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1. Introduction 

The present chapter deals with some of the main lines of experimental research on global 

cerebral ischemia, through which a substantial knowledge has been generated, that has 

contributed in an important measure both to the understanding of the mechanisms of 

cerebral damage induced by ischemia, and of the subsequent post-ischemic 

neuroregenerative and cerebral plastic processes taking place in the remaining or newly 

differentiated neurons. Thus, data obtained from experimental designs in animal models of 

global cerebral ischemia, on key molecular and cellular events triggered by this condition, 

have provided a substantial background from which neuroprotection can be rationally 

approached, in order to develop strategies aimed to antagonize, to interrupt, or to slow the 

sequence of injurious biochemical and molecular events that would result in irreversible 

ischemic injury; as well as to promote brain repair and plasticity processes which can favor 

functional preservation or recovery after global cerebral ischemia. 

Transient global cerebral ischemia, which can mainly occur during cardiac arrest and 

cardiopulmonary resuscitation, but also during asphyxiation, hypotensive shock, or 

extracorporeal circulation, is a pathophysiological condition that is associated with great 

morbidity and requires intensive medical treatment (Madl & Holzer, 2004). In certain 

clinical situations (surgical repair of the thoracic aorta, complex congenital heart lesions, and 

also during implantable cardiac defibrillator testing in patients with drug-resistant 
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ventricular fibrillation) the possible occurrence of transient global cerebral ischemia, and 

some neuroprotective procedures, can be anticipated (Hogue et al., 2008); however, this is 

not the case of cardiac arrest.  

Cardiopulmonary arrest remains as one among the most frequent causes of death and 

disability around the world. Despite quick emergency responses and better techniques of 

defibrillation, the chances of survival following cardiac arrest are still poor, between 20-50% 

of patients in whom cardiopulmonary resuscitation is attempted. A complex 

pathophysiological condition is elicited by cardiac arrest, since it results in whole-body 

ischemia which compromises systemic circulatory homeostasis and cerebral, pulmonary, 

renal, and cardiac functions. In the course of cardiac arrest, global cerebral blood flow is 

severely impaired with the consequent risk of ischemic damage of brain cells, which 

magnitude seems to be associated with the cumulative time staying in cardiac arrest. Thus, 

most deaths (60%) during the post-resuscitation period have been attributed to extensive 

brain injury and neuronal damage that develops as a consequence of alteration of cell 

processes triggered by cerebral ischemia and reperfusion, during and after cardiac arrest. In 

addition, it is known that transient interruption or reduction of blood flow in the whole 

brain, are main causes of permanent brain damage and functional disruptions in human 

beings, and near around a half of surviving patients show permanent impairment of 

cognitive functions, such as learning and memory, attention, and executive functioning, and 

only a small proportion (less than 10%) of those survivors are able to reassume their former 

usual life styles (Geocardin et al., 2008; Grubb et al., 2000; Krause et al, 1986; Schneider et al., 

2009). Thus, development of effective cytoprotective therapies that may be common to the 

organs more sensitive to cardiac arrest, such as heart or brain, could result in improvement 

of survival and better outcome following this whole ischemic episode (Karanjia & 

Geocardin, 2011). 

Experimental protocols aimed to gain relevant information regarding those 
pathophysiological phenomena leading to cerebral damage elicited by ischemia have 
included, since long time, the use of animal models of cerebral ischemia, in order to support 
better diagnostic, prophylactic and clinical-therapeutic procedures for ischemic 
cerebrovascular diseases in human beings (Ginsberg & Busto, 1989; Gupta & Briyal, 2004; 
Hartman et al., 2005, Hossmann, 2008; Traystman, 2003). Thus, biochemical, 
electrophysiological, histological, and behavioral parameters of ischemic brain damage have 
been included in experimental designs to evaluate the efficacy and safety of 
pharmacological and non pharmacological neuroprotective procedures against brain injury 
resulting from the significant reduction of blood supply to the whole brain, in several 
animal models of global cerebral ischemia. 
Even though a great number of pharmacological agents have proven to exert effective 
neuroprotective actions against cellular events leading to ischemic brain injury in 
experimental models of global cerebral ischemia, unfortunately they have not had enough 
clinical relevance to date. On the other hand, after evaluation of its effectiveness as a 
neuroprotective strategy in animal models of global cerebral ischemia, hypothermia has 
been tested in clinical trials in patients having suffered cardiac arrest, the most frequent 
cause of global cerebral ischemia in human beings (Castren et al., 2009; Geocardin et al., 
2008; Greer, 2006; Inamasu et al., 2010; Knapp et al., 2011; Seder & Jarrah, 2008,). It seems 
that new and better strategies to translate preclinical data supporting the potential clinical 
usefulness of neuroprotective drugs to clinical trials, must be developed. 
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2. Animal models of global cerebral ischemia  

Animal models of global cerebral ischemia allow studying, at different levels of biological 
organization of the central nervous system, the development and temporal course of those 
processes that may result in irreversible ischemic neuronal damage, as well as in the 
subsequent cell repair and plasticity underlying either permanent cerebral functional 
impairment or recovery as a result of intrinsic brain mechanisms or neuroprotective 
procedures. Thus, animal-related factors (species, strain, age, sex, co-morbidities), animal-
model-related factors (choice of ischemic model, anesthetic procedures, duration of 
ischemia, reperfusion, survival, possibility of monitoring of physiological parameters), 
selective vulnerability of specific neuron types in several brain structures, outcome 
assessment (histopathological, biochemical, functional, parameters of brain injury in specific 
cerebral structures), short- or long-term experimental design, pharmacological 
characteristics of the presumptive neuroprotective agent itself, timing and dose-response of 
neuroprotective drug administration with reference to starting and ending of the ischemic 
episode, may account for the relevance of results from these investigations.  
Models of cerebral ischemia have been also developed in in vitro models, in particular brain 
tissue slices and neuronal cultures, allowing to study in detail the cellular phenomena 
leading either to neuronal damage or to neural recovery and plasticity after ischemia 
(Benítez-King, 2006; Goldberg & Choi, 1993; Kasai et al., 2003; Whittingham et al., 1984). 
Several conditions have to be fulfilled by animal models of global cerebral ischemia in order 
to become appropriate counterparts of these pathophysiological conditions in human 
beings, as well as to yield reliable and valid results in supporting clinical therapeutic 
approaches. Thus, it could be expected that in animal models of global cerebral ischemia the 
ischemic episode can be induced in a constant and reproducible manner: low variation for 
the extent, temporal course, and magnitude of the resulting ischemic brain injury under 
specific experimental conditions, including duration of the ischemic episode; easy control of 
possible deviations of important physiological variables, feasible neurological, 
neuropathological, and functional evaluations; lack of influence of anesthetic drugs and 
surgical procedures on the mechanisms of brain injury, brain recovery and/or 
neuroprotection; short-, intermediate- and long-term follow up of the outcome; and 
economical, easily available experimental animals of those species better accepted by public 
animal welfare concerns to be used in experimental protocols of cerebral ischemia and 
neuroprotection. 

2.1 Main animal models of global cerebral ischemia 

Models of global cerebral ischemia have been performed in both large (monkeys, sheep, 
dogs, pigs, cats, rabbits) and small animals (gerbils, rats, mice). Among these, both 
advantages and disadvantages can be recognized according to several practical aspects: 
main objectives of the model; monitoring procedures to be used; nature, number and timing 
of simultaneous parameters to be recorded in order to evaluate the ischemic brain injury 
and recovery; degree of similarity of structural and functional characteristics of brains of 
experimental animals to those of the human brain; and updated ethical outlines for the use 
of experimental animals in research protocols. 
Since the whole brain is exposed to transient ischemia and reperfusion as a result of cardiac 
arrest and the subsequent cardiorespiratory resuscitation to allow survival in human beings, 
animal models of global cerebral ischemia have been designed attempting to totally or 
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partially mimic the consequences of this clinical condition on the brain (Ginsberg & Busto, 
1989; Gupta & Briyal, 2004; Mc Bean & Kelly, 1998; Traystman, 2003), which are the main 
cause of neuronal injury to selective vulnerable brain regions, and neurological or cognitive 
impairment, in human beings.  
Cardiac arrest (induced by injection of KCl, electric shock, thoracic compression, asphyxia, 

and mechanical obstruction of the ascending aorta) followed by cardiopulmonary 

resuscitation (by artificial ventilation, closed chest massage and electrical defibrillation), 

both in large experimental animals (formerly a common model, but nowadays rarely used) 

and also in rodents, has been a technique to produce global cerebral ischemia in an attempt 

to closely resemble the clinical situation of cardiac arrest, including complete ischemia and 

reperfusion in renal, splachnic and other peripheral organs. This technique seemed to be an 

excellent model of global cerebral ischemia, but it is expensive when large experimental 

animals are used, and intensive care (cardiopulmonary support under unconsciousness, 

control of blood pressure, pH, body fluids, and temperature) must be provided to the 

animals, especially during the first 24-48 h after the cardiac arrest. Complete acute global 

cerebral ischemia during cardiac arrest (8-20 min) and a variable period of incomplete 

cerebral ischemia during reperfusion, even after a successful cardiopulmonary resuscitation, 

as well as damage in those brain structures most vulnerable to ischemia, can be expected 

from this model (Berkowitz, et al., 1991; Bleyaert et al., 1978; Dave et al., 2004; Hossmann, 

2008; Katz et al., 1995; Kofler et al., 2004; Radovsky et al., 1995; Safar et al., 1976; Todd et al., 

1982). In particular, models of global cerebral ischemia in mice are currently of interest 

because of the availability of transgenic and knock-out strains for identification of cellular 

pathways of ischemic damage, and for neuroprotection studies.  

Several other animal models of global cerebral ischemia have been designed in cats, 
monkeys, gerbils, mice, and rats, in order to circumscribe to the brain those harmful effects 
of the reduced blood flow that follows a cardiac arrest, avoiding affecting other vital organs 
in a whole body ischemia condition, as can be expected from animal models of cardiac arrest 
(Ginsberg & Busto, 1989).  
Decapitation in small animals has been used as a model of global cerebral ischemia, only 

allowing the study of the immediate alterations of some biochemical and metabolic 

parameters elicited by ischemia in the brain contained into the head (Abe et al., 1983; Ikeda 

et al., 1986; Lowry et al., 1964; Yoshida et al., 1985). 

A neck tourniquet or a neck cuff, whether they include or not arterial hypotension, have also 
been used to produce global cerebral ischemia in rats, cats, dogs, or monkeys. However, 
these techniques lead to variable ischemic outcomes since the produced ischemia may not be 
complete because of a remaining cerebral blood flow through the vertebral arteries, as well 
as complications due to vagal compression and venous congestion (Chopp et al., 1987, 1988; 
Grenell 1946; Nemoto et al., 1977; Sheller et al., 1992; Siemkowits & Gjedde, 1980; 
Siemkowitz & Hansen, 1978). 
Reduction of cerebral blood flow near to zero has been accomplished in cats and monkeys, 
by occlusion of the innominate and left subclavian arteries near the aortic arch, and 
pharmacologically induced hypotension (below 80 mm Hg), without involvement of other 
organs in the ischemic phenomena. However, these experimental animals require intensive 
care procedures to their survival, and studies of long-term recovery are difficult to achieve 
(Bodsch et al., 1986; Clavier et al., 1994; Hossmann, 1971; Hossmann & Grose Ophoff, 1986; 
Zimmerman & Hossmann, 1975). 
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Gerbils usually lack of a common posterior communicating artery connecting the carotid 
and vertebro-basilar arterial system. Thus, the bilateral common carotid artery occlusion 
results in a reduction of global cerebral blood flow near to zero and injury of the most 
vulnerable brain structures (hippocampal CA1 pyramidal neurons after 5 min of ischemia) 
in most animals (Kirino, 1982). This model of forebrain global cerebral ischemia may fail in 
some animals in which a complete Willis circle persists, and the high susceptibility of gerbils 
to seizures may influence the ischemic outcome.  
The four-vessel occlusion (4-VO) and the two-vessel occlusion with hypotension (2-VO) 
models in rats became, nowadays, the most widely used animal models that simulate the 
reduction of blood flow, as it would occur by effect of cardiac arrest, on the forebrain. The 4-
VO model (Ginsberg & Busto, 1989; Pulsinelli & Brierley 1979; Pulsinelli & Buchan 1988; 
Pulsinelli & Duffy 1983; Pulsinelli et al., 1982) provides a method of reversible forebrain 
ischemia in awake, freely moving rats (but also in anesthetized rats). In a first step of the 
model procedures, vertebral arteries are permanently occluded and 24 or 48 hours later, the 
ischemia is produced through transient (10 – 20 min) occlusion of the common carotid 
arteries under light inhaled anesthesia so that the ischemic episode occurs while the animal 
is unanesthetized. Loss of the righting reflex, and unconsciousness persisting for at least 20 
min after the onset of reperfusion have to occur for each animal to be included in the study. 
In this way, a reduction in cerebral blood flow to less than 5% of control values, which is 
followed by hyperemia during 5 to 15 min after reperfusion, and subsequent hypoperfusion 
lasting for 24 hr result in main ischemic neuronal damage in hippocampus, neocortex and 
striatum, along hours to days after ischemia, its magnitude relating to the duration of the 
ischemia. The effects of this insult are, however, quite variable between rat strains, as well as 
between those individuals surviving (survival rate, 50-75%) after having fulfilled the criteria 
required to be included in the experimental groups. Similar consequences in selectively 
vulnerable neurons in specific brain structures result from the 2-VO model of forebrain 
ischemia, in which bilateral common carotid artery occlusion and systemic hypotension 
(blood withdrawal and subsequent return with or without pharmacological procedures, 
leading to arterial blood pressure below 50 mm Hg) are combined to provoke reversible 
forebrain ischemia (Eklof & Siesjo 1972a, 1972b; Smith et al., 1984a, 1984b).  
Mouse models of global cerebral ischemia have been developed through bilateral common 
carotid occlusion and controlled pulmonary ventilation (Traystman, 2003).  
It is known that animal models of global cerebral ischemia require adequate control of 
certain variables, such as careful control of animal’s temperature and blood glucose 
concentration, in order to achieve consistent pathophysiological effects and brain injury 
(Colbourne & Corbett, 1994; Lipton, 1999; Siemkowicz, 1981; Siemkowicz.& Gjedde 1980). 
Hyperthermia and hyperglycemia increase brain injury, while hypothermia results in 
neuroprotection by itself. 

3. Cellular mechanisms of neuronal injury, neuronal repair and plasticity 

Models of global cerebral ischemia in experimental animals, as well as in vitro models, in 
particular brain tissue slices and neuronal cultures, have allowed to study in detail the 
cellular phenomena leading either to neuronal damage, or to neural repair and plasticity 
after ischemia. From these studies it has been known that mechanisms of cellular damage, 
repair and plasticity may be the same, in general, both if reduction of blood flow to the brain 
tissue results from occlusion of one of the main cerebral arteries as would occur in focal 
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ischemia, and if it is the result of reduction of blood flow to the whole brain as it would 
occur after a cardiorrespiratory arrest.  

3.1 Cellular mechanisms of neuronal injury 

Interruption of blood flow and hence, of glucose and oxygen supply to the brain, results in 
an immediate severe energy failure in terms of ATP depletion that leads to alterations of the 
cell membrane ionic gradients and a severe breakdown in cellular homeostasis. Several 
mechanisms of neuronal damage are triggered and evolve both in cascade and as parallel 
pathways (Gwag et al, 2002; Lakhan et al, 2009; Lipton, 1999; Mehta et al, 2007; Schneider et 
al, 2009; Sugawara et al, 2004; Warner et al., 2004). In particular, a massive accumulation of 
intracellular calcium and sodium occurs because of failure of their energy-dependent efflux 
processes, and anoxic depolarization. This further leads to accumulation of lactate and 
hydrogen ions, and as a consequence, to decreased pH.  
As a result of anoxic depolarization, excitatory aminoacids such as glutamate and aspartate 

are released, activating ligand-gated calcium and sodium channels with a further influx of 

these ions into the cells. Calcium is also released from intracellular pools, and its excessive, 

unregulated intracellular overload causes direct Ca2+-dependent activation of lipases, 

proteases, and endonucleases leading to breakdown of structural and functional proteins, 

and damage to cytoskeleton and macromolecules including nucleic acids. A result of these 

phenomena is, among others, cell membrane lipoperoxidation.  

Excessive intracellular calcium activate abnormal cell processes promoting functional 

derangements of mitochondria and an increased production of free radicals, exceeding the 

neuronal antioxidant reserves, and imposing risks to the structural and functional integrity 

of neuronal cells. The brain is highly susceptible to oxidative damage as a consequence of its 

high lipid and metal content, as well as other biochemical characteristics (Margaill et al., 

2005; Reiter et al., 2005; Warner el al., 2004). Reperfusion and reoxygenation of the ischemic 

tissue, which must be reestablished within minutes in an effort to prevent severe 

neurological damage and favor survival of individuals, also may provide chemical 

substrates for further increasing cellular alterations, neuronal death and neurological 

deficits (Margaill et al., 2005). 

Free radicals also contribute to the breakdown of the blood-brain barrier and brain edema. 

Reactive oxygen and nitrogen species including superoxide, hydroxyl free radical, and 

peroxylnitrite anion are also important mediators of inflammatory tissue damage, of 

activation and secretion of inflammatory cytokines such as tumor necrosis factor α, 

interleukin-1, and interleukin-6, and of expression of cyclo-oxigenase (COX)-2, and 

inducible nitric oxide synthase generating nitric oxide that also contributes to neuronal 

damage. These changes favor inflammatory reactions soon after cerebral 

ischemia/reperfusion (Barone & Feuerstein, 1999; Lakhan et al, 2009; Lipton, 1999; Mehta et 

al, 2007).  

Calcium overload may additionally lead to mitochondrial damage and trigger an apoptotic 

cascade. The pro-apoptotic cascade involves nuclear factor κB- and p53-dependent 

pathways, changes in the Bcl-2 to Bax ratio, opening of the mitochondrial transition pore, 

release of cytochrome c, and activation of caspases (Chan, 2001; Chinopoulos & Adam-Vizi, 

2006). In addition, caspase-independent pathways may also contribute to neuronal 

apoptosis.  
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Several gene families such as immediate early genes, heat-shock proteins, and 
inflammation-and apoptosis-related genes, are known to be differentially expressed during 
cerebral ischemia, and some neuropathologic processes triggered by ischemia seem to be 
mediated in part by alterations of molecular transcriptional and translational activities 
(Mehta et al, 2007).  
Activation of DNA fragmentation enzymes and energy-consuming DNA repair enzymes, 
finally lead to DNA breakdown, interruption of protein synthesis, and cell death (Iadecola & 
Alexander, 2001; Leker & Shohami, 2002). 
In addition to the above mentioned cellular processes of ischemic damage, brain 
ischemia/reperfusion may also trigger cellular mechanisms for neuronal repair, and 
functional recovery through neuronal plasticity involving remaining neurons in vulnerable 
damaged or undamaged brain structures (Barone & Feuerstein, 1999; Bendel et al., 2005; 
Crepel et al., 2003; Hurtado et al., 2006; Jourdain et al., 2002; Ruan et al., 2006). The different 
ischemia/reperfusion induced cellular mechanisms leading either to brain injury and 
neuronal death, or to neuronal repair, as well as plasticity and brain functional recovery, 
may occur in a sequential or simultaneous manner. Their latencies and temporal course, 
from minutes to weeks, are important references in attempting to establish their differential 
relevance in those critical periods for neuronal damage and death, as well as the “window 
of opportunity” for specific neuroprotective procedures (Barone & Feuerstein, 1999; Lipton, 
1999; Leker & Shohami, 2002; Pulsinelli et al., 1997). 

3.2 Differential neuronal vulnerability in animal models of global cerebral ischemia 

Brain injury is expected to occur when cerebral blood flow is reduced to less than 10-20% of 

the normal value; the greater the reduction and/or longer lasting, the worst damage. Under 

these conditions, damage to specific brain structures due to immediate or delayed death of 

highly vulnerable neuronal groups, including the pyramidal neurons of the CA1 subfield of 

the hippocampus, and to a lesser degree those in layers 3 and 5 of the cerebral cortex, the 

Purkinje cells of the cerebellum, and spiny neurons in the striatum, take place after global 

cerebral ischemia (Ginsberg & Busto, 1989; Pulsinelli, 1985). Experimental models of global 

cerebral ischemia have allowed to know some neuronal characteristics that seem to account 

for selective vulnerability to ischemia, including a high density of excitatory glutamatergic 

synapses; low antioxidant enzyme reserves; high content of transition metals; increased 

expression of pro-apoptotic Bax protein; thus leading to differential susceptibility of some 

cell processes (Ca2+ homeostasis, oxidative-antioxidative balance, functional mitochondrial 

stability) to become out of physiological control under ischemia (Arai et al., 2001; Araki et 

al., 1989; Chen et al., 1996; Lipton 1999; Schmidt-Kastner et al., 2001; Sugawara et al., 1999). 

Brain injury after global ischemia/reperfusion is finally evidenced by neuronal death, 

affecting the neuronal population, circuit connectivity and functioning in specific brain 

structures involved in the neural integration of cognitive brain functions and behavior.  

3.3 Cellular mechanisms of neuronal plasticity and repair 

Cellular mechanisms of neuronal repair and plasticity have been observed to occur in 
vulnerable brain structures in which damage or death of neurons resulted from a sequence of 
pathophysiological phenomena triggered by global cerebral ischemia and the subsequent 
reperfusion. Thus, structural and functional characteristics of those neuronal components of 
circuits in the hippocampus and prefrontal cortex, which are identified, among others, as 
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highly vulnerable to ischemia, and their correlation with the integration of specific cerebral 
functions (mainly cognitive functions) after global cerebral ischemia, have been analyzed. In 
this sense, short- and long-term structural alterations have been shown to occur in the 
remaining pyramidal neurons of the hippocampus after ischemia; thus, axonal degeneration as 
well as reduction of dendritic length and arborizations, of number and shape of dendritic 
spines, and of number of synapses, are usually related to impairment of cognitive functions 
and recognized as degenerative changes. By contrast, cytoarchitectural adjustments such as 
axonal and dendritic sprouting, increase of number of dendritic spines and synapses, changes 
in the relative proportion of spine types, are interpreted as compensatory plastic responses of 
surviving neurons. They contribute to neuronal circuit remodeling and functional recovery, 
and have been correlated with preservation of cognitive functions after the ischemic insult, 
even in absence of neuroprotective procedures (Briones et al., 2006; Jourdain et al., 2002; 
Mudrick & Baimbridge, 1989; Neigh et al., 2004; Onodera et al., 1990; Ruan et al., 2006; Skibo & 
Nikonenko, 2010; Sorra & Harris, 2000). In addition, neurogenesis and integration of newly 
differentiated neurons into neuronal circuits in the Ammon’s horn may contribute to recovery 
of hippocampal-dependent cognitive functions (Bendel et al., 2005; Bernabeu & Sharp, 2000). 
Similarly, reductions of dendritic length, arborization, and dendritic spine density have also 

been described, among various cytoarchitectural adjustments, in sensorymotor cortex 

pyramidal neurons following global cerebral ischemia (Akulinin et al., 1997, 1998, 2004). 

These cytoarchitectural alterations could be influenced by the extent of neuronal remaining 

connections; thus, either reduction or increase of afferent connections may result in changes 

in dendritic arborizations and spine density (Fiala et al., 2002; Johansson & Belinchenko, 

2002). It has been emphasized the functional relevance of neuronal connections from the 

hippocampus to the prefrontal cortex for synaptogenesis and neuronal plasticity accounting 

for learning and memory (González-Burgos, 2009; Laroche et al., 2000). Thus, a permanent 

deafferentation of pyramidal neurons at cortical layer V after the extensive reduction of 

pyramidal neuron population of the CA1 subfield of the Ammon’s horn as expected to occur 

after global ischemia (Letechipía-Vallejo et al., 2007), may lead to changes in neuronal 

activity, which may in turn affect the cytoarchitectural characteristics of pyramidal 

prefrontal cortex neurons (García-Chávez et al., 2008; Wellman & Sengelaub, 1991). 

These dendritic restructuring (Neigh el al., 2004; Ruan el al., 2006) and reactive synaptogenesis 
(Briones et al., 2005; Crepel et al., 2003; Jourdain et al., 2002, Kovalenko et al., 2006) among 
other phenomena including the activation of a variety of potential growth-promoting 
processes (Arvidsson et al., 2001; Gobbo & O´Mara, 2004; Schmidt-Kastner et al., 2001), that 
occur in neurons surviving to the ischemic insult in vulnerable brain structures, seem to be a 
part of mechanisms of adaptive changes, probably accounting for neuronal conditions 
favoring synaptic plasticity and functional recovery. In fact, a long-term progressive 
continuous plastic reorganization of the dendritic tree and dendritic spines, initially altered by 
acute global cerebral ischemia, has been shown to occur in pyramidal neurons at layers 3 and 5 
of the sensorymotor cortex of the rat (Akulinin et al., 1997, 1998, 2004). 
Thus, preservation or recovery of hippocampal- and pre-frontal cortex- dependent functions 

after global cerebral ischemia, may involve long-term cytoarchitectural modifications in 

those remaining hippocampal CA1 and prefronto-cortical (layers 3 and 5) pyramidal 

neurons, since their morpho-functional organization is critical for normal learning and 

memory performance (Block, 1999; McDonald & White, 1993; McNamara & Skelton, 1993; 

Olsen et al., 1994; Olvera-Cortés et al., 2002; Silva et al., 1998), on the basis of the major role 
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played by the CA1 region for the output of information flowing through the hippocampus, 

via the tri-synaptic circuit (Herreras et al., 1987). It is well known that the prefrontal cortex is 

directly involved in the organization of sequenced motor actions during working-memory 

performance (Fuster, 1999; I. Lee & Kesner, 2003), and that hippocampal projections supply 

of spatial information to the prefrontal cortex allowing suitability of motor responses in the 

spatial context (Jung et al., 1998). These phenomena may be altered not only by gross lesions 

of the prefrontal cortex, but fine alterations of its neuronal circuits may also result in 

impairment of the spatial working memory (Fritts et al., 1998; Lambe et al., 2000; I. Lee & 

Kesner, 2003; Olvera-Cortés et al., 2001; Taylor et al., 2003). Experimental data have shown 

that variations in cognitive behavioral performance are related to plastic changes in 

dendritic spines (Pérez-Vega et al., 2000). In addition, excitatory information flows mostly 

through dendritic spines-mediated synaptic contacts (Gray, 1959), which are highly 

sensitive to electrical stimulation and yet to mnemonic activity-related electrical phenomena 

(Harris, 1999; Hartman et al., 2005; Onodera et al., 1990). 

 

 

      

Fig. 1. Photomicrographs of prefrontal third-layer pyramidal neurons of rats: intact (left), 
after global cerebral ischemia and neuroprotective melatonin (centre) or vehicle (right) 
treatment. Note the reduction in dendritic arborization protruding from the apical dendrite, 
and dendritic spine reduction (arrows) in the ischemic and non treated cell in comparison 
with neurons from intact, and ischemia melatonin treated rats.  
(Modified from: García-Chávez et al., 2008). 
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Since long-term preservation of the neuronal substrate in cerebral vulnerable structures 
underlying functional recovery after cerebral ischemia has been considered to be a major 
end point of neuroprotective strategies (STAIR, 1999) it can be expected that experimental 
designs for neuroprotection studies may lead to reliable interpretations of the efficiency of 
neuroprotective agents, in view of the proven capability of intrinsic cerebral mechanisms to 
promote , by themselves, neuronal repair and plasticity after ischemia.  
Some neuronal proteins that are involved in structural and functional aspects of synaptic 
connectivity and neuronal circuits remodeling have been evaluated as parameters of 
ischemic damage and neuroprotection. In this sense, synaptophysin has been shown to be 
reduced in the frontal motor and temporal cortex of human beings that have been survived 
for 1 week to 1 year after a cardiac arrest (Akulinin et al., 1998). Besides, a reduction of 
synaptophysin 2, Munc-18-interacting proteins, 1-3 days after global cerebral ischemia in 
mice has been related to delayed neuronal death (Nishimura et al., 2000). On the other hand 
it has been proposed that progesterone-induced increase (3-35 days after ischemia) in the 
expression of synaptophysin and growth-associated protein 43, and the effects of 
venlafaxine preventing the decrease of synaptophysin, in the rat hippocampus are evidences 
of the neuroprotective effects of these drugs (Fang et al., 2010; Zhao et al., 2011). 

4. Approaches to neuroprotection in animal models of global cerebral 
ischemia 

The experimental approach to neuroprotection aimed to influence, through pharmacological 
and non pharmacological procedures, those early and late neural phenomena accounting 
either for brain damage or for neuronal repair, plasticity and functional recovery after global 
cerebral ischemia and reperfusion, has resulted in a considerable amount of reliable 
information along the last 40 years.  
Different strategies of neuroprotection attempting to prevent, reduce, or stop the progress of 
the ischemic brain damage have been assayed in animal models of global cerebral ischemia, 
under the premise of an opposition relationship between the mechanism(s) of action of the 
presumptive neuroprotective drugs or non pharmacological procedures, and the 
pathophysiological mechanisms of brain damage, which has been maintained as targets of 
neuroprotective strategies.  
Neuroprotection studies in animal models of global cerebral ischemia have maintained the 
main objective of support proposals of pharmacological and non-pharmacological 
neuroprotective procedures to be incorporated as a matter for clinical trials aimed to a better 
management of human beings exposed to global cerebral ischemia, frequently as a 
consequence of a cardiorespiratory arrest. Translation of knowledge about neuroprotection 
obtained from models in experimental animals, to clinical practice has not been successful. 
This situation has been also observed in the case of focal cerebral ischemia, leading to 
consensus meetings (Fisher et al., 2009; STAIR, 1999) attempting to establish the better 
conditions for preclinical studies of neuroprotection as to give reliable results to be applied 
in clinical conditions. If opinion of these consensuses may be recognized as applicable to 
preclinical studies of global cerebral ischemia, it is apparent that some factors must be taken 
in account for designing and carrying of the respective experimental protocols. Thus, studies 
in animal models of global cerebral ischemia should give information on effective 
neuroprotective doses in the case of drugs being tested; hence, dose-response relationships 
should be investigated. Routes of drug administration and pharmacokinetic characteristics 
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should also be taken in account as to be compatible with their potential use in human 
beings. 
The time window of opportunity for the effective neuroprotective treatment is an important 
factor to be considered in preclinical models that may predict the timing of neuroprotective 
procedures in clinical situations with reference to the onset of global cerebral ischemia and 
subsequent reperfusion. The initial hypothesis that opportunity window for neuroprotective 
procedures would be limited to a short period after the ischemic episode has been changed 
in view of experimental evidence. Thus, different drugs or neuroprotective procedures 
having predominant mechanisms of action against specific cellular processes of ischemia 
damage occurring lately within the pathophysiological cascade, may allow to 
neuroprotection even when administered hours or days after ischemia. Besides, the 
opportunity time window may be further extended when it is expected that neuroprotective 
procedures act through promotion of cellular processes of neuronal repair and plasticity. 
In view of the multiple pathophysiological processes occurring both in sequence and 

simultaneously after ischemia and reperfusion, it is considered as an advantage for 

presumptive neuroprotective drugs to have multiple cellular or molecular mechanisms of 

action, as occurring with some originally endogenous compounds, namely melatonin, 

estradiol and progesterone (El-Abhar et al, 2002; Hurn et al, 1995; Jover-Mengual et al, 2010; 

Lebesgue et al, 2009; Reiter et al, 2005; Wang et al, 2008). By contrast, most synthetic drugs 

only have one mechanism of action accounting for neuroprotection. Attempting to 

counteract several mechanisms of ischemic brain injury would require the simultaneous 

administration of several drugs (Hicks et al, 1999; Matsumoto et al, 1993; Pazos et al, 1999; 

del Pilar Fernández et al, 1998; Sánchez-Casado et al, 2007; Zapater et al, 1997) (Table 1). 

Recommendations arisen from these consensuses of opinion have also highlighted the 

importance of long-term studies to identify whether functional preservation or recovery 

may be attributed to effects of the neuroprotective procedures, and/or to intrinsic 

mechanisms of plasticity and repair triggered by ischemia per se. Reliable parameters of 

long-term structural and functional outcome may allow to evaluate the final result of the 

neuroprotective procedures on cerebral structures vulnerable to ischemia. Thus, evaluation 

of neuronal population, cytoarchitectonic characteristics, and connectivity of the neural 

circuits in these vulnerable structures, as well as different aspects of cognitive functions 

depending on them should be included as a part of experimental designs of 

neuroprotection. 
It has been described that the neuronal population of remaining neurons in CA1 at survival 
times of 2-3 weeks may be less than that evaluated 3-4 months after the ischemic episode, 
suggesting that, without exogenous intervention, CA1 neurons may have been repopulate, 
became integrated to the hippocampal neuronal circuits, and contribute to functional 
recovery (Bendel, et al 2005; von Euler et al., 2006, Hartman et al, 2005, Nakatomi et al., 
2002). Obviously, the potential repopulation complicates the interpretation of learning and 
memory studies after global cerebral ischemia, because short-term studies may not give an 
adequate end point of the cognitive alteration after global cerebral ischemia, which seems to 
require a long-term follow up. 
Experimental designs to evaluate the potential of neuroprotective drugs or hypothermia 
may have not met all requirements set by these consensuses in a single study, but 
integration of results of the many experimental studies may give enough information as to 
support proposals for their clinical usefulness. 

www.intechopen.com



 
Advances in the Preclinical Study of Ischemic Stroke 

 

316 

Main Mechanism  
of Action 

Neuroprotective  
Agent 

References 

PHARMACOLOGICAL AGENTS 

Increase of energy 
reserve 

Creatine Lensman et al., 2006; Otellin et al., 2003. 

Calcium channel 
blockers 

Nimodipine Cervantes et al., 1992; Choi SK et al., 2011;  
Haddon et al., 1988; Lazarewicz et al., 1990; 
Lazarewicz et al., 1993;  
del Pilar Fernández et al., 1998;  
Rami & Krieglstein, 1994; Zornow et al, 1996. 

 Levemopamil Block & Schwarz 1998. 

 Dantrolene  Nakayama et al, 2002 

 Flunarizine Lee Y.S. et al., 1999. 
K+ channel 
activators 

Linoleic acid Blondeau et al., 2002.

Glutamate 
antagonists 

Dizocilpine Bernabeu, R., & Sharp, 2000; 
Hicks et al., 1999; Janac et al., 2008;  
Kwon et al., 2000;  
Montero et al., 2007;  
Stevens & Yaksh, 1990;  
Selakovic et al., 2010; Zhang et al., 2009. 

 Dextromethorphan Block & Schwarz, 1998.
 Lamotrigine Conroy et al., 1999 ; Crumrine et al., 1997;  

Lee Y.S. et al., 1999 ; Morimoto et al., 2002 ;  
Shuaib et al., 1995b ; Wiard et al., 1995. 

 Lubeluzole Koinig et al., 2001; Mueller et al., 2003; 
Haseldonckx et al., 1997

 MgSO4 Meloni et al., 2009; Miles et al., 2001; 
Sirin et al., 1998.

 Zinc Matsushita et al., 1996.
 Antiepileptic 

agents
Stepień et al., 2005.

GABAergic agents Clomethiazole Clarkson et al., 2005; Chaulk et al, 2003; Cross  
et al, 1995; Liang et al, 1997; Shuaib et al., 1995a;  
Sydserff et al., 2000.

 Diacepam Corbett et al, 2008; Dowden et al, 1999;  
Hall et al, 1998; Johansen FF, Diemer, 1991; 
Schwartz et al, 1995.

 Thiopental Kofke et al., 1979; Pappas & Mironovich, 1981; 
Todd et al, 1982 .

 Propofol Cai et al., 2011 ; Cervantes et al., 1995 ;  
Ergün et al, 2002.

 Progesterone, 
allopregnanolone 

Aggarwal et al., 2008 ; Cervantes et al., 2002 ; 
González-Vidal et al., 1998 ; Moralí et al., 2005 ; 
Moralí et al., 2011a, 2011b;  
Ozacmak & Sayan, 2009 ;  
J.M. Wang et al, 2008 ; Zhao et al, 2011. 
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Main Mechanism  
of Action 

Neuroprotective  
Agent 

References 

Antioxidants  Tirilazad Li et al., 2010; del Pilar Fernández et al., 2008; 
Selakovic et al., 2010; Stevens & Yaksh, 1990. 

 Pentoxifylline Sirin et al., 1998; Tuong et al., 1994. 

 Edaravone Kubo et al., 2009 ; Otani et al., 2005. 

 Methylene blue Wiklund et al., 2007. 

 Melatonin Cervantes et al., 2008; Cho et al, 1997;  
El-Abhar et al., 2002; García-Chávez et al., 2008; 
González-Burgos et al., 2007;  
Letechipía-Vallejo et al., 2001;  
Letechipía-Vallejo et al., 2007;  
Rennie et al., 2008; Weil et al., 2009. 

 Other Bashkatova et al, 2001; Fang et al, 2010;  
Gaur & Kumar, 2010; Nanri et al, 1998;  
Pazos et al., 1999; Sinha et al., 2001;  
Warner et al, 2004. 

 Human albumin Belayev et al., 1999.

Antiapoptotic 
agents 

Estradiol Dai et al., 2007 ; He et al., 2002 ; Hurn et al., 1995 ; 
Jover-Mengual et al, 2010; Koh et al., 2006 ; 
Lebesgue et al., 2009 ; Littleton-Kearney et al, 2005 ; 
Lu et al., 2002 ; Wang et al., 2006 ;  
Wappler et al., 2010. 

Other mechanisms Delta 9-
tetrahydro-
cannabinol

Zani et al., 2007.

 Linoleic acid and 
other PUFA’s 

Blondeau et al., 2002; Fernandes et al., 2008; 
Lauritzen et al., 2000; Ma et al., 2008;  
Plamondon & Roberge, 2008.

Cell proliferation 
stimulants 

Erythropoietin Cotena et al, 2008 ; Givehchian et al., 2010; 
Incagnioli et al., 2009; Zhang et al, 2007. 

Growth Factors BDNF D'Cruz et al., 2002; Kiprianova et al., 1999a, 1999b; 
Larsson et al., 1999; Popp et al., 2004.

NON-PHARMACOLOGICAL AGENTS
Reduction of: 
cerebral 
metabolism and 
oxygen demands, 
reactive oxygen 
species, release of 
excitatory 
aminoacids, 
apoptosis, 
inflammatory 
reactions.  
Enhancement of 
BDNF 

Hypothermia Asai et al., 2000; Baumann et al, 2009; 
Chopp et al, 1988; Colbourne & Corbett, 1994;  
Dong et al, 2001; Noguchi et al., 2011;  
Silasi & Colbourne, 2011; Webster et al., 2009; 
Zhang H. et al., 2010; Zhang Z, et al., 2001. 
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Main Mechanism  
of Action 

Neuroprotective  
Agent 

References 

ASSOCIATION OF PHARMACOLOGICAL AND NON-PHARMACOLOGICAL AGENTS 

 Hypothermia + 
MgSO4 

Meloni et al., 2009. 

 Hypothermia + 
MgSO4 + tirilazad

Sánchez Casado et al., 2007 

Table 1. Main pharmacological and non-pharmacological agents showing neuroprotective 
effects through molecular, biochemical , histopathological, behavioral, neurologic, and 
cognitive parameters. 

These strategies have allowed identifying the neuroprotective characteristics of many 

agents, including non-pharmacological procedures like hypothermia, that have been tested 

in animal models of global cerebral ischemia from the knowledge of an opposition 

relationship between their mechanism(s) of action, and the nature of the pathophysiological 

phenomena of ischemic damage. They may be grouped in relation to their main 

predominant mechanism of action against ischemic damage: calcium channel blockers, 

glutamate antagonists, GABAergic drugs, antioxidant agents, anti-inflammatory 

compounds, etc. Many of these compounds are products of chemical synthesis; but 

endogenous compounds (melatonin, estradiol, progesterone, allopregnanolone, etc.) playing 

important physiological roles in mammals, have also been shown to exert potent 

neuroprotective effects. Table 1 presents some examples of the various groups of 

neuroprotective agents. 

4.1 Outcome assessment of brain injury and neuroprotection in animal models of 
global cerebral ischemia 

Assessment of brain injury and neuroprotection in animal models of global cerebral 
ischemia can be effected at different levels of biological organization of the central nervous 
system, from molecular and cellular phenomena to brain functions requiring highly 
integrated, behavioral expressions. In general, parameters of cellular and molecular 
processes leading to ischemic brain damage or neuroprotection require obtaining brain 
tissue samples at a selected time point after ischemia for these phenomena to be evaluated. 
On the other hand, a follow-up of damage and/or recovery through repeated bioelectrical, 
behavioral, and cognitive measurements is possible to be done in the same animal along 
extended periods. Parameters that allow evaluating the presence and magnitude of ischemic 
brain injury at the different levels of biological organization are also reliable indexes of 
neuroprotective actions, as they are induced by ischemia and may be counteracted by 
neuroprotective procedures. A similar consideration can be done regarding cell repair and 
plasticity mechanisms triggered by the ischemic insult, which are expected to be favored by 
neuroprotective agents. 
Measurements have been done of parameters of each of the various phenomena affected by 
ischemia which constitute the starting point of ischemic brain injury. These include timely 
and topographically appropriate evaluation of ionic changes, release of neurotransmitters, 
modification of receptor molecular structure, excitotoxicy, morphological and functional 
mitochondrial alterations, reactive oxygen and nitrogen species, antioxidant enzymes and 
lipoperoxidation, activation of pro- and antiapoptotic cascades, DNA breakdown, pro- and 
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anti-inflammatory processes, among others (Lakhan et al, 2009; Lipton, 1999; Mehta et al, 
2007; Schneider et al, 2009).  
Neurological, behavioral, electrophysiological and histopathological correlates of the 
outcome after global cerebral ischemia being end points of cellular processes triggered by 
ischemia, give information about ischemic brain injury and neuroprotection. 

4.1.1 Neurological assessment 

Global cerebral ischemia usually does not result in long lasting focal neurological deficits in 
rats. Thus neurological deficit scores resulting from sensorimotor tests assessing motor-
sensory functions in rats, including placement reactions, righting and flexion reflexes, 
equilibrium, spontaneous motility, among others may be altered shortly after (24 h) global 
cerebral ischemia, but they appear recovered 7 days after ischemia. These transient 
neurological deficits have been interpreted as functional alteration of hippocampus and 
striatum; though correlation between neurological deficit scores and ischemic neuronal 
damage in these structures, not always were found (Block, 1999; Hartman et al., 2005; Kofler 
et al, 2004). 

4.1.2 Mood and behavioral assessment 

Elevated, four (two open and two closed) arms plus maze, and open field tests have been 

used, among other to evaluate anxiety after global cerebral ischemia especially in rodents. 

Thus scores of latency to enter to open arms, the number of open and closed arms entries 

and rears are taken as parameters of anxiety in the elevated plus maze, while in the open 

field (circular arena 80 cm in diameter, three concentric rings and lines radiating from the 

center) tests, the number of segments entered with all the four paws, the number of rears, 

and the number of faecal boli are indexes of anxiety (Nelson et al., 1997).  

4.1.3 Cognitive functions assessment 

Since the clinical consequences of cardiac arrest, as the main cause of global cerebral ischemia, 
have been consistently described as long-term alterations of cognitive functions, it can be 
expected that similar cognitive deficits may be elicited by global cerebral ischemia in 
experimental animals. In fact, the most vulnerable neurons to ischemia are located in brain 
structures involved in cognitive processes (Ginsberg & Busto, 1989; Gionet et al., 1991; 
Pulsinelli, 1985); thus, evaluation of cognitive functions mainly dependent on hippocampus, 
striatum and prefrontal cortex, and its electrophysiological and morphological correlates may 
be reliable parameters of brain injury and neuroprotection after global cerebral ischemia. 
The magnitude and type of cognitive deficits in experimental animals submitted to global 
cerebral ischemia may vary considerably depending on the animal model, the survival times 
of testing, and the specific behavioral tests that could have been used. Among these 
procedures to evaluate cognitive functions, the Morris water maze, the eight-arms radial 
Olton maze, and the T maze, have been widely used in assessing learning and memory in 
both 2VO and 4VO models in rats, and its correlation with neuronal loss (Block, 1999; 
Hartmann et al., 2005; Olsen et al., 1994; Volpe et al., 1984), and functional and 
morphological characteristics of the neural substrate underlying cognitive functions in brain 
structures vulnerable to ischemia. Novel object recognition tests have been shown to be a 
reliable index of cognitive functions since rats or mice normally spend more time exploring 
novel objects, whereas animals with recognition memory deficits will explore novel and 
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familiar objects equally (Hartman et al., 2005). Cognitive functions have also been assessed 
in rodents through conditioned avoidance tasks (Block, 1999; Kofler et al., 2004; Langdon et 
al., 2008). 
Several paradigms in the Morris water maze and in the eight-arms radial Olton maze, that 
have been used in most of neuroprotection studies in which cognitive functions are 
assessed, have proven to be useful for testing hippocampal, striatum and prefrontal cortex 
functioning as end points of brain damage or neuroprotection after global cerebral ischemia 
(Morris, 1984; Olton et al, 1982). 
Hippocampal functioning has been evaluated in rats and mice through some behavioral 
paradigms that require the integrity of this brain structure and related structures in the 
temporal lobe (Barnes, 1979; Morris et al., 1982, 1990), in order to configure cognitive spatial 
representations, i.e., a cognitive spatial map (Cassels, 1998; Jarrad, 1993; McDonald and 
White, 1994; 1995; Moser et al, 1993). Thus parameters of spatial learning training to locate a 
hidden platform, (escape latency: time spent by the animal to reach the platform; swimming 
path length: distance swam until reaching the platform; searching strategy: pattern of the 
swimming path towards the platform) and probe trial to evaluate retention of spatial 
learning (time spent, or the distance traveled by the animal in each of the four quadrants of 
the maze; number of crossings over the former platform location) in the Morris water maze 
including extra maze spatial clues, have been used in testing the morpho-functional state of 
the hippocampus (Dalm et al 2000; D’Hooge & De Deyn, 2001; Eichenbaum et al, 1990; 
Morris, 1984; Myhrer, 2003).. 
Under these training conditions and since there are no intra maze clues to guide the 
animal’s behavior, it is assumed that, to achieve the goal, the animal has to build the 
cognitive map and thus, a hippocampal processing of information occurs (Gallagher and 
Pelleymounter, 1988, O’Keffe & Nadel 1978). For this reason, studies of neuroprotection use 
the spatial learning in the Morris water maze paradigm, as a reliable index of the 
hippocampal functioning.  
However, in addition to place learning, spatial navigation in the water maze may occur 
through at least, two additional strategies not depending on the hippocampus but on the 
striatum: signal learning and egocentric learning (Brandeis et al 1989; Gallagher & 
Pelleymounter, 1988; O’Keefe & Nadel 1978). Signal learning is displayed when the animal 
reaches a visible platform, or a visible stimulus indicating (signaling) the location of the 
platform within the maze. Learning of the association between the stimulus and the 
response is established and depends on the functioning of the striatum (McDonald & White, 
1994). The egocentric learning occurs when the animal develops stereotyped motor patterns 
to locate the invisible platform on the basis of the proprioceptive information provided by 
its own movement. It is also an ability that depends on the memory system to which the 
striatum belongs (McDonald & White, 1994; McDonald & White 1995; Oliveira et al., 1997). 
Results obtained when evaluating both adult and aged male rats, show that some adult rats 
may use either place, hippocampal dependent allocentric, or striatum-dependent, egocentric 
strategies; on the other hand, aged rats use egocentric, as their main swimming strategy to 
solve the task (Dalm et al., 2000; Olvera-Cortés et al, 2011). Thus, deficits in the performance 
of this task may indicate an alteration of any of these two abilities, place and egocentric 
learning, so that different parameters should be evaluated to assess the mechanism 
underlying the observed deficit (D’Hooge & De Deyn, 2001). A qualitative analysis of the 
swimming paths both during the training period and the probe trial may allow a better 
determining of the strategy used by the rat in solving the task in the water maze. 
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Spatial working memory can be evaluated by using the 8-arms Olton radial maze (Myhrer, 

2003; Olton, 1983, 1987; Olton et al., 1982; Shibata et al., 2007). For a daily standard 

evaluation all eight arms are baited and the rat is allowed to collect food from each arm; the 

number of errors, defined as a re-entry into an arm that had already been visited, is 

recorded in order to evaluate withholding and updating of information about each arm 

visited and rewarding obtained. An alternative maze configuration in which only some of 

the eight arms are baited allows to evaluate reference memory besides working memory 

through recording of the number of reference memory errors (number of entries into 

unbaited arms) and working memory errors (re-entry into an already visited arm). 

Performance in the Olton maze requires an adequate functioning of hippocampal-

prefrontocortical neuronal circuits, and is a reliable parameter of morpho-functional 

integrity of these brain structures after ischemia and neuroprotection (Cassel et al., 1998; 

Fritts et al., 1998; Izaki et al., 2008; Kolb, 1990, Kolb et al 1982; Laroche et al., 2000; Olton et 

al., 1982; Seamans et al., 1995; Winocur, 1982). An aquatic version of the 8-arm radial maze 

has also been described (Kolb et al, 1982), and used to correlate hippocampal pyramidal 

neurons damage and working memory performance (Nelson et al. 1997).  

4.1.4 Histopathological assessment 

Neuronal population of different neuron types in brain vulnerable structures has been 

considered as a reliable parameter of ischemia brain damage and neuroprotection. Thus, 

pyramidal neuron population in the Ammon´s horn of the hippocampus and in the 

neocortex (Bleayert et al, 1978; Colbourne & Corbett, 1994; García-Chávez et al., 2008; 

Hartman et al, 2005; Johansen & Diemer, 1991; Kirino, 1982; Letechipía-Vallejo et al., 2007; 

Moralí et al., 2011b; Pulsinelli, 1985; Schmidt-Kastner & Freund, 1991; Shuaib et al, 1995), or 

different neuron types in other brain vulnerable structures (Block & Schwartz, 1998; 

Cervantes et al., 2002), have been evaluated through the number and proportion of 

surviving neurons. However, most of these studies deal with histopathological assessment 

of the hippocampus, the highest vulnerable brain region to global cerebral ischemia. Usually 

four separate counts of surviving neurons in selected areas of the Ammon´s horn are 

obtained from each of five coronal sections of the hippocampus per rat, stained with cresyl 

violet for a total of 20 counts per animal, under the different experimental conditions 

(Hartman et al., 2005). Similar procedures are followed for neuronal counting in other brain 

structures vulnerable to ischemia. 

Immunohistochemical staining techniques have been also used in animal models of global 
cerebral ischemia and neuroprotection in order to identify specific proteins or fluorescent 
DNA labels that may selectively mark cells undergoing an acute necrotic or apoptotic 
process, as well as the activation of specific cellular processes involved in neuronal damage 
or repair and survival. Immunohistochemical marks (c-fos/c-jun, heat shock proteins, Bcl-
2/Bax immunoreactivity, among others) allow to identify neuron types and 
neuroanatomical regions where ischemia-induced phenomena take place. Besides, 
immunohistochemical markers of glial fibrillary acidic protein (GFAP) as well as microglia 
cell surface components lead to identification of reactive gliosis in the hippocampus, as a 
consequence of global cerebral ischemia and ischemic neuronal death, which elicited 
activation of microglial cells and interleukine 1 release that may trigger an astrocyte reaction 
mainly located in the stratum lacunosum-moleculare, stratum moleculare, and hilus, and 
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persisting for weeks after ischemia (Buffo et al., 2010; Choi JS et al, 2008; Mori et al, 2008; 
Morioka et al., 1991, 1992; Nikonenko et al., 2009; Petito & Halaby, 1993). The efficacy of 
neuroprotective agents can also be determined on the basis of the success in preventing the 
occurrence of necrosis, apoptosis, heat shock expression, gliosis, etc., as indicated by the 
immunohistochemical biomarkers (Scallet, 1995). Different parameters of the glial reaction 
elicited by global cerebral ischemia have been used as indexes of brain damage or 
neuroprotection (Cervantes et al., 2002; de Yebra et al., 2006; Duan et al., 2011; Korzhevskii 
et al., 2005; Piao et al., 2002; Soltys et al., 2003). 
Neuronal cytoarchitecture and fine structure parameters of synaptic connectivity have also 
been used for histopathological assessment after brain damage and neuroprotection (Briones 
et al., 2006; García-Chávez et al., 2008; González-Burgos et al., 2007; Johansson & Belichenko, 
2002; Kovalenko et al., 2006, Moralí et al., 2011a; Nikonenko et al., 2009; Ruan et al., 2006).  

4.2 Therapeutic opportunity window in animal models of global cerebral ischemia 

In any case, recognition of a “therapeutic opportunity window” or “therapeutic time 
window” in relation to the timing of the ischemic episode, the temporal course of the 
mechanisms of brain damage and/or repair, and the exerting of actions of presumptive 
pharmacological or non pharmacological neuroprotective agents, has been a relevant aspect 
in the approach to neuroprotection in experimental models of global cerebral ischemia 
(Pulsinelli et al., 1997; Barone & Feuerstein, 1999). In these, the beginning and the extent of 
this therapeutic window can be expected to be different according to the actions of 
neuroprotective procedures against immediate or late cellular mechanisms of brain damage, 
or in favor of later long-lasting cerebral processes of repair and plasticity.  
Thus optimal neuroprotective effectiveness may require a schedule of drug administration 
in which drug actions are coincident with the therapeutic opportunity window, that have to 
be established for different drugs according to their specific mechanisms of action and 
pharmacokinetic characteristics. In this sense, counteracting of immediate cell mechanisms 
of neuronal damage may require the administration of neuroprotective drugs before the 
ischemic episode, though its administration has to be continued afterwards for variable 
periods. By contrast, drug-promoting repair or plasticity processes admit the starting of 
neuroprotective treatment hours or days after ischemia.  
Accordingly, designs of neuroprotective studies in experimental animals in supporting 

proposals of neuroprotection for patients exposed to global cerebral ischemia due to 

cardiorespiratory arrest, should take in account that this clinical condition usually occurs 

unexpectedly, and requires cardiorespiratory resuscitation maneuvers; thus neuroprotection 

procedures have to be installed soon, but after the ischemic episode. Experimental designs 

of neuroprotection studies assessing neuroprotective procedures against late neuronal 

damage processes or promoting neuronal repair and plasticity, favoring functional 

preservation and recovery, may lead supporting to a wideness of the therapeutic 

opportunity window, for neuroprotection in human beings.  

4.2.1 Prophylactic neuroprotection 

Transient global cerebral ischemia can occur during certain clinical situations which can 
either be anticipated, occur during intraoperative emergencies, or even induced, like 
extracorporeal circulation for cardiac surgery. Under these conditions, prophylactic 
neuroprotection as that provided by intraoperative hypothermia and pharmacological 
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neuroprotection are possible alternatives to prevent or reduce the risk of ischemic neuronal 
damage (Savitz & Fisher, 2007; Weigl et al, 2005). This has stimulated designing of 
experimental studies on prophylactic neuroprotection to assess the effectiveness of several 
agents and their clinical potential. Some neuroprotective agents have proven to be more 
effective when applied before the ischemic insult than when given later in time, in particular 
those agents affecting the early cellular phenomena induced by ischemia, such as calcium 
channel blockers, GABAergic and anti-excitotoxic agents, as well as antioxidant drugs 
(Weigl et al, 2005). Pharmacological treatments (antihypertensive, antidiabetic, 
antithrombotic, antiatherogenic drugs) effective in modifying in the long term the risk for 
cardiac arrest or cardiac infarct which may result in global cerebral ischemia or in severe 
hypoperfusion have also been proposed as prophylactic neuroprotection procedures (Savitz 
& Fisher, 2007). 

5. Conclusion 

Though an increasing number of drugs have proven to be effective neuroprotective agents 
in experimental models of global cerebral ischemia, data supporting proposals for their 
clinical use have not been enough to influence clinical management and outcome of patients 
exposed to global cerebral ischemia in clinical trials. However, after its evaluation in animal 
models of global cerebral ischemia, special interest has been paid to carry out clinical trials 
with a non-pharmacological procedure, hypothermia, as a part of the intensive care of 
patients after a cardiorespiratory arrest. Nevertheless, the wide perspectives to gain 
information on neuroprotection through experimental designs including animal models of 
global cerebral ischemia are maintained to date, despite the tendency to preferentially 
conduct studies on rodents; in particular if differences between experimental animals and 
human beings are taken into account, and attention is paid to reproduce those components 
mainly accounting for brain damage after global cerebral ischemia.  
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