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1. Introduction 

Angelman syndrome (AS) is a genetic disorder with an incidence of 1 in 15,000, and it was first 
described in 1965 by Harry Angelman (1,2). It is characterized by a severe developmental 
delay together with mental disorders, movement disorders and behavioral abnormalities. 
Early severe epilepsy, sleep alteration, ataxia, important gait, absence of language and 
craniofacial dysmorphism are phenotypic characteristics used as diagnostic criteria of AS (3).  

Several genetic mechanisms are known to associate with the development of Angelman 
syndrome including the deletion of 4 Mb region in chromosome 15q11-13, uniparental 
disomy (UPD), imprinting centre defects, and mutation in UBE3A (4). The loss of expression 
of imprinted genes causes multiple human genetic disorders, including AS and Prader-Willi 
syndrome (PWS). Although these two diseases are associated with the lack of gene 
expression from the same chromosome 15q11-q13 region, the clinical features of the two 
disorders are distinct. Deletion or loss of paternally inherited gene expression results in 
PWS, while loss of maternally inherited gene expression causes AS (4). 

Multiple mouse models have been developed for the study of AS (Table 1). The first 
reported AS mouse model generated was a mouse with paternal UPD for chromosome 7 (5), 
followed by another mouse model generated by radiation-induced deletion of p locus and 
Ube3a (6). However, these two models carried a large deletion of mouse chromosome 7C 
that could affect multiple loci (1). In the current study, we used a mouse model which 
carried an exon 2 deletion of the Ube3a gene resulting in a shift in the reading frame, thereby 
inactivating all putative isoforms of Ube3a (7). If the offspring mice inherited the mutated 
Ube3a allele of maternal origin, the mice will have no Ube3a expression in the cerebellum, 
Purkinje cells and hippocampus, as Ube3a on the paternal chromosome is silenced by 
genomic imprinting. This mouse model exhibits symptoms similar to that of Angelman 
syndrome patients, including motor dysfunction, seizures, context-dependant learning 
deficiency and severely impaired long-term potentiation (LTP)  (7). 
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Several proteins that are involved in REDOX (oxidation-reduction reactions) were identified 
in the 2-D DIGE, including LDH, MDH, GSTs-Mu1, SOD2, and ATP5a1. The result 
suggested that loss of Ube3a may lead to mitochondrial dysfunction. In addition, the 
accumulation of Chaperone protein Hsp70 was observed and mRNA levels remained 
unchanged, suggesting that Hsp70 might be a substrate of Ube3a. Furthermore, NSF, which 
is known to be involved in neuronal signal transmission, was reduced at protein levels but 
unaffected at mRNA levels.  Finally, CaBP is responsible for binding free calcium ions and 
may play an inductive role in seizures observed in AS mouse models and patients. TPI1, 
Triosephosphate isomerase 1, is one of the key enzymes in the glycolysis pathway, while 
CFL1, Cofilin 1, is known to be a potent regulator of actin filament dynamics.  It remains to 
be determined how differential expression of these proteins may contribute to the 
development of AS.  

 

Mutation Phenotype Reference 

1 Ube3a exon 2 deletion AS (7) 
2 LacZ insertion 

inactivation of Ube3a 
AS (8) 

3 insertion/duplication 
located 13 kb upstream of 
Snrpn exon 1 

AS imprinting mutation (9) 

4 80-kb deletion located 
upstream of Snrpn exon 1

AS imprinting mutation (9) 

5 Ube3a-Gabrb3 –Atp10a
deletion 

AS (10) 

6 Replacement of mouse  
PWS-IC  with human 
PWS-IC 

PWS and AS imprinting mutation (11) 

7 UPD AS (5) 
8 GABRB3 inactivation Some clinical features of AS;  90% of 

ǃ3 -/- mice die within 24 h of birth, survived 
mice exhibit hyperactive, epileptic seizures, 
neurological impairments 

(12) 

9 Transgenic  insertion 
induced deletion; Zfp127-
Herc2  deletion 

PWS/AS (13) 

Table 1. Angelman syndrome mouse models 

2. Materials and methods 

2.1 Protein extraction  

Tissue was homogenized in extraction buffer containing 7 M Urea (Cat. No. U5128, 
Sigma), 2 M Thiourea (Cat. No. RPN 6301, Amersham), 30 mM Tris (Cat. No. 75825, USB), 
4% CHAPS (Cat. No. 13361, USB), adjusted to pH 8.5 with HCl. Complete protease 
inhibitor cocktail (Cat. No. 1697498, Roche) and nuclease mix (Cat. No. 80-6501-42, 
Amersham) were added into extraction buffer before use. Tissue was homogenized with 
3-s pulses followed by 5-s of cooling on ice between the pulses, until no visible tissue 
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could be observed. The homogenized sample was then transferred to the centrifuge tube 
and centrifuged at 20,000 x g for 20 min. The supernatant was transferred into a new 
centrifuge tube and centrifuged for another 20 min at 20,000 x g. The supernatant was 
then aliquoted and stored at -80ºC. The protein concentration was determined by using 
Bio-Rad protein assay (Cat. No. 500-0002, Bio-Rad) based on Bradford’s method according 
to the manufacturer’s protocol.   

2.2 CyDye labelling  

Cy2 minimal dye, Cy3 minimal dye, Cy5 minimal dye (Cat. No. 25-8008-60, Cat. No. 25-
8008-61, Cat. No. 25-8008-62, Amersham) are the three cyanine dyes used in the experiment. 
CyDye was reconstituted by using N-N-Dimethylformamide (Cat. No. 22,705-6, Aldrich). 
400 pmol of CyDye was used to label 50 µg of protein as recommended by the 
manufacturer. The labelling reaction was performed on ice for 30 min, quenched with 1 µl of 
10 mM lysine (Cat. No. L5501, Sigma) and incubated on ice for 10 min. Cy2 was always used 
to label the internal control as recommended by the manufacturer. Alternative use of Cy3 
and Cy5 for the labelling of wild type and diseased samples prevented labelling bias.  In the 
labelling reaction, the ratio of “dye: protein” was kept low to ensure optimal labelling 
efficiency.  

2.3 1-D isoelectric focusing 

ImmobilineTM Dry strip, pH 3-11NL, 24 cm strip (Cat. No. 17-6003-77, Amersham) was used 

for the isoelectric focusing. The strip was rehydrated using rehydration buffer containing 8 

M Urea, 4% CHAPS, 1% Pharmalyte 3-11 (Cat. No. 17-6004-40, Amersham), 13 mM DTT 

(Cat. No. 17-1318-02, Amersham), Destreak solution (Cat. No. 71-5025-39 Amersham). 

Rehydration was done for 16-18 hr. The rehydrated strip was then transferred to a strip 

holder and placed on the IPGphor (Cat. No. 80-6414-02, Amersham) that was used for 

isoelectic focusing. The protein lysate was then applied to the strip by cup loading method, 

and an equal volume of sample buffer (8 M Urea, 130 mM DTT, 4% CHAPS, 2% Pharmalyte 

3-11) was added into the labelled protein sample. The protein was focused on 200 Vhr for 

each 10 µl of sample applied, followed by 500 Vhr, 1000 Vhr, 1000-8000 V gradient 

increment for 1hr, and 8000 V for 32,000 Vhr. The strip was equilibrated before it was 

applied to the 2D electrophoresis unit, first with DTT (Cat. No. 17-1318-02, Amersham) in 10 

ml equilibration buffer (6 M Urea, 50 mM Tris-Cl, 30% glycerol, 2% SDS, Bromophenol blue; 

Glycerol Cat. No. 16374, USB) for 20 min and followed with IAA (Cat. No. RPN 6302, 

Amersham) for another 20 min. 

2.4 2-D gel electrophoresis 

The equilibrated strip was transferred to SDS-PAGE and sealed with 1% agarose sealing 
solution with bromophenol blue (Cat. No. 12370, USB) as trace dye. Gel electrophoresis was 
performed on 12% acrylamide SDS-PAGE (40% stock, Cat. No. 17-1310-01, Amersham) 
casted one night before usage, in 2X SDS running buffer (50 mM Tris, 384 mM Glycine, 0.4% 
SDS; Glycine Cat. No. 161-0718 Bio-Rad, SDS Cat. No. 75819, USB) at 15ºC.  5 W per gel was 
applied for protein entry, and 10 W per gel for protein separation. The electrophoresis run 
was stopped when the dye front reached the bottom of the gel. The electrophoresis run was 
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performed on Ettan DALT six system (Cat. No. 80-6485-27, Amersham). The 2-D spot 
pattern comparison was then made by using Decyder software (Amersham) to figure out 
protein candidates with significant different steady state levels and those differences in 
expression were consistent in all 2-D DIGE sample analyzed.  

2.5 Silver staining proteins visualization 

The acrylamide gel was fixed in 50% Methanol (Cat. No. A-454-4, Fisher), 12% Acetic acid 

(Cat. No. 1.00063.2511, Merck) overnight with mild shaking. The silver staining was 

performed using Silver Stain Plus kit (Cat. No. 161-0449, Bio-Rad) according to 

manufacturer's protocol. The stained gel was then stored in 1% acetic acid solution.  

2.6 MALDI-TOF protein identification 

Stained gel spots were excised by scalpels and cut into 1 mm3 cubes. Silver stained gel spots 

were then destained by using 100 mM Sodium Thiosulfate (Cat. No. A3525, Applichem) and 

30 mM Potassium Ferricyanide (III) (Cat. No. 24.402-3, Aldrich) with gentle vortexing. The 

gel spots were then washed with double distilled water and equilibrated with 100 mM 

Ammonium Bicarbonate (Cat. No. A6141, Sigma). Gel spots were then dehydrated in 

Acetonitrile (Cat. No. 34967, Riedel-de Haën).  DTT and IAA were added respectively into 

dehydrated gel spots. The gel spots were then dehydrated again with acetonitrile before 10 

ng/µl Trypsin (Cat. No. V5280, Promega) was added for digestion overnight at 37ºC. 

Peptides were extracted using 50% ACN/5% Trifluoroacetic Acid (TFA). The peptides were 

then dried using vacuum dry method and cleaned with ZipTip® C18 (Cat. No. ZTC 18S 096, 

Millipore) according to manufacturer's instruction. 

2.7 Mouse genomic DNA extraction 

Mouse tail was cut and digested in 495 µl NTES buffer (50 mM Tris-Cl, 50 mM EDTA, 100 

mM NaCl, 5 mM DTT, 0.5 mM spermidine and 2% SDS) and 5 µl of proteinase K (Cat. No. 

13215100, Roche) overnight at 55ºC in a rotary oven. The next day, equilibrated phenol (Cat. 

No. C2432, Sigma), phenol:chloroform:isomyl alcohol (Cat. No. 75831, USB) and chloroform 

(Cat. No. 75829, USB) were sequentially used for purification of protein from DNA extract. 

The genomic DNA was then precipitated by isopropyl alcohol (Cat. No. A415-4, Fisher) and 

dissolved in TE buffer.  

2.8 Mouse genotyping 

Three primers named oIMR1965, oIMR1966 and oIMR1967 were used to determine the 

genotype of the mouse.  Primer oIMR1965 was the common primer; when it paired with 

primer oIMR1966, a 700 bp fragment from the wild type allele would be amplified. On the 

other hand, when primer oIMR1965 paired with primer oIMR1967, a 320 bp fragment from 

mutant allele would be amplified. The PCR cycling condition was heat activation at 95ºC for 

3 min, followed by 40 cycles of 95ºC for 30 s, 67ºC for 1 min and 72ºC for 1 min; the final 

extension step was done at 72ºC for 2 min. The PCR product was analyzed by 

electrophoresis on 1.5% agarose gel.  
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2.9 Real time RT-PCR 

The reaction was performed using iTaqTM SYBR® Green Supermix with ROX (Cat. No. 172-

5850, Bio-Rad) containing 2X reaction buffer, 0.4 mM dATP, 0.4 mM dCTP, 0.4 mM dGTP, 

0.8 mM dUTP, iTaq DNA polymerase, 6 mM Mg+2, SYBR Green I dye, 1 µM ROX internal 

reference dye and stabilizers. Reaction volume used was 25 µl, including 12.5 µl of 2X  

SYBR® Green Supermix, 1 µl of synthesized cDNA, 1 µl of 10 µM forward primer, 1 µl of 10 

µM reverse primer [Table 2], topping up with nuclease free water.  

Cycling was performed on 7500 Real Time RT-PCR system (Applied Biosystem). Cycling 

conditions were machine warm up at 50ºC for 2 min, hot initiation at 95ºC for 10 min, cycling 

condition (45 cycles) of 95ºC for 30 s, 60ºC for 30 s and 72ºC for 2 min, followed by a 

dissociation stage to generate a melting curve. ΔΔCT method was employed to calculate the 

differential expression of mRNA in samples examined, by comparing cycling results between 

target gene and basal control Glyceraldehyde-3-phosphate dehydrogenase (GADPH). 

 

Name Sequence 

HSP70 
Sense: 5'-AAG AAC GCG CTC GAG TCC TAT GC-3'

Anti-sense: 5'-CAC CCT GGT ACA GCC CAC TGA TGA T-3' 

CaBP 
Sense: 5'-GAT GGC AAC GGA TAC ATA GAT GAA-3'

Anti-sense: 5'-TCC ATC CGA CAA GGC CAT TAT GTT C-3' 

GADPH 
Sense: 5'-AGT CTA CTG GTG TCT TCA CCA CCA TGG-3' 
Anti-sense: 5'-TTC TCG TGG TTA ACA CCC ATC AC-3' 

VDR 
Sense: 5'-AGG TGC AGC GTA AGC GAG AGA T-3'

Anti-sense: 5'-CCT CAA TGG CAC TTG ACT TAA GC-3' 

NeuroD 
Sense: 5'-CTC AGT TCT CAG GAC GAG GA-3'

Anti-sense: 5'-TAG TTC TTG GCC AAG CGC AG-3'

Pax6 
Sense: 5'-AGT CAC AGC GGA GTG AAT CAG-3'

Anti-sense: 5'-AGC CAG GTT GCG AAG AAC-3'

Mash1 
Sense: 5'-AGC AGC TGC GGA CGA GCA-3'

Anti-sense: 5'-CCT GCT TCC AAA GTC CAT TC-3'

LDH 
Sense: 5’-AGC AAA GAC TAC TGT GTA ACT GCG A-3’ 
Anti-sense: 5’-ACC TCG TAG GCA CTG TCC AC-3’

MDH 
Sense: 5’-AGG CTA CCT TGG ACC GGA GCA GTT-3’

Anti-sense: 5’-GTG GCA GAA CCT GCT CCA GCC TT-3’ 

Glutathione S-
Transferase Mu1 

Sense: 5’-TGA CGC TCC CGA CTT TGA CAG AA-3’

Anti-sense: 5’-TAA GCA AGG AAA TCC ACA TAG GTG-3’ 

ATP synthase 5a1 
Sense: 5’-AGA AGA CTG GCA CAG CTG AGA TGT-3’

Anti-sense: 5’-CCA GTC TGT CTG TCA CCA AT-3’

SOD2 
Sense: 5’-ATG AAA GCC ATC TGC ATC ATT AGC-3’

Anti-sense: 5’-GCA ATT ATT CCG CAT CCC AAA CG-3’ 

NSF 
Sense: 5'- TGG GGC AGC AGC TTG TCT TTA -3'

Anti-sense: 5'- TTA GCA CCA AGC CTC CTT TGC -3'

Table 2. Primer sequences used in Real Time RT-PCR analysis: 
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2.10 Western blot analysis 

Protein homogenates were heated in Laemmli sample buffer (Cat. No. 161-0737, Bio-Rad), at 

95ºC for 10 min. The heated samples were resolved on 12% SDS-PAGE gel and transferred 

to Immun-Blot PVDF membrane (Cat. No. 162-0177, Bio-Rad) at 100 V for at least 1 hr. The 

membrane was then blocked with 5% non-fat milk in 0.1% T-TBS (10 mM Tris-Cl, pH 7.5, 

150 mM NaCl and 0.1% Tween-20; NaCl Cat. No. 1.06404, Merck, Tween-20 Cat. No. 161-

0781, Bio-Rad ) for 1 hr at RT. The membrane was then washed three times in 0.1% T-TBS, 

followed by incubation with primary antibody [Table 3] for 1 hr. The membrane was then 

washed again three times in 0.1% T-TBS and incubated for 1 hr with HRP conjugated 

secondary antibody. The membrane was then washed again three times in 0.1% T-TBS 

before being developed by ECL method (Cat. No. RPN 2108, ECL Western blotting analysis 

system, Amersham). The blot was stripped with 0.1% T-TBS overnight on an orbital shaker 

for second antibody detection. The intensity of protein bands detected by Western blot 

analysis was determined by calibrated densitometer GS-800 and Quantity One 1-D analysis 

software (Cat. No. 170-7983, Bio-Rad). 

 

Antibody name Dilution factors used in experiment 

Anti-E6AP (Cat. No. A300-352A, Bethyl) 1:2500-5000 

Anti Calbindin D-28k (Cat. No. AB1778, 
Chemicon) 

1:2500-5000 

Anti-Actin (Cat. No. MAB1501, Chemicon) 1:1000-2500 

Secondary HRP conjugated anti-
mouse/anti-rabbit (GE Healthcare) 

1:2500-5000 

Anti-Hsp70 (Cat. No. sc32239 , Santa Cruz) 1:2500-5000 

Anti-SOD2 (Cat. No. sc-30080, Santa Cruz) 1:2500-5000 

Anti-NSF (Cat. No. ab16681, abcam) 1:10000 

Anti-Mash1 (Cat. No. AB155582, Chemicon) 1:2500-5000 

Anti-NeuroD (Cat. No. AB155580, 
Chemicon) 

1:2500-5000 

Table 3. Antibodies used in experiments 

3. Results 

In this project, the effects of the loss of UBE3A proteins were investigated using Ube3a 
knockout mice. Two-D DIGE method [Figure 1] was used to identify candidate substrates of 
Ube3a in the cerebellum and hippocampus; a total of 94 proteins and 74 proteins were initially 
found differentially expressed in the cerebellum or hippocampus of the Ube3a knockout mice, 
respectively. Next, the protein candidates were tested with the following filtering criteria: 1) 
proteins appeared in all 2-D DIGE runs examined and 2) the one-way Analysis of Variance 
(ANOVA) compared protein expression level between the wild type and AS mice indicating 
the difference is statistically significant. The differentially expressed proteins were then 
identified by MALDI-TOF with a threshold score of 63. A total of 10 proteins that were 
successfully identified and fulfilled the filtering criteria are listed in Table 4. An additional 4 
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Fig. 1. Work flow of project 
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proteins, including Mash1, NeuroD, Pax6 and VDR, were not detected in 2-D DIGE runs 

but were investigated in this project due to the fact that these proteins were shown to be  

highly associated with one of the proteins identified in this project, CaBP (14). 

Differentially expressed proteins identified by the 2-D DIGE could be due to the direct, 

indirect or both direct and indirect effects from the loss of Ube3a expression.  Ube3a is 

known to be involved in proteasome-dependent as well as proteasome-independent 

functions. Therefore, Western blot analysis was performed to verify the differentially 

expressed proteins identified by 2-D DIGE analysis and further studied at the mRNA 

level by Real-Time RT-PCR. It helps to understand that these protein candidates may be 

affected at the protein level due to impaired protein degradation mechanism (4). 

Alternatively, these proteins may be affected at the transcriptional level, as Ube3a is also 

involved in transcriptional regulation (15).  

By comparing protein samples from wild type mice and AS mice in the 2-D DIGE study, 

protein candidates that showed differential expression were found and identified by the 

MALDI-TOF method. Western blot was then employed to confirm the differential 

expression observed in 2-D DIGE. Real time RT-PCR was used to detect any differences at 

the transcriptional level in the protein candidates identified.  

 

Protein 
identified by 
MALDI-TOF 

pI 
Molecular 

Weight 
Accession 
number 

Sequence 
coverage 

% 
Score Function 

CABP 4.82 25943 P12658 50% 375 
Calcium ion 

buffer 

HSP70 5.52 70079 NP_034609.2 24% 358 
Protein folding 

and degradation 

SOD2 8.80 24602 P09671 30% 219 REDOX 

LDH 7.61 36498 P06151 7% 134 REDOX 

MDH 6.16 36477 gi|92087001 30% 365 REDOX 

GSTs-Mu1 7.72 25969 P10649 35% 319 REDOX 

NSF 6.52 82613 gi|29789104 29% 162 
Docking and 

fusion of 
synaptic vesicles 

ATP5a1 9.22 59752 gi|6680748 49% 436 ATP synthesis 

Cofilin 1, non 
muscle 

8.22 18776 gi|6680924 22% 116 
Disassembles 

actin filaments 

TPI1 
(Triosephosphate 
isomerase 1) 

6.90 27038 gi|6678413 56% 489 
Glycolysis, 

energy 
production 

Table 4. Differentially expressed proteins detected by 2-D DIGE 
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3.1 2-D DIGE and silver staining 

After the Decyder software analysis was performed by using analytical gel (CyDye 
labelled), another set of protein electrophoresis (preparative gel) were performed using 600 
µg of unlabelled protein sample. The protein samples used in the preparative gel were the 
same as those used for 2-D DIGE analysis. After electrophoresis, silver staining was 
conducted to visualize protein spots on the gel. Typically, 800-1000 protein spots were 
visualized on each gel [Figure 2]. 

 

Fig. 2. Silver staining of acrylamide gel after SDS-electrophoresis 
Protein extract (600 µg) from cerebellum was loaded in a first dimension IPG strip (pH3-11, 
NL, 24 cm; Running time: 15.5 hr, approx 47 kVh) and resolved in 12.5% acrylamide gel 
(Running time: 5.15 hr, 10 W per gel). Proteins were visualized by silver staining. These gels 
are called preparative gels, and they contain more protein content to allow for subsequent 
analyses including silver staining and MALDI-TOF. CyDye labelled proteins were run on 
analytical gels which are scanned by lasers and thus do not require a high quantity of 
proteins. 

3.2 Detection and identification of differentially expressed protein in AS versus wild 
type brain tissue 

A total of ten differentially expressed proteins were detected by using 2-D DIGE from 
protein samples extracted from the cerebellum or hippocampus of wild type mice and AS 
mice (Ube3a knockout). The protein spots were recovered from silver-stained acrylamide 
gels run in parallel, and identification was made based on the protein profile generated by 
MALDI-TOF [Figure 3] with a threshold score of 63. All candidates were confirmed at least 
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twice in separate 2-D DIGE runs and MALDI-TOF identification. Another four bHLH 
proteins, including Mash1, NeuroD, Pax6 and VDR, were also studied in this project, as the 
proteins are highly related to CaBP (14). 

A total of eight proteins studied are involved in REDOX reactions, including HSP70, SOD2, 
MDH, LDH, VDR, GSTs-Mu1, ATP5a1 and CaBP. Four of the bHLH proteins, VDR, Pax6, 
Mash1 and NeuroD are involved in neuronal cell differentiation, while NSF is crucial in 
synaptic vesicle transmission and learning processes that are controlled by the hippocampus 
[Figure 4]. TPI1 is involved in energy production, while Cofilin 1 is involved in actin 
disassembly and may also be involved in neuronal signal transduction. 
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Fig. 3. Protein identification by MALDI-TOF  
MS spectrum for one of the proteins identified- CaBP. After peptide detection, the peptide 
profile was used to match the NCBI database for protein identification. 

www.intechopen.com



 
Angelman Syndrome: Proteomics Analysis of an UBE3A Knockout Mouse and Its Implications 

 

169 

 

Fig. 4. 2-D DIGE results and inter-connected functions of the identified proteins.  This figure 
shows differentially expressed proteins categorized by their functions. Some proteins are 
known to be involved in multiple pathways and functions.  

3.3 Validation of 2-D DIGE/MS results by Western blot analysis 

Western blot was conducted to validate the differentially expressed proteins that were 
identified in 2-D DIGE/MS. In the cerebellum, three proteins, including SOD2, CaBP and  
Mash1, were down-regulated in Ube3a knockout mice [Figure 5], while Hsp70, NSF and 
NeuroD were accumulated in knockout mice [Figure 6]. However, SOD2, Mash1, CaBP, 
NeuroD and NSF were down-regulated [Figure 7] and HSP70 was accumulated [Figure 8] in 
the hippocampus of Ube3a knockout mice. The Western blots were repeated at least three 
times by using different sets of cerebellum and hippocampus tissues [Figures 5-8]. 

In the cerebellum, Hsp70 was found to be up-regulated by approximately 120% based on the 
densitometer scan results. NSF and NeuroD were up-regulated by 85% and 50%, 
respectively. SOD2 was down-regulated by 45% in the cerebellum of Ube3a knockout mice. 
Based on densitometer scan results, CaBP and Mash1 were both found to be reduced by 
approximately 75% in defective mice.  

In the hippocampus, Hsp70 was increased by 50% when samples from wild type mice were 
compared to defective mice. SOD2 and Mash1 were both reduced by approximately 80% in 
Ube3a knockout mice; CaBP and NeuroD were found down-regulated by 40% and 45%, 
respectively, when compared to the wild type sample. Lastly, NSF was reduced by nearly 
50% in Ube3a knockout mice. 
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Fig. 5. Validation of down-regulation of SOD2, CaBP and Mash1 in the cerebellum of Ube3a 
knockout mice.  SOD2, CaBP and Mash1 are down-regulated in AS mouse model. Antibody 
dilution factor used for Western blotting were- SOD2, 1:5000; CaBP, 1:5000; Mash1, 1:5000. 

 

Fig. 6. Validation of proteins accumulated in the cerebellum of Ube3a knockout mice.  Three 
proteins, including HSP70, NSF and NeuroD, are accumulated in AS mice. Antibody dilution 
factors used for Western blotting were- HSP70, 1:5000; NSF, 1:5000; and NeuroD, 1:5000. 

 

Fig. 7. Validation of down-regulated proteins in the hippocampus of Ube3a knockout mice.  
Five proteins, including SOD2, Mash1, CaBP, NeuroD and NSF, are down-regulated in AS 
mice. Antibody dilution factors used for Western blotting were-SOD2, 1:5000; Mash1, 1: 
NSF, 1:5000; NeuroD, 1:2500. 
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Fig. 8. Validation of Hsp70 accumulation in the hippocampus of Ube3a knockout mice.  
Hsp70 showed accumulation in AS mice among protein candidates detected by 2-D 
DIGE/MS. Antibody dilution factor used for Western blotting was- HSP70, 1:5000. 

The major differences in the Western blot validation are the differential expressions of 
NeuroD and NSF in these two tissues. These two proteins were found to be up-regulated in 
the cerebellum but down-regulated in the hippocampus [Figure 9]. This suggests that the 
expression of these two proteins might be tissue specific.  Western blot analysis for protein 
candidates VDR, LDH, MDH, GSTs-Mu1 and ATP5a1 has not been conducted due to the 
unavailability of antibodies when this study was conducted. 

 

Fig. 9. A summary of the validation of 2-D DIGE/MS results by Western blot analysis.  A 
total of 6 proteins from the cerebellum and hippocampus were tested by Western blot. Three 
of them, including CaBP, Nash1 and SOD2, were down-regulated and one (Hsp70) was up-
regulated in both tissues, while both NSF and NeuroD showed tissue-specific expression 
patterns. 

3.4 Transcriptional analysis of the differentially expressed proteins verified by 
Western blot analysis 

Since variation of steady state protein level between wild type and mutant mice can be 
caused by enhancing transcriptional activity instead of enhancing protein half life, Real 
Time RT-PCR was conducted to quantify mRNA levels of proteins detected by 2-D DIGE.  
mRNA extracted from the cerebellum and hippocampus of wild type mice as well as Ube3a 
knockout mice were used in this study. Real Time RT-PCR was conducted at least three 
times for individual sets of mice. The Student’s T-test was applied for this study. 
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Based on results of Real Time RT-PCR obtained from the cerebellum sample [Table 5], 

mRNA levels of CaBP, NeuroD and VDR were down-regulated by 57%, 33% and 55%, 

respectively. The mRNA levels of other proteins, including Hsp70, SOD2, Mash1, Pax6, NSF, 

ATP5a1, LDH, MDH and Glutathione S-transferase Mu1,were not affected in the AS mouse.  

Real Time RT-PCR revealed that mRNA levels of CaBP, NeuroD, Pax6, VDR and LDH were 

down-regulated in the hippocampus of Ube3a knockout mice by 80%, 85%, 82%, 72% and 

45%, respectively, while the mRNA level of Glutathione S-transferase Mu1 was up-regulated 

by 107% [Table 5].  In contrast, mRNA levels of MDH, ATP5a1, NSF, Mash1, SOD2 and 

Hsp70 were not affected in the hippocampus of Ube3a knockout mice. 

 

Cerebellum 

Percentage changes 

(protein level) 
Candidates 

Percentage changes 

(mRNA level) 

75% ↓ CaBP 57% ↓ 
75% ↓ Mash1 6% - 

45% ↓ SOD2 13% - 

120% ↑ HSP70 17% - 

50% ↑ NeuroD 33% ↓ 
85% ↑ NSF 2% - 

n/a LDH 17% - 

n/a MDH 15% - 

n/a GSTs-Mu1 1% - 

n/a VDR 55% ↓ 
n/a ATP5a1 12% - 

n/a Pax6 21% - 
 

Hippocampus 

Percentage changes   

(protein level) 
Candidates 

Percentage changes (mRNA 

level) 

40% ↓ CaBP 80% ↓
80% ↓ Mash1 12% -

80% ↓ SOD2 22% -

50% ↑ HSP70 25% -

45% ↓ NeuroD 85% ↓
50% ↓ NSF 6% -

n/a LDH 45% ↓
n/a MDH 14% -

n/a GSTs-Mu1 107% ↑ 
n/a VDR 72% ↓
n/a ATP5a1 15%  - 
n/a Pax6 82% ↓

Table 5. A summary of Western blot validation and Real Time RT-PCR analysis of 
candidates tested in the cerebellum and hippocampus of Ube3a knockout mice. 
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4. Discussion 

When Ube3a was first identified as an E3 ligase, little was known about its targeting 

substrates besides p53 (1). However, as techniques improved over the years, additional 

substrates of Ube3a were identified [Table 6].  

 

Gene / Protein Function Reference 

1 Src Family of Tyrosine 
Kinase Blk 

Regulators of cytoskeletal organization, 
cell-cell contact, cell-matrix adhesion, DNA 
synthesis, cellular proliferation 

(16) 

2 Cystic fibrosis 
transmembrane 
regulator-associated 
ligand (CAL) 

Facilitate of lysosomal degradation of other 
proteins, intracellular trafficking, 
autophagy of neuronal cells, vesicular 
trafficking pathways 

(17) 

3 Trihydrophobin 1 (TH1) Assembly of functional human negative 
transcription elongation factor (NELF) 
complex 

(18) 

4 Epithelial call 
transforming sequence 2 
oncogene (ECT2) 

Cytokinesis, cytoskeletal remodelling in 
response to neurite guidance cues 

(19) 

5 Polyglutamine 
aggregation 

Protein aggregation associated to cell death 
and neurodegenerative diseases 

(20-22) 

Table 6. Recently identified substrates of Ube3a 

Among these proteins, Blk, from the tightly regulated Src family of non-receptor tyrosine 

kinase, is important in cytoskeletal organization, cell-cell contact, and cell-matrix 

adhesion; a few other proteins from the Src family are also interacting partners of Ube3a 

(16). Cystic fibrosis transmembrane regulator-associated ligands (CAL), which serve as 

membrane-associated scaffolds, are involved in the targeting of other plasma membrane 

proteins and autophagy in neuronal cells (17). Trihydrophobin 1 (TH1) is another 

interacting partner and target of Ube3a that was recently identified; it is an integral 

subunit of the human negative transcription elongation factor (NELF) complex, which is 

important in transcriptional pausing in vitro (18). ECT2 is involved in cytokinesis and 

cytoskeletal remodelling in response to all known neurite guidance cues (19). Its 

dysregulation may explain the general learning and behaviour defects in AS patients (4). 

Polyglutamine inclusion, which is translated from the expansion of a CAG trinucleotide 

repeat, causes several human neurodegenerative diseases, including spino-bulbar 

muscular atrophy (SBMA), Huntington’s disease (HD) and the spinocerebellar ataxias (20-

22). 

In this study, we intended to examine the differential expression of proteins caused by the 

knockout of Ube3a in the AS model. By 2-D DIGE/MS, we identified proteins that are 

differentially expressed in the mutant mice, which may serve as the target substrates of 

Ube3a. The accumulation or reduction of these proteins may correlate with the phenotypes 

observed among AS patients.  

www.intechopen.com



 
Advanced Topics in Neurological Disorders 

 

174 

From our 2-D DIGE/MS experiment and Western blot analysis using cerebellum [Figure 6] 
and hippocampus [Figure 8] tissue samples, up-regulation of Hsp70 was observed in Ube3a 
knockout mice. However, Real-Time RT-PCR analysis [Table 5] using RNA samples 
extracted from mice showed that Hsp70 mRNA levels were not significantly affected in the 
cerebellum and hippocampus when comparing Ube3a knockout and wild type mice. In 
conclusion, the differential expression of Hsp70 was observed only at the translational or 
protein level. It is conceivable that Hsp70 is the target of Ube3a, as Hsp70 is a multi-
functional protein; its most prominent task is to serve as a chaperone in the ubiquitin 
proteasome system. Parkin and CHIP are two other E3-ligases that are known to interact 
with Hsp70 for protein quality control tasks (21). To perform its quality control task, Hsp70 
serves as a chaperone that binds to misfolded proteins during translation or after stress-
mediated protein damage. Studies have shown that Hsp70 interacts with co-chaperone 
CHIP, which functions as a RING domain E3-ligase, and together they serve as the protein 
quality control system that clears stress-damaged proteins from cells. Such proteins include 
tau in Alzheimer's disease and expanded polyglutamate protein in Huntington’s disease 
(23,24). A recent study also demonstrated that E6AP reduces polyglutamate protein 
aggregation, which induces cell death. Results also showed that E6AP is over-expressed 
correlated with HSP70. The author suggested that HSP70 may play a modulatory role on the 
function of E6AP (20). Another study has also shown that Hsp70 is degraded through CHIP-
dependent targeting to the ubiquitin-proteasome system (21). If E6AP does interact with 
Hsp70 to perform protein quality control, one of the possible scenarios might be that HSP70 
is targeted by E6AP after the substrates have depleted. In the AS mouse model used in this 
study, Ube3a was knocked out; this might result in the accumulation of HSP70 after the 
target substrates have depleted. Ube3a may be acting in the positive feedback system, by 
promoting the degradation of HSP70 when HSP70 exceeds its threshold level in the body. 
The loss of Ube3a in knockout mice may prolong the half-life of Hsp70. As other studies 
have suggested, Hsp70 normally assists in multi-ubiquitin chain ubiquitination at lysine48 
(K48), and such ubiquitination normally leads to the degradation of the protein (25). Even 
though there are other E3-ligases, all E3-ligases have their own specific targets. In addition, 
different post-translational modifications by Ube3a may have different effects on the protein 
and influence the range of functions that it performs (26). Lack of Ube3a may not only affect 
the half-life of Hsp70 but also affect the functions of Hsp70. 

It is possible that Hsp70 might play a role in cell protection. In Ube3a knockout mice, there 
may be accumulation of other proteins that are specific substrates of Ube3a for degradation. 
Elevated levels of HSP70 may be triggered by accumulation of the substrate proteins or 
misfolded proteins. Studies have shown that elevated levels of HSP70 may assist in 
unfolding the misfolded proteins to prevent them from becoming toxins in the brain (27-31). 
This may also be the reason that protein aggregates commonly seen in other 
neurodegenerative diseases are absent in AS mouse models and AS patients. It is generally 
known that overexpression of HSP70 prior to neuronal insult improves cell survival in both 
stroke and epilepsy models. However according to recent studies, the neuroprotection effect 
from the expression of HSP70 in other neurodegenerative diseases was not observed in 
epileptogenic states, and over-expression of HSP70 in such cases only served as an indicator 
of neuronal stress in the acute phase of epilepsy (27). However, other studies have 
suggested that the death of neuronal cells is not caused by protein aggregation in the brain, 
but rather by the soluble intermediates. Accumulation of HSP70 may prevent the formation 
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of protein aggregation but allow soluble intermediates to cause toxic effects in AS patients. 
Both soluble intermediates and protein aggregates attribute to the clinical features of 
neurodegenerative diseases  (32). 

Expression of VDR is found to be reduced in Ube3a knockout mice at the protein level in this 
2-D DIGE/MS study. We have also examined the mRNA level of VDR in the cerebellum and 
hippocampus of Ube3a knockout mice, and it is found to be down-regulated by 55% and 
72%, respectively. Its ligand, vitamin-D3, controls calcium homeostasis, bone formation, cell 
differentiation and apoptosis (33,34). The down-regulation of VDR may affect calcium 
homeostasis in mutant mice, as epilepsy is highly correlated with the disruption of calcium 
levels in cells and is one of the most well-known characteristics observed in Angelman 
syndrome patients.  VDR is a transcriptional regulator that interacts with specific DNA 
sequences composed of hexanucleotide direct repeats and binds as either a homodimer or 
heterodimer with retinoid X receptors (RXRs); cell cycle inhibitors p21 and p27 are two 
known genes that VDR regulates (35,36). If VDR is down-regulated in Ube3a knockout mice, 
its upstream regulator BAG1L may also be affected. BAG1L, along with BAG1, BAG1M 
(Rap46), and BAG1S, are four protein isomers that the human BAG1 gene encodes. Recently, 
Hsp70 has been identified as a partner of BAGL1 in enhancing the trans-activation function 
of VDR in a concentration-dependent manner; this interaction has been speculated to 
improve tumor cell responses (37,38). Since BAG1L couples with Hsp70 to perform its 
functions, the accumulation of Hsp70 detected in the AS mouse model may be related to the 
down-regulation of VDR. VDR is a multifunctional protein that is known to regulate 
calcium homeostasis (33,34) and immunity (39). Therefore, the correlation between BAG1L, 
accumulation of Hsp70 and down-regulation VDR may be an interesting area to study in the 
Ube3a knockout model.  

The homeostasis of Ca2+ in neurons can be achieved by the transportation of Ca2+ across the 

membrane, sequestration by cellular organelles, or with cytosolic buffering proteins such as 
pavalbumin and CaBP. Calcium ions, in turn, are actively involved in signal transduction, 

the development of regulatory proteins that modulate calcium ion transients, neurogenesis 
and many other functions. Lack of cytoplasmic CaBP severely impairs Ca2+ homeostasis and 

causes nerve cells to be selectively vulnerable to Ca2+ related injury (40,41). In the 2-D 
DIGE/MS study and Western blot analysis, CaBP was one of the proteins that was down-

regulated in both cerebellum and hippocampus tissue of Ube3a knockout mice. It is known 
that the decline of CaBP in hippocampal dentate granule cells correlates with the kindling 

model for epilepsy; this may help to explain the frequent seizures observed among 
Angelman syndrome patients, as excess levels of intracellular Ca2+ may disrupt neuronal 

signal transduction (42).  

Another study has shown that CaBP facilitates neuronal differentiation via up-regulation 
of genes such as NeuroD, Pax6, VDR and Mash1 in a pathway involving CaMK (14). 
Mash1 or ASC1 is one of the basic helix-loop-helix (bHLH) transcription factors that 
heterodimerizes with the ubiquitous Class I bHLH E proteins to form complexes that are 
crucial in neurogenesis and neural differentiation during development (43). Adult neural 
progenitor cells continue to generate new neurons, astrocytes and oligodendrocytes in 
the brain throughout life, under normal turnover circumstances, or after ischemia in 
status epilepticus. Mash1 and Olig2 stimulate neurogenenesis and differentiation of 
progenitor cells in the telencephalon, generating the vast array of neurons and glia cells  
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found in the adult cerebral cortex and giving rise to the ganglionic eminence and 

olfactory epithelium (44,45). A study using Mash1 null mutant mice showed that Mash1 

is required for the generation of an early population of oligodendrocyte precursors 

(OPCs), which is involved in the regulation of synaptic transmission and adult 

neurogenensis (46). Mice with a targeted deletion in Mash1 also fail to develop 

pulmonary neuroendocrine cells (PNECs), and they die in the neonatal period due to 

respiratory failure (47). NeuroD or Beta2 is another basic helix loop helix (bHLH) 

transcription factor expressed in neurons of the cortical plate, as well as neuroendocrine 

cells in the stomach, gut, pancreas and adult lung (48,49). It is involved in the 

differentiation of neurons and the development of the pancreas, inner ear and retina 

(48,50). Like other bHLH factors, it heterodimerizes with E proteins and controls the 

transcription of a variety of genes to induce neuron differentiation. When NeuroD is 

deleted in mice, the early differentiating pancreatic endocrine cells die, and total 

pancreatic insulin level is only about 5% of normal level. The mutant mice will eventually 

die within five days after birth due to hyperglycemia. In the hippocampus of NeuroD 

null mice, when the granule cells reach the dentate gyrus, both cell proliferation and 

differentiation are severely disturbed, leading to severe cellular depletion in the brain 

(49). The hippocampal mRNA and protein levels of CaBP have been demonstrated to 

express concurrently with the expression of these bHLH transcription factors (14). In the 

Real-Time RT-PCR study, fresh tissue from the AS mouse model was used instead of the 

progenitor cell cultures that were used in the previous study (14). This was to ensure that 

the Ube3a knockout environment was retained and was able to reflect the complex 

activity in vivo. In this case, CaBP mRNA levels were down-regulated by 57% in the 

cerebellum and 80% in the hippocampus; NeuroD mRNA levels were down-regulated 

concurrently by 33% and 85% in the cerebellum and hippocampus, respectively. 

However, Mash1 mRNA levels remained unchanged in the two tissues. NeuroD encoding 

a bHLH protein is involved in neuronal cells development as well as differentiation; the 

down-regulation of NeuroD at mRNA levels may implicate the lack of differentiation in 

dendritic spines observed in the AS mouse model (51). Even though Mash1 mRNA levels 

were unaffected, its protein levels were reduced in both the cerebellum and 

hippocampus of Ube3a knockout mice. On the other hand, NeuroD mRNA was down-

regulated in the cerebellum and hippocampus, while NeuroD protein was accumulated 

in the cerebellum and down-regulated in the hippocampus. The deficiency of these two 

proteins in the hippocampus may not only affect the development and differentiation of 

cells but also affect neurogenesis after ischemic or neuronal damage. 

Vitamin D3 has been shown to induce the expression of CaBP (52,53), and vitamin D3 

receptor (VDR) and CaBP have been found to co-localize in many tissues, especially in the 

brain. Reduced CaBP and VDR mRNA levels in the hippocampus of neurodegenerative 

Alzheimer’s disease have been reported (54). This coincides with our findings in the Real 

Time RT-PCR experiment that CaBP and VDR are down-regulated by 57% and 55%, 

respectively, in the cerebellum, and down-regulated by 80% and 72%, respectively, in the 

hippocampus of Ube3a knockout mice. Since both mRNA levels were affected and VDR 

protein levels were down-regulated in the 2D-DIGE analysis, this might correlate with the 

CaBP deficiency observed in the cerebellum and hippocampus. These findings demonstrate 

a specific association between VDR and CaBP. 
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Reactive oxygen species (ROS) are electronically activated species that have been shown 

to behave as signal transduction molecules that modulate protein function, such as 

facilitating oxidative posttranslational modification on protein chaperones (55,56). The 

intrinsic mitochondrial apoptotic pathway is the most common form of cell death in 

neurodegeneration; it controls the activation of caspase-9 by regulating the release of 

cytochrome c from the mitochondrial intermembrane space (IMS) (57). ROS are normal 

by-products of mitochondrial respiratory chain activity (58). ROS concentration is 

mediated by mitochondrial antioxidants such as manganese superoxide dismutase 

(SOD2) and glutathione peroxidase (59). Over production of ROS (oxidative stress) is a 

central feature of all neurodegenerative disorders (60). In addition to the generation of 

ROS, mitochondria are also involved in life-sustaining functions, including calcium 

homeostasis, mitochondrial fission and fusion, lipid concentration of the mitochondrial 

membranes and mitochondrial permeability transition (56,57,61). It is known that mice 

lacking SOD2 die several days after birth, amid massive oxidative stress (62).  In our 

study, we observed that protein levels of SOD2 but not transcriptional levels were down-

regulated in AS mice.  Since SOD2 is vital for handling oxidative stress in mitochondria, 

down-regulation of SOD2 may cause a surge of oxidative damage in cells and eventually 

lead to cell death.  

Lactate dehydrogenase (LDH), malate dehydrogenase (MDH) and Glutathione S-

transferase Mu1 are found differentially expressed in the AS mice. These are proteins 

that are known to be involved in REDOX reactions. LDH catalyzes the interconversion of 

pyruvate and lactate with concomitant interconversion of NADH and NAD. Malate 

dehydrogenase (MDH) is an enzyme in the citric acid cycle that catalyzes the conversion 

of malate into oxaloacetate by using NAD+.  Pyruvate in the mitochondria is acted upon 

by pyruvate carboxylase to form oxaloacetate, a citric acid cycle intermediate (63,64). 

Glutathione S-transferase (GSTs) families consist of a total of eight sub-classes of 

isoenzymes, including alpha, kappa, mu, omega, pi, sigma, theta and zeta. These 

isoenzymes can be cytosolic, mitochondrial, or microsomal proteins depending on the 

site that they are acting on (65). Glutathione S-transferase Mu1 (GSTM1) is a human 

glutathione S-transferase. The mu class of enzymes functions mainly in the detoxification 

of electrophilic compounds, including carcinogens, therapeutic drugs, environmental 

toxins and products of oxidative stress, by conjugation with glutathione (GST) (66). 

Genetic variations of GSTM1 can change an individual's susceptibility to carcinogens 

and toxins, as well as affect the toxicity and efficacy of certain drugs. GSTM1 is essential 

for cell protection as reports show that GSTM1 null mice are predisposed to increased 

cancer risk due to increased susceptibility to environmental toxins and carcinogens 

(65,67,68). When SOD2, LDH, MDH and GSTs class mu1 are reduced in Ube3a knockout 

mice, mitochondrial defects are likely to occur, which may lead to neurodegeneration. 

Mitochondrial dysfunction and oxidative stress are implicated in the pathogenesis of 

neurodegenerative disease, which includes Alzheimer's disease, Parkinson's 

disease, Huntington's disease and Amyotrophic lateral sclerosis (ALS) (60,69). In the case 

of ALS, there are several proteins reported to have changes in expression that coincide 

with the Ube3a knockout mice used in this study; those proteins include ATP synthase, 

mitochondrial F1 complex ǂ subunit; glutathione S-transferase class Mu1 and heat shock 

70-kda protein (55). Intriguingly, in parkin knockout mice, a similar set of proteins is 
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found to be differentially expressed in the cortex and striatum, including ATP synthase ǂ 

chain mitochondrial, lactate dehydrogenase, malate dehydrogenase, stress-70 protein, 

glutathione  S-transferase P2 and N-ethylmaleimide-sensitive fusion protein (70).  In the 

current study, protein levels of ATP synthase ǂ chain mitochondrial, lactate 

dehydrogenase, malate dehydrogenase, stress-70 protein, glutathione  S-transferase class 

Mu1, and N-ethylmaleimide-sensitive fusion protein are found to be differentially 

expressed in the AS mice. The mRNA levels of these proteins remained steady in mutant 

mice, except for LDH, which had a 55% down-regulation of mRNA levels, and 

glutathione S-transferase class Mu1, which had a 100% up-regulation of mRNA levels in 

the hippocampus. This showed that most of the proteins involved in REDOX are affected 

at the translational or protein level in the absence of functional Ube3a, thus suggesting 

that down-regulation of LDH, MDH and glutathione S-transferase class Mu1 at the 

protein level may play a crucial role in the pathogenesis of AS. 

NSF is not affected at the transcriptional level in the cerebellum and hippocampus of Ube3a 
knockout mice, but it is specifically affected at the protein level. NSF is up-regulated in the 
cerebellum but down-regulated in the hippocampus of AS mice. NSF protein is thought to 
be involved in the docking and fusion of synaptic vesicles at the plasma membrane. It is 
known that transportation of neurotransmitters at the synapse, which involves synaptic 
vesicles fusing with the pre-synaptic membrane, relies on such processes to perform 
neuronal function. Studies have also shown that mutation of NSF in Drosophila can result in 
coma, presumably because neuronal functions have been blocked in the absence of NSF (71). 
AS patients exhibit symptoms such as tremor, ataxia and motor incoordination; a study has 
also shown motor dysfunction in Ube3a knockout mice (7). Since NSF is expressed 
abundantly in the hippocampus under normal circumstances (72), it is of interest to study 
the relationship between NSF deficiency in the hippocampus and movement incoordination 
in mutant mice. NSF has also been discovered as an epilepsy gene (73,74). Along with the 
discovery of CaBP deficiency in Ube3a knockout mice, these two proteins are crucial to the 
study of clinical features such as inducible seizures that are commonly found in AS patients. 

In this study, we used the proteomic approach to study the effects of Ube3a deficiencies.  
Our results unveil that multiple proteins involved in redox reactions are affected and 
suggest that oxidative stress is associated with AS. Our results also indicated that proteins 
involved in neuronal cell differentiation, learning process, energy production, actin 
disassembly and likely neuronal signal transduction are affected in AS. Our findings 
provides clues for identification of therapeutic targets and for understanding of the detailed 
molecular mechanism of AS and other related neurological disorders.  
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