the length of the bright regions, needed to evaluate H, may be underestimated. 
To ensure realistic H we overlap the spots by superimposing the given profile with itself 
shifted to the left or right by a certain number of pixels. Complete overlapping of the 
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neighborhood spots can be achieved by setting the number of pixels used in the profile 
shifting to the correct value for the inter-spot distance, H. We assume that the neighborhood 
spots are completely overlapped when the number of dips (regions with a regularity lower 
than the selected level) in the overlapped regularity profile should not be larger a limit 
defined as the number of blocks plus one. A small number of dips can indicate that 
neighboring blocks are also indistinguishable.  
We search for the highest level of regularity profile that gives the largest number of dips but 
not larger than the defined limit. The corresponding H is then considered as the final 
estimate. If number of dips is larger than the defined limit for any level of regularity (and 
correspondingly for any H), then the regularity level giving the lowest number of dips is 
selected, despite being greater than the defined limit. This situation occurs for relatively 
bright contamination in the positions where there are no spots according to the array design. 
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Fig. 2. Intensity (solid line) and regularity (dashed line) profiles for microarray image 
segment (inset) obtained by projecting on Y axis. 

The advantage of using regularity profiles instead of simple intensity profiles is 
demonstrated in Fig. 2. The regularity profiles (dashed lines) ensure a larger dynamic range 
(signal to background) than the intensity profiles (solid lines). This leads to better 
identification of the background regions where it would be expect to find a separation 
between different spot rows or columns.  
Note that each of the approaches that use intensity projections (e.g. Jain et al., 2002; Angulo 
& Serra, 2003; Brändle et al., 2003) could be reinforced if, instead of simple projections, 
measures based on the regularity parameter were used. 
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2.2 Generation of the localization grid 

Block separation. First, we use the regularity profiles to look for the borders between the 
blocks. To increase robustness, the whole array is divided into segments (Fig. 3). If we need 
to identify the borders between the blocks in the X direction, we take segments in the Y 
direction with the height of the segment, in pixels, being equal to the height of the image in 
pixels divided by the number of blocks in the Y direction (NBY). We identify the block 
borders in the Y direction by taking segments in the X direction with the width of the 
segment, in pixels, equal to the width of the image in pixels divided by the number of blocks 
in the X direction (NBX).  

Fig. 3. An example of the separation of the microarray image into segments. There are four 
sets of tentative block separators and four sets of tentative external borders in the X 
direction, as four segments (according to the number of blocks) are isolated in the Y 
direction. Similarly, four tentative block separators and four sets of tentative external 
borders can be built in the Y direction. 

If the blocks are well separated, we can proceed in the following way. For each segment we 
identify positions separating the blocks by looking for the maximal intervals between the 
peaks in the regularity profiles. Thus we obtain NBY (in X direction) or NBX (in Y direction) 
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possible sets of block separations. The best set is the one that has the most regular structure. 
We calculate the median width of the blocks in NBY sets and the median height of the 
blocks in NBX sets, and the set, in either the horizontal or vertical separation that gives the 
smallest deviation from the corresponding median is selected as a final one.  
However, this approach is not applicable for arrays where the distance between two 
neighboring blocks is similar to the distance between the neighboring spots. In this case we 
take advantage of the fact that the blocks are regularly distributed over the array, and we 
place the borders equidistant between the external borders of the blocks. These regions have 
to be long enough to be considered as initial spots in the blocks. We require that the first 

high-level region must be longer than βD, where β is provided by the user and characterizes 

the filtering properties on the edges of the array. A default value of β = 0.2 had been found 
to be the most relevant for the microarray images of different designs and noise levels that 
we have tested. The external borders of the blocks are calculated for all segments described 
above (Fig. 3), and the median estimates are taken. We use two localization iterations to 
increase the precision of block separation. The first approximation of the grid is used to 
adjust the borders of the blocks at the second iteration.  
Spot localization. After blocks are separated, we have to identify the borders between the 
spots within each block. Although it may appear straightforward to use regularity (or 
intensity) profiles to draw lines at the positions of minimal regularity of the corresponding 
profiles to separate the neighboring spots this often results in errors, because the positions of 
the minima can be due to random regularity fluctuations. Therefore, we have developed a 
robust procedure searching for the spot separations. It uses the same optimization 
procedure as for the overall regularity parameter, but instead of the intensity, Il, we use 
regularity profiles in the X (Rj(H)) or the Y (Ri(H)) directions. An example of the row 
regularity profile (Y direction) for a one block (shown in inset of Fig. 2) is given in Fig. 2 in 
dashed line. Applying a set of criteria represented by Eqs. (1), (2), (3) and (4) for each block 
we can build up a vertical regularity parameter RY(Ri*,H) (Eq. (5)) using a row regularity 
profile, Ri(H), and a horizontal regularity parameter RX(Rj*,H) (Eq. (5)) using a column 
regularity profile Rj(H). The parameters RY(Ri*,H) and RX(Rj*,H) are dependent on the 
threshold levels Ri* and Rj*, and should ensure the highest regularity of the regularity 
profiles Ri(H) and Rj(H) (see Eq. (6)). However, in difference to Eq. (6), Ri* in RY(Ri*,H) is 
determined from the interval between min(Ri(H)) and max(Ri(H)), where i is the row 
number; and Rj* in RX(Rj*,H) belongs to the interval between min(Rj(H)) and max(Rj(H)),
where j is the column number.  
Note that the optimized values of RY(Ri*,H) and RX(Rj*,H) are of no use in this context. The 
middle positions of the intervals in the regularity profiles lower than the optimal threshold 
level are taken as the positions separating spot rows or columns. 

3. Spot Quantification 

After spot localization step, we assume that the spots are identified and well localized in 
squares (called spot cells), so that each spot cell can be processed independently of the 
others. We calculate the ratio of the spot using either a linear regression or a segmentation 
(spot contouring or spot isolation) approach. 
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3.1 Ratio estimation based on linear regression 

The linear regression approach represents the ratio as the slope of the linear regression fit of 
the pixel intensities in two channels (Fig. 4). We use orthogonal regression (Kendall & 
Stuart, 1979, Dissanaike & Wang, 2003) since measured fluorescence intensities are 
statistically distorted in both color channels. Spot segmentation is unnecessary with this 
method, as background pixels are concentrated at the origin of the linear regression plot and 
do not influence the slope of the regression line (Fig. 4). However, outlier or aberrant pixels 
within the spot cells, even in small numbers, can strongly influence the regression line, thus 
biasing the ratio. With the aim to fully exploit the advantages of the linear regression 
approach we tried to reinforce this procedure by systematically filtering out aberrant pixels. 
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Fig. 4. Estimation of the ratio using linear regression fit for a good spot with a correlation 
coefficient of 0.99 (ratio = 0.339). The background pixels are grouped near the origin of the 
linear regression plot. 

Different approaches exist to detect statistical outliers in experimental data (Rousseeuw & 
Leroy, 2003; Atkinson & Riani, 2000). Well-advanced high-breakdown algorithms 
(Rousseeuw & Leroy, 2003) or forward search algorithms (Atkinson & Riani, 2000) are based 
on repetitive resampling of experimental data and iterative linear regression approximation. 
This makes these algorithms computationally infeasible for microarray image analysis, 
where thousands of spots, each one containing 100-500 data points (pixels), should be 
processed in seconds. Therefore, we have to look for more approximate algorithms, which, 
however, can ensure higher efficiency. For microarray images, we expect that the majority of 
the spots should not have outliers, and the number of outliers for possibly contaminated 
spots should not be too high. Therefore it would be advantageous to have an algorithm that 
could quickly identify outlier presence, without being involved in time-consuming 
iterations. With this aim we have adopted the backward search algorithm with single-case 
diagnostics (Rousseeuw & Leroy, 2003). The advantage of this algorithm is that if the 
procedure can not identify an outlier at the first iteration, it proceeds to the next spot, thus 
saving processing time. Although single-case diagnostics are known to be less efficient 
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(Rousseeuw & Leroy, 2003) for the data with tight groups of outliers, in our work we rarely 
had problems: in microarray image, even if several aberrant pixels form a spatial cluster 
(Fig. 5), they are often very different at the intensity scale (at least in one of two color 
channels). As outlier intensities are widely distributed, the removal of even one of them 
changes the quality of the linear regression noticeably, facilitating the one-pixel (or single-
case) backward search procedure for spot quantification.  
The backward search procedure, in our implementation, examines suspicious pixels by 
evaluating the quality of the linear regression fit with and without the suspicious pixel. We 
quantify the fit quality by the residual variance, s2. The smaller s2 is, the closer the linear 
regression line is to the experimental data. The ratio of the s2 values is calculated for the fit 
with the tested pixel and for the fit without. If this ratio is larger than a critical value of the 
F-distribution at a user-defined confidence level, the pixel will be marked as aberrant. We 
select pixels with the highest intensity in either of two channels first and then select pixels 
having the largest deviation from the fitted regression line. To take into account the fact that 
the distortions caused by pixels from the top of the intensity scale and by pixels lying off of 
the linear regression line, may be different, we apply different confidence levels for the F-
statistics for these pixels. In our analysis we use 0.01 as a confidence level for the pixels from 
the top of the intensity scale and 0.1 for the pixels lying off of the linear regression line.  
For the high-intensity pixels we also perform another test to determine how far their 
intensities are from the averaged intensity of the other pixels within the spot cell. This 
detects pixels, far away from the other pixels, that do not distort the linear regression line. 
Although these pixels may not change the ratio, they could be considered as aberrant pixels, 
as we expect to see an almost continuous distribution of pixels intensity (Fig. 4). The 
procedure performs iteratively until no more aberrant pixels are detected. 
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Fig. 5. Estimation of the ratio using linear regression fit for a spot with aberrant pixels (red 
crosses). The estimated ratio with the aberrant pixels is 0.45 (a), when the aberrant pixels are 
removed it decreases to 0.37 (b). The estimated ratios for the other two spots from the same 
triplicate are 0.342 and 0.332. 
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An example of the outlier detection is presented in Fig. 5. It is important to note that the 
regression approach is capable of detecting contamination pixels that are geometrically 
inseparable from the spot. Therefore, the developed procedure can be considered not only 
as a procedure for correcting ratio recovery, but also as a procedure to repair the spot and to 
improve the quality of experimental material. It requires, however, that the contamination 
clearly deviates from the straight regression line, which is defined by the majority of “good” 
pixels from the spot. The filtering procedure can detect up to ~30% of aberrant pixels with 
respect to the number of spot pixels. For the spots with larger number of aberrant pixels, a 
safer way would be to flag out these spots rather than to try to identify all aberrant pixels. 
Besides much higher computational complexity (and hence processing times), high-
breakdown filtering algorithms may have difficulties to distinguish between contaminating 
pixel clusters and useful spots, when these become comparable in size, and contamination is 
highly correlated in two color channels.  
One potential problem of linear regression approach is when one image (Cy3) is shifted 
relative to the other (Cy5). As this shift increases, the correlation between the two channels 
decreases rapidly, and linear regression fit becomes poorly defined. To solve this problem 
we have developed a special procedure for the automatic identification and removal of shift 
between two images. The procedure moves one image with respect to the other one to 
obtain the largest correlation coefficient for a number of representative spots. These spots 
are selected according to two criteria: they should be bright enough, but not beyond the 
dynamic range of the registered intensities; and they should not contain pixels a lot brighter 
than most of the pixels in the corresponding spot cell.  

3.2 Ratio estimation using spot segmentation 

The spot segmentation approach identifies spots and background areas. The ratio is then 
defined as

r = (FCy5-BCy5)/(FCy3-BCy3)    (7) 

where FCy5(FCy3) is either the mean or median estimate of the spot intensity in the Cy5(Cy3) 
channel, and BCy5(BCy3) is either the mean or median estimate of the background intensity in 
the Cy5(Cy3) channel.
We have developed a multi-level segmentation approach where a segmentation algorithm is 
first applied to isolate spots and then to identify background pixels. The algorithm is 
applied to the combined image: Fi = FiCy5ACy5+FiCy3ACy3, where Fi is the combined intensity of 
the i-th pixel, FiCy5(FiCy3) is the intensity of the i-th pixel in the Cy5(Cy3) color channel, and 
ACy5 and ACy3 are the normalization constants: Ak = min(MCy5,MCy3)/Mk, k = {Cy5,Cy3}, where 
MCy5(MCy3) is the mean intensity of the pixels located along the borders of the given spot cell 
in the Cy5(Cy3) color channel.
The spot is isolated by establishing the signal level, Ls, such that all pixels with intensities 
higher than Ls will be classified as potentially belonging to the spot. We used the k-means 
adaptive pixel-clustering algorithm (Bozinov and Rahnenführer, 2002) to do this. However, 
we had problems when this algorithm was applied to segment spots with relatively smooth 
edges. Some pixels may be clearly brighter than the background, but not bright enough to 
be included into the spot. To regularize the solution, we establish an intensity limit, U, such 
that only pixels with the intensities higher than U participate in the spot segmentation.  
We use Chebyshev's inequality (Fisher & van Belle, 2003) to define U as M+W/(1.35p½),
where p is a user-defined confidence level for the intensity distribution of background 
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pixels, M is the median and W is the inter-quartile distance of pixel intensities located along 
the borders of the given spot cell (these pixels are expected to be purely background pixels). 
Then pixels with the intensities higher than U are classified according to the k-means 
adaptive pixel clustering algorithm to estimate Ls.
After selecting the bright pixels some geometrical constraints need to be imposed. We define 
a spot circle, centered on the center of mass of all the bright pixels from the given spot cell, 

with the radius (0.5Z/π)1/2, where Z is the number of pixels with intensities higher than Ls. If 
it turns out that the number of bright pixels within the circle is relatively small (<0.5Z), we 
increase the radius by one until the number of pixels covered by the circle becomes equal or 
higher than 0.5Z. For spots with a circular shape it should happen at the first trial. More 
attempts are needed for spots with more peculiar shapes (e.g. donut-like). The bright pixels 
within this circle are considered as belonging to the spot. All other bright pixels in the same 
spot cell are considered as potential space outliers. Further steps resemble the seeded region 
growing (Yang et al., 2002). The space outliers are converted into spot pixels only if one of 
their neighbors is already a spot pixel. It performs iteratively building up a cluster of bright 
pixels, which are geometrically inseparable from the originally defined spot pixels. These 
pixels constitute a spot and the remaining bright pixels are considered as space outliers that 
should be ignored during further analysis.
Spot pixels with excessively high or low intensity with respect to the majority of spot pixels 
can also be discarded. The admissible range is defined as "median of spots pixels" ± "inter-
quartile distance of spot pixels"/(1.35p½), where p is a user-defined confidence level for spot 
pixels. This filtering is appropriate for flat spots with large amount of pixels. 

Fig. 6. Segmentation examples: pixels within turquoise contours represent spots and pixels 
outside gray contours represent background areas.

Finally, we identify the areas used to calculate the background levels, BCy5 and BCy3. The 
different approaches for calculating the background vary considerably (Yang et al., 2002; 
Bozinov & Rahnenführer, 2002; Bengtsson & Bengtsson, 2006; Axon Instruments, Inc. 2005). 
We search for the background level, Lb, such that all pixels with intensities lower than Lb are 
classified as background, and pixels with intensities from the interval [Lb;Ls] comprise the 
buffer zone ignored in further quantification. Lb, in our implementation, is estimated from 
the k-means adaptive clustering applied to pixels with intensities from the interval [M;U].
This procedure identifies background areas within a spot cell. Similar to (Axon Instruments, 
Inc. 2005) the background estimates, BCy5 and BCy3, are taken from all background areas 
within approximately two spot-cell-size regions centered at the current spot.  
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Several examples of segmentation for spots of different shapes and geometries are shown in 
Fig. 6. As one can see, the developed algorithm is able to produce predictable contours for 
broad range of different spots. 

3.3 A combined approach to unique ratio estimation 

The performance of the linear regression approach depends on the level of statistical noise 
in the detected images and hence on the level of correlation between two (Cy3 and Cy5) 
color channels. For images with a high correlation coefficient (~0.90), the linear regression 
approach is often better than the segmentation approach, and filtering is more effective, as 
any contamination is better recognized by the linear regression fit. For noisier images, the 
regression approach is less efficient in filtering and may also produce biased estimates. For 
such images, the segmentation algorithm generally demonstrates better performance. 
A general strategy to estimate the ratios can be composed of two steps. First, linear 
regression filtering is applied to each spot. This removes aberrant pixels for highly 
correlated signals, and leaves the data largely unaltered for noisy images. Then 
segmentation approach is used for the final ratio estimation according to Eq. (7), where 
F{Cy5,Cy3} and B{Cy5,Cy3} are the mean estimates for the spot and background intensities, 
respectively. Mean estimates are more precise (Fisher & van Belle, 2003), but can be affected 
by outliers. However, as the outliers have been already removed by the linear regression 
filtering, we can use the mean values. Although estimation using the segmentation 
estimator may be not as good as the linear regression estimator for highly correlated spots, 
the difference is generally so unimportant that we can sacrifice some quality for generality. 
We call this two-step algorithm the regression filtered segmentation estimator (RFSE). 
In general, the idea to perform preliminary filtering of microarray images is not new. There 
have been a number of publications reporting application of the median filter (Glasbey & 
Ghazal, 2003), top-hat filter (Yang et al., 2002; Glasbey & Ghazal, 2003) or a set of 
morphological operators (Angulo & Serra, 2003). However, all these techniques, while 
reducing noise in images, also change intensity levels of the majority of pixels on the array, 
regardless of whether these pixels are outliers or not. For example, existing filtering 
procedures may dissolve micro-cluster of aberrant pixels (like the one shown in Fig. 5), so 
that it will not be seen any more. However, exceptionally high intensities from the outlier 
cluster will implicitly influence the intensity of both, the neighboring “good” pixels and the 
new “good” pixels that will substitute the outliers. This may result in biased intensity and 
ratio estimates. Contrary to that, our approach specifically eliminates outlier pixels, 
otherwise not distorting data. It also allows for visual examination of the contaminating 
pixels to evaluate sources of possible problems in microarray experiment. 

4. Spot Quality 

Each ratio estimate should be accompanied by some value of quality reflecting the level 
confidence in the obtained ratios. This value is derived from a set of quality characteristics 
generated by spot quantification procedures (linear regression and spot segmentation).  
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4.1 Spot characterization by quality parameters 

The generated quality characteristics (x) may be defined on any domain, but we scale them 
(q(x)) to fit the range between 0 (bad spot) and 1 (good spot). This facilitates further quality 
analysis. For scaled quality characteristics we use another term: quality parameters.
Coefficient of determination (CD) of linear regression signifies the degree of linear 
relationship between the intensities in the Cy3 and Cy5 channels. High values of CD
(approaching 1) are expected for good spots. Low values suggest either relatively bright but 
non-correlated contamination, or strong statistical noise normally characterizing low-level 
(or missing) spots. q(CD) = CD.
Durbin-Watson statistic (DWS) evaluates the presence of the first-order autocorrelation in 
the residuals of the linear regression fit. It ranges from 0 to 4, 0 being a positive correlation 
and 4 being a negative correlation. A DWS value close to two indicates that the residuals are 
uncorrelated and the model is appropriate. Large deviations from two, resulting from 
systematic patterns in the residuals plot suggest that the spot cannot be modeled in terms of 
a simple linear regression. q(DWS) = 1-|DWS-2|/2.
Spot contamination is the number (SC) of the aberrant pixels (within the spot contours) 
flagged out by the filtering procedure. q(SC) = 1-SC/Z, where Z is the number of pixels 
within the spot contour. 

Diameter of the spot: D = 2(Z/π)½. As the true value for the spot diameter may be difficult to 
establish, we use a typical value taken as the median diameter over all spots on the array. 
Spots with exceptionally small or large diameters should be penalized. q(D) = exp{DT-D}, if 
D>DT and q(D) = exp{D-DT}, if D<DT where DT is the typical diameter.  
Geometrical symmetry parameter measures deviation of the contoured spot from the ideal 
circle. We divide both the real spot and the ideal circle into eight segments (pie slices 

defined as [kπ/4;(k+1)π/4], k = 0,…,7) and we count the number of pixels belonging to the 
spot (Zsi, i = 1,…,8) and to the circle (Zci, i = 1,…,8) for each segment. The sum of the absolute 

relative differences GS = |Zsi-Zci|/Zci is then taken as an indicator of quality. For ideal 
circular spots GS should approach 0, whereas highly deformed (un-circular) spots can be 
recognized by high GS values. q(GS) = exp(-GS).

Intensity symmetry of the spot is defined as IS = |Fi-F|/F, where Fi, i = 1,…,8 are the 
mean intensities for the same 8 segments and F is the mean intensity within the spot. 
Although a spot may have perfect circular shape, it may contain very bright (or dark) and 
highly concentrated groups of pixels originating from pieces of dust or other contamination. 
q(IS) = exp(-IS).
Coefficient of variation of two ratio estimates: CVR = 2½|RR-RS|/(RR+RS). Despite the 
different methods of ratio estimation (one by the linear regression approach (RR), and the 
other by the segmentation algorithm (RS)), the variation between the two obtained ratios 
should be as small as possible. Large variations between the two estimates may indicate a 
problematic spot. q(CVR) = exp(-CVR).
Uniformity of the background along the grid lines separating neighborhood spots is 

defined as UB = |Bi-B|/B, where Bi, i = 1,…,8 are the mean intensities in 8 segments of the 
grid line around the spot, and B is the mean intensity for the whole grid line around the 
spot. Large UB values may discover presence of relatively bright contamination around the 
spot, large variability in the background or merged neighboring spots. q(UB) = exp(-UB).
Absolute level of background (AB) calculated from the local area around the spot (AB = 
max(BCy5,BCy3)) is compared to the median background level over all spots on the array. 
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Spots with exceptionally high AB values may indicate the presence of the contamination 
areas, which are larger than the size of the spot. q(AB) = exp(1-AB/ABT), if AB>ABT and q(AB) 
= exp(AB/ABT-1), if AB<ABT. where ABT is the typical background level.
Signal (S) is defined as S = min(FCy5 - BCy5,FCy3 - BCy3). q(S) = 1, if S>ST and q(S) = exp(S/ST-1),
if S<ST, where ST is the median signal over all spots on the array. 
The developed quality parameters, although not optimal, have led to reasonable results for 
most of the experimental and simulated situations we tested. Of course, there may be a 
possibility to formalize some of these parameters more precisely and/or to develop new 
parameters accounting for other types of distortions. 

4.2 Spot quality analysis 

We consider two aims of spot quality analysis. The first is to combine the marginal quality 
parameters into an overall quality value. This value can be used either to flag out directly 
spots with a quality lower than a user-defined threshold, or, in the follow-up image analysis 
procedures (normalization, classification, clustering, etc.) as a parameter characterizing the 
level of confidence in the obtained Cy5/Cy3 ratios. The second aim is to identify a critical 
range for each quality characteristic. If a certain quality characteristic of the spot falls in this 
range, the corresponding spot is classified as a “bad” spot.  

Fig. 7. The correspondence between the quality characteristics, quality parameters and 
overall quality value. 

Overall quality. We used the following definition for the overall quality value: 
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components into the overall quality value. A link between the weight wi and the critical 
value xilim can be established for each quality characteristic: 

{ } ( ){ }limlim lnln iii xqQw =  or { }= − iw

ii Qqx
/1lim1lim   (9) 

where Qlim ∈[0;1] is the user-defined overall quality threshold, and qi(xilim) is the quality 
parameter calculated for xilim. The critical value xilim sets up the limit such that if a certain 
characteristic i exceeds this limit, the corresponding quality parameter qi(xilim) will become 
lower than Qlim. The correspondence between xi, xilim, qi(xi), qi(xilim), wi, Q and Qlim is
demonstrated in Fig. 7. 
Quality weights wi. The experimental quality parameters, qi, are directly available from the 
quantification procedure, whereas the weights wi (or the critical values xilim) are unknown 
and are not easily guessed or derived from theory. Therefore, the problem of spot quality 
analysis becomes a problem of weights (wi) estimation. This can only be solved if additional 
information is available. Here we consider three possibilities: 
1. The additional information may come, for example, from the user expertise. The user 

has to classify the spots manually (Buhler et al., 2000; Hautaniemi et al., 2003; Bylesjö et 
al., 2005) and assign a quality value to each spot from a representative subset. These 
values are then used for training the model (8) leading to a combination of the weights 
(wi) such that the overall quality values reproduce the user classification reasonably 
well.

2. We can manually apply different combinations of the weights wi and visually 
appreciate, which spots have been flagged out. The trials must be continued until most 
of the user classified "bad" spots are eliminated by the chosen combinations of the 
weights.

3. The weights can be estimated automatically using information available from replicated 
spots on the same array or over a set of replicated arrays. Unspoiled replicate spots 
should have very similar ratio values. Large differences between the observed ratios in 
the replicate spots would signal that some spots from this replicate were irregular. We 
formalize this approach by first defining the quality value for the replicate: 

{ }{ }iw
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where qkji is the i-th quality parameter of the j-th replicated spot in the k-th replicate. Then 
we require that the ratio variation coefficient in the k-th replicate, Vk, is proportional to the 
logarithm of Qk:
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The log transform is the most “natural” way to convert [0;1] scale of Qk into [0;∞) scale of Vk.
Finally, exponential transform of Eq. (11) yields  
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where V is the user-defined characteristic ratio variation coefficient. The weights wi can be 
estimated from the best fit of the experimental quality values Qk to the exponentially 
transformed ratio variation coefficient Vk (Novikov & Barillot, 2005a). If certain quality 
factors do not influence the shape of the experimental quality curve Qk (Eq. (10)), the 
corresponding weights will be set close to 0. If a certain effect shows up in only a small 
number of spots, it may be neglected by the optimization procedure, and the corresponding 
weight will be erroneously small. In this case, manual correction of the weights would be 
necessary.  
In our quality analysis algorithm, user participation is limited to the definition of the 
characteristic ratio variation coefficient, V. This is somewhat simpler than deciding on the 
quality of several hundred spots, which is used to teach the algorithm in the manual 
approach. However, as with other solutions, this algorithm requires representative images 
to train the model. It is impossible to evaluate confidently the weight of the contribution of 
the diameter quality parameter, for example, if all spots in the array have the same 
diameter. Therefore, a careful selection of training images containing a realistic diversity of 
all possible distortions and artifacts is needed. 
In (Novikov & Barillot, 2005a) we have also demonstrated possibilities to perform quality 
analysis based on replicated spots from different arrays and a possibility to apply quality 
weights obtained from the analysis of one training image, which should contain replicated 
spots, to other arrays, which may not contain replicates. The latter example attempts to 
reproduce an important possibility of designing microarray experiments. A small number of 
training arrays with replicated spots and representative diversity of possible artifacts can be 
measured and analyzed. The obtained results can then be used to evaluate the quality of 
other arrays of similar design, which may not contain replicated spots.  
Follow-up image analysis. As it was mentioned earlier, the overall quality value, Q (Eq. 
(8)), can be used as a parameter characterizing the level of confidence in the obtained 
Cy5/Cy3 ratios. If, for example, n ratios should be averaged, the weighted mean would 
ensure a more robust estimate for the average: 
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where rl is the Cy5/Cy3 ratio and Ql, is the corresponding overall quality value (l = 1,…,n). 
The weighted coefficient of variation is defined as 
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Note that the ratio variation coefficient Vk can be determined from Eq. (14), if we set Ql = 1, l 
= 1,…,n, with n being the number of spots in a replicate. 

5. Testing image processing algorithms 

5.1 Image Simulation 

In (Novikov & Barillot, 2005b) we have described a software component for Monte-Carlo 
simulation of microarray images. The simulator accounts for statistical noise and different 
types of distortions, such as non-specific hybridization and dust. As the values of the ratios 
are exactly known in the simulation experiments, it allows us to test and compare 
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objectively different ratio estimation algorithms. The general model for the two-color (Cy3, 
Cy5) microarray image is given by:  
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where NS is the number of spots and ND is the number of dust clusters, cksx and cksy are the 
coordinates of the center of a spot, ckdx and ckdy are the coordinates of the center of a dust 

cluster, ρs and ρd are the approximate radiuses of the spot and dust cluster, respectively, Is

and Id are the fluorescence intensity in the center of the spot in the Cy3 color channel and in 
the center of the dust cluster, respectively, and r is the ratio of the test and control samples. 
Dust is represented by the random distribution over the array of clusters of pixels of varying 
brightness. We consider that these pixel clusters have an identical shape to the spots and 
therefore the same analytical representation is used for an ideal spot shape and dust cluster:  
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The parameters characterizing the spots (cksx, cksy, ρs, Is and R) are user-defined. For example, 

the coordinates cksx and cksy, the radius ρs and the ranges for x and y for each spot are defined 
from a user-defined array design. The user should also specify the number of dust clusters 
ND on the array. The other parameters characterizing the dust are random variables, and the 
probability laws for their generation is a matter of choice. We use uniform distributions for 

ρd (in the interval 0 to ρm) and Id (in the interval 0 to Im), where ρm and Im are a user-defined 
maximal dust cluster radius and maximal dust intensity, respectively. We also assume that 
ckdx and ckdy are uniformly distributed over the array. Statistical laws of the dust 
characteristics can generally be different in the two (Cy3, Cy5) channels. 
In the developed simulation model we also account for the nonspecific hybridization and 
statistical noise:  
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where k represents either Cy3 or Cy5, Bi and ηBk are the user-defined average and noise-to-

signal ratio of nonspecific fluorescence intensity in the color channel k, σ(i,j) is the standard 
deviation of the pixel statistical noise, and GB and GS are independent Gaussian random 

variables with zero mean and unit standard deviation. The exact representation for σ(ι,j) is 

defined by the experimental set-up. There are currently three possibilities: σ(ι,j) can be (i) 
constant, (ii) proportional to the signal, or (iii) proportional to the square root of signal. The 
type and quantitative characteristics of the statistical noise are defined by the user.  

5.2 Evaluation of the noise resistance using artificial images  

All artificial images were generated using the same array design: 4x12 blocks and 21x21 
spots within each block with the inter-spot distance of 15 pixels and the inter-block gap of 20 

pixels. For all spots in the generated arrays the spot radius, ρs, was about 4 pixels, the 
intensity, Is, in the Cy3 color channel was 5000 and the ratio, r, of the Cy5 and Cy3 channels 

was 3. Non-specific hybridization was generated using Bk = 1000 and ηBk = 0.5. The standard 
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deviation of the statistical noise, σ(i,j), at each pixel was proportional to the signal at the 
corresponding pixel with the noise-to-signal ratio of 0.1. We also added randomly 

distributed dust clusters with the maximal intensity, Im = 65535, and maximal radius, ρm = 2 
pixels. Generated images differ in the number of dust clusters, ND.

      

      

Fig. 8. Fragments of artificial microarray images with 4x12 blocks and 21x21 spots per block: 
a) the fraction of the bright spots is equal to 15%; no contamination; b) the same image with 
the generated grid; c) randomly distributed contamination spots are added; the percentage 
of the bright correct spots is 40% and the number of the contamination spots is equal to the 
number of the correct spots (NS = ND); d) the same image with the generated grid. 

Localization. We studied the influence of the amount of bright (visible) spots and the level 
of contamination on the spot localization. Two exemplary artificial images are presented in 
Fig. 8. One (Fig. 8a) containing only 15% of bright spots randomly distributed over the 
image, and the other one (Fig. 8c) with randomly distributed contamination spots. For the 
contaminated array, and the number of dust clusters was equal to the number of true spots 
(NS = ND). 
Grid placement depends on the distribution of the spots over the array. Therefore, we 
generated 100 images, each with a random spot distribution, and counted the amount of 
grids that needed user intervention. For the images without contamination, only 10 of 100 
images gave misplaced grids. This happened when first or last spot rows or columns are 
empty, so that the algorithm shifted the grid by one row or column. For contaminated 
images grid misplacement occurred in 7 of 100 images. This took place when false spots 
were recognized as the real spots by the algorithm. Examples of the correctly generated 
grids in both cases are given in Figs. 8b and 8d. 

a b

c d
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Fig. 9. Histograms of the ratio estimates: a) ratio of means (red) and ratio of medians (black) 
for the dust-free image; b) ratio of means (red), un-weighted RFSE (blue), weighted RFSE 
(green) and weighted ratio of medians (turquoise) for the contaminated image; c)  weighted 
RFSE (green) and weighted ratio of medians (turquoise) for the contaminated image, ratio of 
means (red) and ratio of medians (black) for the dust-free image; d) ratio of means (red), 
weighted ratio of means (green) and weighted ratio of medians (turquoise) for the 
contaminated image. 

Quantification and Quality. We investigated the influence of the level of contamination on 
the spot quantification. We used the same array design as before (Fig. 8) with one exception: 
all true spots were bright and visible. We compared RFSE ratio with the ratio (7) where 
F{Cy5,Cy3} and B{Cy5,Cy3} are either the mean (ratio of means) or median (ratio of medians) 
estimates. We also compared the weighted and un-weighted mean estimates for the average
r (Eq. (13)). The un-weighted characteristics were obtained from Eq. (13) by setting all Ql, l = 
1,…,n to 1. The weighted characteristics were calculated with the overall quality values Ql

available from the quality analysis algorithm. As all spots from the simulated image can be 
considered as replicates, having the same theoretical ratio (r = 3), we artificially split up the 
total number of spots into the groups of three closely placed spots. These groups, regarded 
as independent triplicates, can be used to calculate the experimental quality values Qk (Eq. 
(10)) and to build up the corresponding quality plot, Qk versus Vk, according to Eq. (12). The 
weights wi are estimated from the best fit in Eq. (12). For each group we calculated the 
weighted and un-weighted means of ratios using Eq. (13). These averaged ratios were 
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collected in histograms presented in Fig. 9. We expect the best estimators to provide 
distributions centered on the true ratio (r = 3) with the least spread around this value. 
As expected, the ratio of medians gave a broader distribution for the dust-free image (Fig. 
9a). Neither regression filtering nor quality control could improve observed estimates: the 
histograms of obtained ratios with or without filtering or with or without quality control 
were indistinguishable in the figure. For the contaminated image (Fig. 9b), ratio of means 
without filtering or quality control produced an additional peak (red line) reflecting 
contribution of dust clusters. RFSE estimate eliminates that peak (blue line) and the 
application of quality weights further improves the estimation (green line). These measures 
are so efficient that the resulting histogram after regression filtering and quality weighting 
became almost equivalent to the histogram of the ratios for the dust-free image (Fig. 9c). The 
ratio of medians is a robust estimate, but less accurate than RFSE. Fig. 9d demonstrates the 
power of quality control. Linear regression filtering was not applied in this case. The 
histogram of ratios of means had the same peak of aberrant ratios. Once weights have been 
applied, the peak disappeared.
Depending on the image, or even on each particular spot, different ratio estimators, such as 
the ratio of means or ratio of medians, may ensure a better performance; however, in 
practice it is difficult to predict with confidence the best estimator. RFSE approach gives a 
unique ratio estimate, which is always comparable to the best of other ratio estimators.  

5.3 Robust processing of experimental images 

Localization. We tested spot localization algorithm for arrays with different spot sizes, 
experimental designs and levels of contamination (numerous examples can be found on our 
web site http://bioinfo.curie.fr/projects/maia/). In all cases the spot localization procedure 
was carried out automatically with no user intervention. We only supplied the number of 
blocks in rows and columns and the number of spots in rows and columns within each 
block when switching from one image to another one. Comparison of the performance of 
our spot localization algorithm with others can be found in (Novikov & Barillot, 2006a). 
Although the developed procedure has proved to be very robust with respect to different 
types of microarray distortions, there is no guarantee that it will perform well for any array. 
Therefore, interactive tools are available to repair erroneous grids.  
Quantification and Quality. We quantified two experimental images (Fig. 10) of different 
array design and signal-to-noise levels. One image (Fig. 10A) was provided as 
demonstration example for UCSF Spot 2.0 (downloadable from 
http://jainlab.ucsf.edu/Downloads.html). It contains 4x4 blocks with 21x21 spots per block, 
with a spot cell size of about 10 pixels. Cy3 and Cy5 color channels are strongly correlated, 
with the average correlation coefficient for the spots being about 0.97. Bright contamination 
spots can be seen irregularly scattered over the array. The magnified image of one such spot 
is shown in Fig. 5. Each clone was spotted in triplicate. The replicated spots are placed as 
neighbors in a row. The second image (measured in the Institute Curie, downloadable from 
http://bioinfo.curie.fr/projects/maia/) contains 12x4 blocks with 15x15 spots per block 
(Fig. 10B), with a spot cell size of about 30 pixels. The average correlation between the 
channels in the spots was about 0.85, being somewhat lower than for the first image, 
although there are no obvious contamination spots. Each clone was prepared in triplicate 
with the replicated spots put in three vertically distributed sub-arrays.  
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It is difficult to remain objective while doing comparative study for the experimental 
images. As the true ratio values are unknown, the only useful measure of quality is the 
variation in ratio estimates between the replicated spots, which should be reasonably low. 
Therefore we take the coefficient of variation (Eq. (14)) of the replicates as a quantitative 
measure of the ratio estimation consistency. However, this measure may not be totally 
objective: (i) the estimates may be consistent, but systematically biased (the true values of 
the ratios are unknown); (ii) three replicated spots of very poor quality may give very 
similar ratio values just by chance (the number of replicates is low). The average over all 
replicates at the given array coefficient of variation is taken as a global indicator of the 
Cy5/Cy3 ratio consistency of the array.  

Fig. 10. Experimental images used for evaluation: A) 4x4 blocks with 21x21 spots per block, 
spot cell size is about 10 pixels; B) 12x4 blocks with 15x15 spots per block, spot cell size is 
about 30 pixels. The locations of triplicates are indicated. 

We compared the averaged coefficient of variation for three ratio estimates (RFSE, ratio of 
means and ratio of medians) with or without quality control. The weights, wi, of the 

marginal quality parameters for Qk were identified using Eq. (12) with V ≈ 0.07 for image A, 

and with V ≈ 0.2 for image B. 
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The results are summarized in Table 1. RFSE algorithm ensures the smallest coefficient of 
variation for both images and quality control improves performance for all three ratio 
estimates. We found a greater improvement for image A than for image B. This was not a 
surprise, as image B is characterized by a reasonably high signal-to-noise level, and it does 
not contain any obvious contaminated spots. However, even in this case the quality 
measures cannot be ignored, as there are still a few low-intensity spots that need to be 
specially treated (probably rejected). By contrast, image A has obvious randomly distributed 
pieces of dust, and the developed filtering procedure (RFSE) and quality measures proved 
to be powerful enough to repair or to disregard the contaminated spots, thus increasing the 
consistency of the Cy5/Cy3 ratio estimates. The fact that quality control does not show up 
much better performance is due to rather good general quality of the images, and a few 
problematic triplicates cannot influence very much the averaged coefficients of variation. 
For example, in image A, we have less than 9% of triplicates with the ratio variation 

coefficients larger that the selected V (~0.08), and 7% for image B (V ≈ 0.2). 

Image
Quality 
weights

RFSE 
Ratio of 
means 

Ratio of 
medians 

Without 0.0196 0.0324 0.0410 

 A  

With 0.0172 0.0245 0.0381 

Without 0.119 0.120 0.133 

B

With 0.108 0.109 0.122 

Table 1. The averaged coefficient of variation of the ratio triplicates for two images A and B 
(see Fig. 10). 

Results on comparison of the performance of our quantification approaches with the 
approaches available from other image analysis packages can be found in (Novikov & 
Barillot, 2005a; Novikov & Barillot, 2005b). 

6. Software 

The developed algorithms have been implemented in the MAIA (microarray image analysis) 
software package (Novikov & Barillot, 2006b). Demonstration version of the software can be 
downloaded from http://bioinfo.curie.fr/projects/maia/. A full version is freely available 
to non-commercial users upon request from the authors. The package is written in Java 
(interface) and C++ (algorithms), and. runs on Windows 95/98/Me/NT/2000/XP platforms 
(may be used under Unix after recompiling C++ code) and needs the Java Runtime 
Environment. The whole quantification procedure (including filtering, segmentation and 
ratio estimation) for one 4Mb image pair (Cy3/Cy5, ~7300 spots; each spot cell is ~10 pixels) 
takes ~3 sec on 3.00GHz Pentium® 4 CPU with 1 GB of RAM; for a 40Mb image pair 
(~10800 spots; each spot cell is ~30 pixels) takes up to 20 seconds of processing.  
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7. Conclusions 

In this work we have presented a complete solution for robust, high-throughput, two-color 
microarray image processing comprising procedures for automatic spot localization, spot 
quantification and spot quality control.  
The spot localization algorithm is fully automatic and robust with respect to deviations from 
perfect spot alignment and contamination. As an input, it requires only the common array 
design parameters: number of blocks and number of spots in the x and y directions of the 
array. Although fully automatic, there is no guarantee that it will perform well for any 
array. Therefore, we offer some interactive tools to repair grid in case if it is erroneous. 
Robust ratio estimation comprises two steps. First, linear regression filtering is used to 
identify and remove aberrant pixels, and then more traditional segmentation approaches are 
applied for final estimation. Using the two-step quantification algorithm, we ensure a 
unique ratio estimate, which is as robust as estimates based on medians and as precise as 
estimates based on means. Linear regression filtering relies on the fact that the two color 
channels are expected to be highly correlated. Any contamination, which is uncorrelated in 
the two channels, can be easily recognized by the algorithm and removed. For noisy (weakly 
correlated) data, the filter is transparent for the data. Moreover, in this case, linear 
regression estimates can be biased. Therefore we apply a spot segmentation step to establish 
the final estimate.  
The spot quality algorithm provides a value of spot quality reflecting the level of confidence 
in the obtained ratio estimate at each spot. The unique spot quality value is derived from a 
set of ten marginal quality parameters characterizing certain features of the spot. The 
contribution of each quality parameter in the overall quality is automatically evaluated 
based on the visual classification of the spots, or using information available from the 
replicated spots, located on the same array or over a set of replicated arrays. Therefore the 
developed procedure allows us not only to quantify spot quality, but also to identify 
different types of spot deficiency occurring in microarray technology. The quality values can 
be used either directly to flag out some spots with the quality lower than the user-defined 
threshold, or in the follow-up analysis as a weight controlling the contribution/influence of 
the obtained ratio estimates. 
There are many possibilities to advance the developed algorithms. For example, several spot 

localization parameters (γ, α and β), that are currently fixed in predefined values, can be 
iteratively adjusted to achieve the highest regularity of the generated grid. To enhance spot 
quantification, we can envisage more sensitive (than the single-case diagnostics for the 
linear regression model) algorithms for aberrant pixel detection. These perspectives are 
facilitated by further standardizing microarray technology, so that images are becoming 
more regular, and more specific models for spots and arrays can be developed and justified. 
As it was shown, different features of the spot (intensity, size, circularity, etc.) can be 
quantitatively characterized. These characteristics, besides ratios, may contain useful 
information for the follow-up analysis. One possibility to utilize this information is 
presented in this paper: we used them to derive spot quality values. However, we believe 
that more sophisticated analytical tools can be applied to use spot information in other 
applications. Exploration of these possibilities creates an interesting perspective for future 
developments.  



Robust Microarray Image Processing 219

8. Acknowledgements 

We would like to thank our colleagues from the different laboratories of the Institute Curie: 
(F. Radvanyi, CNRS/IC 144; O. Delattre, INSERM/IC 830; M. Dutreix, CNRS/IC 2027) and 
Prof. D. Pinkel (UCSF Comprehensive Cancer Center), who have provided numerous 
microarray images allowing considerable improvement of the algorithms. 

9. References

Angulo, J. & Serra, J. (2003). Automatic analysis of DNA microarray images using 
mathematical morphology. Bioinformatics, Vol. 19, 553-562. 

Atkinson, A. & Riani, M. (2000). Robust Diagnostic Regression Analysis, Springer. 
Axon Instruments, Inc. (2005). GenePix Pro 6.0. http://www.axon.com, User’s Guide and 

Tutorial.
Bengtsson, A. & Bengtsson, H. (2006). Microarray image analysis: background estimation 

using quantile and morphological filters. BMC Bioinformatics, Vol. 7, 96. 
Bozinov, D. & Rahnenführer, J. (2002). Unsupervised technique for robust target separation 

and analysis of DNA microarray spots through adaptive pixel clustering, 
Bioinformatics, Vol. 18, 747-756. 

Brändle, N.; Bischof, H. & Lapp, H. (2003). Robust DNA microarray image analysis. Machine 
Vision and Applications, Vol. 15, 11-28. 

Brown, C.S.; Goodwin, P.C. & Sorger, P.K. (2001). Image metrics in the statistical analysis of 
DNA microarray data. Proceedings of the National Academy of Sciences, Vol. 98, 8944-
8949.

Buhler, J.; Ideker, T. & Haynor, D. (2000). Dapple: improved techniques for finding spots on 
DNA microarrays. UW CSE Technical Report UWTP 2000-08-05.

Bylesjö, M.; Eriksson, D.;  Sjödin, A.;  Sjöström, M.; Jansson, S.; Antti, H. & Trygg, J. (2005). 
MASQOT: a method for cDNA microarray spot quality control. BMC Bioinformatics,
Vol. 6, 250. 

Ceccarelli, M. & Antoniol, G. (2006). A deformable grid-matching approach for microarray 
images. IEEE Transactions on Image Processing, Vol. 15, 3178-3188. 

Chen, Y.; Kamat, V.; Dougherty, E.R.; Bittner, M.L.; Mel*tzer, P.S. & Trent, J.M. (2002). Ratio 
statistics of gene expression levels and applications to microarray data analysis. 
Bioinformatics, Vol. 18, 1207-1215. 

Dissanaike, G. & Wang, S. (2003). A critical examination of orthogonal regression. 
http://ssrn.com/abstract=407560.

Eckel-Passow, J.E.; Hoering, A.; Therneau, T.M. & Ghobrial I. (2005). Experimental design 
and analysis of antibody microarrays: applying methods from cDNA arrays. Cancer 
Research, Vol. 65, 2985-2989. 

Fisher, L.D. & van Belle, G. (1993). Biostatistics. A Methodology for the Heath Sciences. John 
Willey & Sons. 

Glasbey, C.A. & Ghazal, P. (2003). Combinatorial image analysis of DNA microarray 
features, Bioinformatics, Vol. 19, 194-203. 

Hautaniemi, S.; Edgren, H.; Vesanen, P.; Wolf, M.; Järvinen, A.K.; Yli-Harja, O.; Astola, J.; 
Kallioniemi, O. & Monni, O. (2003). A novel strategy for microarray quality control 
using Bayesian networks. Bioinformatics, Vol. 19, 2031-2038. 



Vision Systems - Segmentation and Pattern Recognition 220

Hegde, P.; Qi, R.; Abernathy, K.; Gay, C.; Dharap, S.; Gaspard, R.; Hughes, J.E.; Snesrud, E.; 
Lee, N. & Quackenbush, J. (2000) A concise guide to cDNA microarray analysis. 
BioTechniques, Vol. 29, 548-562. 

Herzel, H.; Beule, D.; Kielbasa, S.; Korbel, J.; Sers, C.; Malik, A.; Eickhoff, H.; Lehrach, H. & 
Schuchhardt, J. (2001) Extracting information from cDNA arrays. Chaos, Vol. 11, 98-
107.

Ishkanian, A.S.; Malloff, C.A.; Watson, S.K.; DeLeeuw, R.J.; Chi, B.; Coe, B.P.; Snijders, A.; 
Albertson, D.G.; Pinkel, D.; Marra, M.A.; Ling, V.; MacAulay, C. & Lam, W.L. 
(2004). A tiling resolution DNA microarray with complete coverage of the human 
genome. Nature Genetics, Vol. 36, 299–303. 

Jain, A.N.; Tokuyasu, T.A.; Snijders, A.M.; Segraves, R.; Albertson, D.G. & Pinkel, D. (2002). 
Fully automated quantification of microarray image data. Genome Research, Vol. 12, 
325-332.

Kendall, M.G. & Stuart, A. (2003). The Advanced Theory of Statistics, Vol. 2, McMillan, 1979. 
Lehmussola, A.; Ruusuvuori, P. & Yli-Harja, O. (2006). Evaluating the performance of 

microarray segmentation algorithms. Bioinformatics, Vol. 22, 2910-2917.  
Novikov, E. & Barillot, E. (2005a). An algorithm for automatic evaluation of the spot quality 

in two-color DNA microarray experiments. BMC Bioinformatics, Vol. 6, 293. 
Novikov, E. & Barillot, E. (2005b) A robust algorithm for ratio estimation in two-color 

microarray experiments. Journal of Bioinformatics and Computational Biology, Vol. 3, 
1411-1428.

Novikov, E. & Barillot, E. (2006a). A noise-resistant algorithm for grid finding in microarray 
image analysis. Machine Vision and Applications, Vol. 17,  337-345. 

Novikov, E. & Barillot, E. (2006b). Software package for automatic microarray image 
analysis (MAIA). Bioinformatics, Vol. 23, 639-640. 

Pinkel, D.; Segraves, R.; Sudar, D.; Clark, S.; Poole, I.; Kowbel, D.; Collins, C.; Kuo, W.L.; 
Chen, C.; Zhai, Y.; Dairkee, S.H.; Ljung, B.M.; Gray, J.W. & Albertson, D.G. (1998) 
High resolution analysis of DNA copy number variation using comparative 
genomic hybridization to microarrays. Nature Genetics, Vol. 20, 207–211. 

Ritchie, M.E.; Diyagama, D.; Neilson, J.; van Laar, R.; Dobrovic, A.; Holloway, A. & Smyth, 
G.K. (2006). Empirical array quality weights in the analysis of microarray data. 
BMC Bioinformatics, Vol 7, 261. 

Rousseeuw, P.J. & Leroy, A.M. (2003). Robust Regression and Outlier Detection, John Willey & 
Sons.

Rueda, L. & Vidyadharan, V. (2006). A hill-climbing approach for automatic gridding of 
cDNA microarray images. IEEE/ACM Transactions on Computational Biology and 
Bioinformatics, Vol. 3, 72-83. 

Wang, X.; Ghosh, S. & Guo, S.W. (2001). Quantitative quality control in microarray image 
processing and data acquisition. Nucleic Acids Research, Vol. 29, e75. 

Yang, Y.H.; Buckley, M.J.; Dudoit, S. & Speed, T.P. (2002). Comparison of methods for image 
analysis on cDNA microarray data. Journal of Computational and Graphical Statistics,
Vol. 11, 108-136. 



Vision Systems: Segmentation and Pattern Recognition

Edited by Goro Obinata and Ashish Dutta

ISBN 978-3-902613-05-9

Hard cover, 536 pages

Publisher I-Tech Education and Publishing

Published online 01, June, 2007

Published in print edition June, 2007

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

Research in computer vision has exponentially increased in the last two decades due to the availability of

cheap cameras and fast processors. This increase has also been accompanied by a blurring of the boundaries

between the different applications of vision, making it truly interdisciplinary. In this book we have attempted to

put together state-of-the-art research and developments in segmentation and pattern recognition. The first

nine chapters on segmentation deal with advanced algorithms and models, and various applications of

segmentation in robot path planning, human face tracking, etc. The later chapters are devoted to pattern

recognition and covers diverse topics ranging from biological image analysis, remote sensing, text recognition,

advanced filter design for data analysis, etc.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Eugene Novikov and Emmanuel Barillot (2007). Robust Microarray Image Processing, Vision Systems:

Segmentation and Pattern Recognition, Goro Obinata and Ashish Dutta (Ed.), ISBN: 978-3-902613-05-9,

InTech, Available from:

http://www.intechopen.com/books/vision_systems_segmentation_and_pattern_recognition/robust_microarray_

image_processing



© 2007 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the

Creative Commons Attribution-NonCommercial-ShareAlike-3.0 License, which permits use,

distribution and reproduction for non-commercial purposes, provided the original is properly cited

and derivative works building on this content are distributed under the same license.


