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1. Introduction 

Transient cerebral ischemia, in which the brain is temporarily deprived of nutrients and 
oxygen, results in delayed degeneration of vulnerable neurons within the CA1 region of the 
hippocampus. The pathophysiology of cerebral ischemic disease is a complex series of 
cellular biochemical process that involves intracellular ATP depletion, excitotoxicity, 
oxidative stress, microvascular injury, hypercoagulable hemostatic activation, post-ischemic 
inflammation and final cell death of neuronal, glial, and endothelial cells (Brouns et al, 2009; 
Jin et al, 2010). 
Folate is an essential micronutrient as a methyl donor for the DNA nucleotides synthesis 
and cytosine methylation for the control of gene expression. Clinically, folate deficiency is 
linked to megaloblastic anemia and atherothrobotic vascular disease. On the biochemical 
basis, folate deficiency increases nuclear DNA damage via uracil misincorporation and 
which induces chromosome breaks (Blount et al, 1997; Fenech, 2010). A metabolic 
consequence of folate deficiency is the accumulation of intermediate metabolite, 
homocysteine. Dietary folate deficiency has been shown to decrease mitochondrial folate 
concentration and mitochondrial DNA content and increase mitochondrial DNA deletion in 
brain, leading to leakage of ROS and increase of oxidative stress (Chang et al, 2007; Ho et al, 
2003; Crott et al, 2005). Electron microscopic finding showed mitochondrial degeneration in 
the endothelium and perivascular fibrosis in microvascular wall in the rat brain (Kim et al, 
2002). 
Homocysteine is a toxic amino acid to neuronal and vascular endothelial cells. Numerous 

epidemiological studies have recognized the association of folate deficiency and 

hyperhomocysteinemia with increased risk of vascular disease and ischemic stroke (Yoo et 

al, 1998, 2000, Kang et al, 1992). Hyperhomocysteinemia produces complex alterations in the 

blood vessels including oxidative stress, endothelial dysfunction and inflammatory 

response via the activation of transcription factor such as nuclear factor-kB (NF-kB) or 

activiator protein-1(AP-1). Homocysteiene upregulate E-selectin, P-selectin, ICAM-1,  

V-CAM-1, MCP-1 via activation of NF-kB, and AP-1 (Hwang et al, 2008; Woo et al, 2008). 

No study has yet evaluated the morphological characteristics of the folate-deficient 

hippocampus after transient forebrain ischemia. This study examined the delayed neuronal 
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death and morphologic changes in the hippocampal CA1 region after transient forebrain 

ischemia in a gerbil model. 

2. Materials and methods 

2.1 Experimental animals, diets, measurements of body weight and serum 
homocysteine level 
For a detailed description of the present experimental method is referred to the published 
article (Hwang IK et al, 2008). The animals were fed with the respective diet ad libitum for 3 
months. After 3 months on the folate deficient-diets (FAD), blood was taken for analysis of 
homocysteine levels. Homocysteine levels in serum samples were quantified with the use of 
an high performance liquid chromatography(Yoo et al, 1998).  

2.2 Induction of transient forebrain ischemia and tissue processing for histology 
After 3 months of folate deficient-diet, animals were anesthetized with isoflurane in 33% 
oxygen and 67% nitrous oxide. Bilateral common carotid arteries were isolated and 
occluded using non-traumatic aneurysm clips. After 5 min of occlusion, the aneurysm clips 
were removed from the common carotid arteries. The body temperature under free-
regulating or normothermic (37 ± 0.5ºC) conditions was monitored with a rectal temperature 
probe and maintained during and after the surgery until the complete recovery from 
anesthesia. Thereafter, animals were kept on the thermal incubator to maintain the body 
temperature of animals until the euthanasia. Sham-operated animals served as controls: 
these sham-operated animals were subjected to the same surgical procedures except no 
occlusion of common carotid artery. 
For the tissue preparation, sham- and ischemia-operated animals were anesthetized and 

perfused transcardially with 0.1 M phosphate-buffered saline (pH 7.4) followed by 4% 

paraformaldehyde in 0.1 M phosphate-buffer (pH 7.4). The brains were removed and post-

fixed in the same fixative for 6 hours. The brain tissues were cryoprotected by infiltration 

with 30% sucrose overnight.  

2.3 Examination of neuronal damage: Cresyl violet staining 
The sections in the hippocampal CA1 region were mounted on gelatin-coated microscopy 

slides. Cresyl violet acetate (Sigma) was dissolved at 1.0% (w/v) in distilled water, and 

glacial acetic acid was added to this solution. The sections were stained and dehydrated by 

immersing in serial ethanol baths, and they were then mounted with Canada balsam (Kanto 

Chemical, Tokyo, Japan). All animals (n=7 at each time) were sampled according to the time 

lines to evaluate the evolving histopathologic changes (3 hour, 12 hour, 1 day, 2day, 3day, 

4day after reperfusion). 

2.4 Examination of neuronal damage: NeuN immunohistochemistry 
The sections in the hippocampal CA1 region were sequentially treated with 0.3% hydrogen 
peroxide in PBS for 30 min and 10% goat serum in 0.05 M PBS for 30 min. The sections were 
next incubated with diluted mouse anti-NeuN (diluted 1:1,000, Chemicon International, 
Temecula, CA) overnight at room temperature. Thereafter the tissues were exposed to 
biotinylated goat anti-mouse IgG and streptavidin peroxidase complex (Vector, Burlingame, 
CA). And they were visualized with 3,3’-diaminobenzidine in 0.1 M Tris-HCl buffer and 
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mounted on the gelatin-coated slides. After dehydration the sections were mounted in 
Canada Balsam (Kanto Chemical). 

2.5 Examination of neuronal apoptosis: TUNEL staining 
The sections in the hippocampal CA1 region were stained using terminal deoxynucleotidyl 
transferase dUTP-biotin nick-end-labeling (TUNEL) staining. The sections were washed in 0.1 
M PBS (pH 7.4) for 30 min before being incubated in blocking solution (3% H2O2 in 0.01 M 
PBS) at room temperature for 20 min, and were then washed in PBS for 5 min and treated with 
permeabilization solution (0.1% Triton X-100 in 0.1% sodium citrate) at 4°C for 2 min. Next, the 
sections were washed 3 times, and then incubated in TUNEL reaction mixture according to kit 
instructions (Roche Molecular Biochemicals, Mannheim, Germany). The TUNEL reaction 
mixture was prepared with a 1:2 dilution of the enzyme solution. The sections were washed 3 
times with PBS (10 min per wash) before being incubated in converter-POD (Roche Molecular 
Biochemicals) at 37°C for 30 min and treated with DAB-substrate solution for 1.5-2 min. After 
washing the sections 3 times, the sections were counterstained with methyl green, dehydrated 
and coverslipped with Canada Balsam (Kanto Chemical). 

2.6 Examination of neuronal damage: Fluoro-Jade B (F-J B) histofluorescence 
staining 
According to the experiment of Candelario-Jalil et al (2003), the sections were first immersed 
in a solution containing 1% sodium hydroxide in 80% alcohol, and followed in 70% alcohol. 
They were then transferred to a solution of 0.06% potassium permanganate, and transferred 
to a 0.0004% F-J B (Histochem, Jefferson, AR) staining solution. After washing, the sections 
were placed on a slide warmer (approximately 50°C), and then examined using an 
epifluorescent microscope (Carl Zeiss, Göttingen, Germany) with blue (450-490 nm) 
excitation light and a barrier filter (Schmued and Hopkins, 2000). 

2.7 Immunohistochemistry for 8-hydroxy-2’-deoxyguanosine (8-OHdG) 
At designated times (30 min, 3 h, 6 h, 12 h, 24 h, 2 days, 3 days and 4 days) after the surgery, 
sham- and ischemia-operated animals (n = 7 at each time point) were used for this 
experiment. To obtain the exact data in this study, tissues of sham-operated and operated 
animals were processed under the same conditions. The sections were sequentially treated 
with 0.3% hydrogen peroxide in PBS for 30 min, 150 μM/ml RNase A for 1 h at 37ºC, 50 mM 
sodium hydroxide in 40% ethanol for 10 min. The sections were incubated with mouse anti-
8-OHdG antiserum (1:100) (Bail et al., 1996; Won et al., 1999, 2001) in PBS containing 0.3% 
Triton X-100 and 2% normal goat serum overnight at room temperature. After washing 3 
times for 10 min with PBS, the sections were incubated sequentially, in goat anti-mouse IgG 
and Vectastain (Vector), diluted 1:200 in the same solution as the primary antiserum. 
Between incubations, the tissues were washed with PBS 3 times for 10 min each. The 
sections were visualized using 3,3’-diaminobenzidine tetrachloride (Sigma) in 0.1 M Tris-
buffer and mounted on gelatin-coated slides. 

2.8 Platelet endothelial cell adhesion molecule-1 (PECAM-1) staining 
Immunohistochemistry for PECAM-1 (final mediator of neutrophil transendothelial 

migration) was conducted according to the method by Hwang et al (2005b). In brief, the 

sections were sequentially treated with 0.3% hydrogen peroxide (H2O2) in PBS and 10% 
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normal horse serum in 0.05 M PBS. The sections were next incubated with diluted mouse 

anti-PECAM-1 antibody (diluted 1:1000, Santa Cruz Biotechnology, Santa Cruz, CA) 

overnight. Thereafter, the tissues were exposed to biotinylated horse anti-mouse IgG and 

streptavidin–peroxidase complex (Vector). The sections were visualized with DAB in 0.1 M 

Tris-HCl buffer and mounted on the gelatin-coated slides. 

2.9 Immunohistochemistry for glial fibrillary acidic protein (GFAP) and ionized 
calcium-binding adapter molecule 1 (Iba-1) 
In order to examine the degree of reactive gliosis in the CA1 region in the CD- and FAD-

treated groups after ischemia/reperfusion, we carried out immunohistochemical staining 

with rabbit anti-GFAP (diluted 1:1,000, Chemicon) for astrocytes and rabbit anti-Iba-1 

(diluted 1:500, Wako, Osaka, Japan) for microglia according to the above mentioned-method 

(see the NeuN immunohistochemistry). The tissues were exposed to biotinylated goat anti-

rabbit IgG (diluted 1:200; Vector) and streptavidin peroxidase complex (diluted 1:200; 

Vector). And they were visualized with DAB in 0.1 M Tris-HCl buffer and mounted on the 

gelatin-coated slides. After dehydration the sections were mounted in Canada Balsam 

(Kanto Chemical). 

2.10 Quantification of data  
All measurements were performed in order to ensure objectivity in blind conditions, by two 

observers for each experiment, carrying out the measures of control and experimental 

samples under the same conditions. 

The number of survived pyramidal cells in the stratum pyramidale within the CA1 region 

was counted using an AxioM1 light microscope (Carl Zeiss) photomicroscope at a 

magnification of 400×. Histologic analysis was performed by a blinded observer and the 

average of the right and left survived cell numbers (neurons per 1 mm liner length) in a 

single section of the dorsal hippocampal CA1 region was calculated as reported by Kirino 

group (1986). Five sections of cresyl violet/NeuN and TUNEL/F-J B staining from each 

animal were used for counting. 

Fifteen sections from a animal were randomly selected from the corresponding areas of 

the hippocampus in order to quantitatively analyze 8-OHdG, GFAP, Iba-1 and PECAM-1 

immunoreactivity in the hippocampal CA1 region. The mid-point areas of the 

hippocampal CA1 region were measured on the monitor at a magnification of 25-50×. 

Images of all 8-OHdG, GFAP, Iba-1 and PECAM-1 immunoreactive structures taken from 

3 layers (strata oriens, pyramidale and radiatum in the hippocampus proper, and 

molecular, granule cell and polymorphic layers in the dentate gyrus) were obtained 

through light microscope (Carl Zeiss, Germany). The staining intensity of all 8-OHdG, 

GFAP, Iba-1 and PECAM-1 immunoreactive structures was evaluated on the basis of a 

optical density (OD). 

3. Results 

3.1 Folate deficient change of body weight and serum concentration of homocysteine 
Folate deficiency rendered the FAD-(folate deficient-diet) group susceptible to 

ischemia/reperfusion. After 3 months on the folate deficient-diets, serum levels of 
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homocysteine were determined and found to be 5- to 8-fold higher in gerbils subjected to 

FAD compared to CD-(control diet) group. The body weight gain during the first diet 

month was significantly lower in the FAD group than in the CD group, this was consistent 

throughtout the 3 months of observation. 

3.2 Neuronal damage 
Cresyl violet and NeuN stainings show the positive pyramidal neurons on the first day. The 

cell densities decreased over the time after ischemia/reperfusion. Two days after 

ischemia/reperfusion, neurodegeneration were found in the neurons in the FAD-group 

(Figs. 1F, 1N), when no significant changes were seen in the CD-group (Figs. 1B, 1J). In FAD-

group, CA1 pyramidal neurons showed cytoplasmic shrinkage and chromatic condensation. 

Starting from day three after ischemia/reperfusion, pyramidal neurons in FAD-group 

showed delayed neuronal death, which became morphologically similar to that of day four 

in CD-group (Figs. 1D, 1G, 1K and 1O).  

Delayed neuronal death in the CA1 region was identified using TUNEL or F-J B staining. 

CA1 pyramidal neurons in the CD- and FAD-groups 1 day after ischemia/reperfusion did 

not show TUNEL or F-J B staining (Figs. 2B, 2F, 2J, 2N). Two days after 

ischemia/reperfusion, pyramidal neurons in the FAD-group showed TUNEL or F-J B 

staining representing neurodegeneration (Figs. 2G, 2O). Four days after ischemia/ 

reperfusion, pyramidal neurons in the CD-group showed TUNEL or F-J B staining (Figs. 2D, 

2L), but TUNEL or F-J B stained pyramidal neurons decreased in FAD-group (Figs. 2H, 2P). 

These shows that folate deficiency enhances delayed neuronal death in the hippocampus 

after transient cerebral ischemia 

3.3 Change in 8-hydroxy-deoxyguanosine immunoreactivity 
In this study, we found a significant difference in 8- hydroxy-deoxyguanosine 

immunoreactivity between the CD- and FAD-groups after ischemia/reperfusion (Figs. 3, 4). 

In both the sham-operated groups, very weak 8- hydroxy-deoxyguanosine 

immunoreactivity was detected in the CA1 region (Figs. 3A, 3E). The oxidative change in 

both groups began to increase at 30 min after ischemia/reperfusion, which the peak changes 

were noted at 12 hour after ischemia/reperfusion (Figs. 3C, 3G, Fig 4). At 12 hour after 

ischemia, 8- hydroxy-deoxyguanosine immunoreactivity in FAD-group was much higher 

than that in CD-group (Fig. 4). Thereafter, it decreased with time (Figs. 3D and 4). Four days 

after ischemic insult, 8-OHdG immunoreactivity in both groups was lower than that in the 

sham-operated groups (Fig. 4). 

3.4 Change in PECAM-1 immunoreactivity 
PECAM-1 immunoreactivity in microvessels in the hippocampal CA1 region changed after 

ischemia/reperfusion (Figs. 5, 6). In the CD- and FAD-fed-sham-operated groups, 

microvessels showed weak PECAM-1 immunoreactivity (Fig. 5A, 5B), and this 

immunoreactivity increased with time after ischemic insult in both of these groups (Figs. 5C-

5H, Fig 6). PECAM-1 immunoreactivity in CA1 in both groups increased significantly 3 days 

after ischemia/reperfusion (Figs. 5G, 5H, Fig 6) and PECAM-1 immunoreactivity in FAD-

group was much higher than that in CD-group (Fig. 6). 
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Fig. 1. Cresyl violet (CV) and NeuN staining of the CA1 region in sham-operated (A,E,I,M) 
and ischemia-operated groups 2 days (B,F,J,N), 3 days (C,G,K,O) and 4 days (D,H,L,P) after 
ischemia/reperfusion and feeding with a folic acid-deficient or control diet. Two days after 
ischemia/reperfusion, CV- or NeuN-positive pyramidal neurons in the folate-deficient diet-
treated group show cytoplasmic shrinkage and chromatic condensation. Three days after 
ischemia/reperfusion, CV- or NeuN-positive pyramidal neurons in the folate-deficient diet-
treated group show ‘‘delayed neuronal death’’ like that in the control diet-treated group  
4 days after ischemia/reperfusion. SO, stratum oriens; SP, stratum pyramidale; SR,stratum 
radiatum. 
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Fig. 2. TUNEL and Fluoro-Jade B (F-JB) staining of the CA1 region in the sham-operated 
(A,E,I,M) and ischemia-operated groups 1 days (B,F,J,N), 2 days (C,G,K,O), and 4 days 
(D,H,L,P) after ischemia/reperfusion and feeding with a folic acid-deficient or control diet. 
Two days after ischemia/reperfusion, TUNEL- or F-JBpositive pyramidal neurons are 
observed in stratum pyramidale (SP) of the folate-deficient diet-treated group. Four days 
after ischemia-reperfusion, TUNEL or F-JB reaction decreases in pyramidal neurons in the 
SP of the folate-deficient diet-treated group. SO, stratum oriens; SR, stratum radiatum. 
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Fig. 3. Immunohistochemistry for 8-hydroxy-deoxyguanosine in the CA1 region in the 
control diet- and folate deficient diet-sham(A,E) and ischemia-operated groups at 3 hr (B,F), 
12 hr (C,G), and 2 days (D,H) after ischemia/reperfusion. At 12 hr after ischemic insult,  
8- hydroxy-deoxyguanosine immunoreactivity in both groups is highest in CA1 (C,G), 
showing more dense immunoreactivity in folate-deficient diet- than in the control diet-
group. Two days after ischemia/reperfusion, 8- hydroxy-deoxyguanosine immunoreactivity 
in folate-deficient diet-group is much lower than that in control diet-group (D,H).  
SP, stratum pyramidale; SO, stratum oriens; SR, stratum radiatum. 
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Fig. 4. Relative optical density (ROD) as percentage of 8-hydroxy-deoxyguanosine 

immunoreactivity in the CA1 region after transient ischemia (n= 5-7 per group; aP < 0.05 
significantly different from the control diet- or folate-deficient diet-fed sham-operated 
group, bP < 0.05 significantly different from the control diet- or folate-deficient diet-treated 
preadjacent group, cP < 0.05 between the control diet- and the folate deficient diet-groups). 
Bars indicate means ± SEM. 

 
 

 

Fig. 5. Immunohistochemistry for platelet endothelial cell adhesion molecule-1 (PECAM-1) 
in the CA1 region in sham-operated (A,E) and in ischemia-operated groups at 3 hr (B,F),  
1 day (C,G), and 3 days (D,H) after ischemia/reperfusion in control diet- and folate-deficient 
diet-groups. In control diet-(A) and folate-deficient diet -sham-operated (E) groups, weak 
PECAM-1 immunoreactivity is detected in microvessels. Three days after ischemia 
/reperfusion, PECAM-1 immunoreactivity in both groups increased significantly (G,H);  
the immunoreactivity in folate deficient diet-group is higher than that in control diet-group.  
SP, stratum pyramidale; SO, stratum oriens; SR, stratum radiatum. 
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Fig. 6. Relative optical density (ROD) as percentage of PECAM-1 immunoreactivity in the 
CA1 region after transient ischemia (n 5 7 per group; aP < 0.05 significantly different from 
the control diet- or folate deficient diet treated sham-operated group, bP < 0.05 significantly 
different from the CD- or folate-deficient diet-treated preadjacent group, cP < 0.05 between 
the control diet- and the folate-deficient diet-treated groups). Bars indicate means ± SEM. 

3.5 Reactive gliosis 
Significant morphological changes were observed in glial cells in the CA1 region in the CD- 

and FAD-groups after ischemia/reperfusion. This change began 2 days after 

ischemia/reperfusion (Figs. 7). 

Astrocytes. In the FAD-sham-operated group, weak GFAP immunoreactivity was detected 

in the CA1 region as in the CD-group (Fig. 7A, 7E). GFAP immunoreactive astrocytes had 

thin processes. Two days after ischemia/reperfusion, many astrocytes showed 

morphological changes in both groups (Fig. 7B, 7F), although at this time many more 

astrocytes in the FAD-treated group showed hypertrophied processes. Three days after 

ischemia/reperfusion, GFAP immunoreactive astrocytes in the FAD-treated group showed 

punctuated cytoplasm, whereas in the CD-group the cytoplasm of GFAP immunoreactive 

astrocytes was hypertrophied (Fig. 7C, 7G). Four days after ischemia/reperfusion, the 

processes of GFAP-immunoreactive astrocytes became hypertrophied, and the number and 

immunoreactivity in GFAP-immunoreactive astrocytes in the FAD-group were higher in the 

CD-group (Figs. 7D, 7H). 

Microglia. Iba-1 immunoreactivity in the FAD-sham-operated group was similar to that in 

the CD-sham-operated group (Figs. 7I, 7M). Microglia in the CD-group were activated 2 

days after ischemia/reperfusion, and many activated microglia in the FAD-group had 

aggregated to the stratum pyramidale, in which pyramidal neurons showed delayed 

neuronal death (Fig. 7J, 7N). Three days after ischemia/reperfusion, Iba-1 immunoreactive 

microglia in the FAD-group were concentrated in the stratum pyramidale of the CA1 region 

(Fig. 7O), whereas in the CD-group Iba-1 immunoreactive microglia were dispersed in CA1 

(Fig. 7K). Four days after ischemia/reperfusion, microgliosis in the FAD-group was severer 

than in the CD-group (Figs. 7L, 7P). 
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Fig. 7. Immunohistochemistry for GFAP representing astrocytes and Iba-1 representing 
microglia in the CA1 region in sham-operated (A,E,I,M) and ischemia-operated groups 2 
days (B,F,J,N), 3 days (C,G,K,O), and 4 days (D,H,L,P) after ischemia/reperfusion and 
feeding with folate-deficient diet or control diet. GFAP immunoreactivity-punctuated 
astrocytes in folate-deficient diet-group are detected 3 days after ischemia/reperfusion, 
whereas, in control diet-group, they are detected 4 days after ischemia/reperfusion. An 
increase of Iba-1-immunoreactive microglia is noted 3 days after ischemia/reperfusion in 
the stratum pyramidale of folate-deficient diet -group, whereas, in control diet-group,  
Iba-1-immunoreactive microglia is markedly increased 4 days after ischemia/reperfusion. 

www.intechopen.com



 
Advances in the Preclinical Study of Ischemic Stroke 

 

166 

4. Discussion 

Folate deficiency is common condition, especially in geriatric population which is caused by 
environmental and genetic factor. The genetic variant of methylenetetrahydrofolate 
reductase is very common (10-15%). Moderate hyperhomocysteinemia (15-30 μmol/L) is 
very common condition which is linked to increased risk of artherothrombotic vascular 
disease (Yoo et al). Low dietary intake of folic acid is associated with increased 
homocysteine levels and an increased risk of heart disease and stroke (Giles et al., 1995; 
hankey GJ et al, 2001). Homocysteine has direct effects on the endothelium (Wall et al,1980; 
Kamath et al., 2006; Lominadze et al., 2006) and astrocytes (Kranich et al., 1998), which are 
mediate signaling between endothelium and neurons (Nedergaard et al., 2003). In addition, 
the treatment of folic acid with vitamin B12 and B6 improves the blood-brain barrier function 
in human (Lehmann et al., 2003). Among the hypoxic brain damage, most sensitive are the 
pyramidal neurons in the CA1 region of the hippocampus. In experimental animal, transient 
forebrain ischemia, which temporarily deprives the brain of glucose as well as oxygen, 
results in the insidious delayed degeneration of specific vulnerable neurons within the CA1 
region of the hippocampus (Kirino, 1982; Pulsinelli et al., 1982). 
In FAD-group, cresyl violet or NeuN positive neurons began to decrease day 2 after 
ischemia/reperfusion, while in CD-group, cresyl violet or NeuN positive neurons began to 
decrease day 3 after ischemia/reperfusion. Delayed neuronal death of CA1 pyramidal 
neurons in the CD-groups occurred day 4 after ischemia/reperfusion, whereas in the FAD-
group, delayed neuronal death in CA1 pyramidal neurons occurred day 3 after 
ischemia/reperfusion. In addition, CA1 pyramidal neurons in the FAD-group showed 
TUNEL or F-J B staining representing neurodegeneration day 2 after ischemia/reperfusion. 
This is the first report that neuronal damage in the ischemic CA1 region is accelerated by 
folate deficiency. 

4.1 Excitotoxicity of homocysteine 
Homocysteine is easily carried into neuronal cells via a specific membrane transporter, 
leading to high intracellular homocysteine concentrations (Grieve et al., 1992). It has been 
shown that homocysteine and its metabolic derivatives activate both group I metabotropic 
glutamate receptors (mGluR) (Dalton et al, 1997) and NMDA receptors (Pullan et al., 1987), 
suggesting the role of homocysteine-induced excitotoxicity. Homocysteine can play as an 
endogenous glutamate receptor agonist (Lipton et al, 1997; Do et al, 1986; Ito et al, 1991) by 
activating on N-methyl-D-aspartate(NMDA) receptor subtype. The oxidative product of 
homocysteine, homocysteic acid, can functions as an excitatory neurotransmitter by 
activating NMDA receptor (Olney et al, 1987) The neurotoxicity of homocysteic acid in the 
brain can be partially abrogated by using a NMDA antagonist, suggesting a role for 
agonistic function (Olney et al, 1987; Kim et al, 1987). 
Depending on glycine concentration, homocysteine showed dual response. In the condition 

of low glycine, homocysteine acts as a antagonist of the glycine site of the NMDA receptor, 

resulting in neuroprotective function. However, in the situation of high glycine levels after 

brain ischemia, homocysteine can bind and activate NMDA receptor, leading to excitotoxic 

damage (Lipton et al, 1997). These actions suggest that folate deficiency accompanied by 

hyperhomocysteinemia may contribute to the early brain damage after ischemia. 

In addition, homocysteine has been reported to induce an extra-cellular signal regulated 
kinase in the hippocampus(Robert et al, 2005). Homocysteine also activates group I 
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metabotropic glutamate receptors (mGluRl), leading to activation of protein kinase C and 
increased intracellular IP3 formation, increasing the intracellular calcium ion, especially in 
endoplasmic reticulum (Dalton et al, 1997). 

4.2 Homocysteine and apoptosis pathway 
Homocysteine-induced ROS generation enhances the activation of NF-kB (Chern et al., 

2001). NF-kB is one of the transcriptional factors that can be controlled by the cellular redox 

status. NF-kB plays a role in the control of oxidative stress-mediated apoptosis. In the 

oxidative conditions, neuronal cell death derives from excessive calcium influx and ROS 

leading to excitotoxicity. In a transient middle cerebral artery occlusion experiment, 

increased DNA binding was detected after reperfusion following 2 hour ischemia 

(Schneider et al., 1999), suggesting the activation of NF-kB. Increased transcriptional activity 

of NF-kB has been identified in mouse models of both permanent and transient cerebral 

ischemia using kB-dependent ǃ-globin reporter gene assay (Schneider et al., 1999). NF-kB 

target genes include proinflammatory cytokines shown to be expressed in cerebral ischemia. 

TNF, IL-6, inducible nitric oxide synthase, intercellular adhesion molecule 1 (ICAM-1), and 

matrix metallopeptidase (MMP) 9 are major players in the post-ischemic inflammation of 

brain (Wang et al., 2007; Gilmore, 2008). IL-1 is another possible inducer of NF-kB activity in 

the ischemic brain (Kunz et al., 2008). Both IL-1ǂ and IL-1ǃ are rapidly induced in cerebral 

ischemia (Allan et al., 2005).  

4.3 Hyperhomocysteinemia and hypercoagulable state of blood 
The mechanism by which hyperhomocysteinemia can cause the hypercoagulable state of 
blood and an increased risk of thrombosis has poorly established. There have been growing 
evidences from the various aspects. In vitro study of cultured cells showed a toxic effect of 
homocysteine on endothelial cell viability ( Wall, 1980). Cultured endothelial cells under 
high concentration of homocysteine were not viable with copper that led to the oxidation of 
homocysteine, concomitant with hydrogen peroxide generation (Starkebaum and Harlan, 
1986). Homocysteine inhibited the synthesis of prostacyclin, a potent inhibitor of platelets in 
cultured cells (Wang,1993). In vitro studies have shown that high concentration of 
homocysteine promote blood clotting cascade. Homocysteine activated factor V on cultured 
endothelial cells (Rodgers and Kane, 1986) and inhibited protein C activation in cultured 
endothelial cells (Rodgers, 1990). At concentrations greater than 5mmol/L, homocysteine 
inhibited thrombomodulin surface expression (thrombomodulin promote activation of the 
anticoagulant protein C and inhibit procoagulant activity of thrombin) (Lentz , 1991). 
Homocysteine blocked tissue-type plasminogen activiator in endothelial cells (Hajjar, 1993). 
Homocysteine increased platelet adhesion (Blann, 1992), and induced tissue factor (Fryer, 
1993), and suppressed anticoagulant, heparan sulfate expression (Nishinaga, 1993). It has 
been documented that homocysteine level as low as 8 micromol/L increased affinity of 
lipoprotein(a) for plasmin modified fibrin surfaces, inhibiting plasminogen activation 
(Harpel, 1992). In vivo studies showed an abnormally increased biosynthesis of 
thromboxane A2 in patients with CBS deficiency (Di Minno, 1993), and endothelial 
dysfunction (Lentz, 1996). It have been reported that impaired regulation of endothelium-
de-rived relaxing factor & nitrogen oxides (Stamler, 1993) and oxidation of low-density 
lipoprotein in vitro (Pathasarathy, 1987). Folate deficiency may contribute the development 
of atherothrombogenic condition. In the rat model, dietary folate deficiency, a major cause 
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of hyperhomocysteinemia, was associated with 20-fold enhanced macrophage-derived 
tissue factor activity and increased ADP- and thrombin-induced platelet aggregation 
(Durand et al, 1996). In vitro endothelial cell study, cell treated with homocysteine showed a 
significant decrease in glutathione peroxidase transcription and activity, suggesting the 
impairment of endothelial ability to detoxify oxidative stress and leading to attenuation of 
bioavailable nitric oxide, a potent anti-thrombotic factor (Upchurch, 1997) 
Recent oligo-array technology data validated by real time reverse transcriptase-polymerase 
chain reaction showed the changed gene expression in animal fed folate deficient diet, 
suffering from hyperhomocystinemia. Folate deficiency upregulate integrin beta-3, Rap1b, 
glycoprotein V, platelet-endothelial cell adhesion molecule-1(PECAM-1) and von 
Willebrand factor, leading to platelet activation and aggregation. In addition, upregulation 
of coagulation factor XIIIa, plasminogen activator inhibitor-1, and down regulation of tissue-
type plasminogen activator were observed (Ebbesen LS et al, 2006).  

4.4 Oxidative stress and neurotoxicity in hyperhomocysteinemia and folate deficiency 
The highly reactive sulfhydryl group in the homocysteine is readily oxidized to generate 

reactive oxygen species (Starkebaum and Harlan, 1986), suggesting that homocysteine can 

cause cell injury through a mechanism involving oxidative damage. The oxidative stress has 

been noted that hyperhomocysteinemia and folate deficiency induces or potentiates the 

toxic effects on the neuronal cells in vivo or in vitro. In early study, Wall et al.(1980) showed 

homocysteine oxidation is related to hydrogen peroxide generation. In human 

neuroblastoma cells cultured in folate-deprived media, oxidative stress played a role for 

homocysteine toxicity in neuronal cells (Ho et al, 2003). The cytotoxicity of homocysteine 

was compromised by antioxidants including N-acetyl cysteine, vitamin E or C (Reis et al, 

2002; Wyse et al, 2002). Antoxidants vitamin including vitamin E or C prevented memory 

dysfunction induced by homocysteine administration in the rats (Reis et al, 2002) and the 

reduction of Na-K ATPase activity caused by hyperhomocyeteinemia in rats(Wyse et al, 

2002). Folate deficiency decreased the proliferating cells in the dentate gyrus of adult mice 

hippocampus (Kruman et al, 2005). Folate deprivation led to pronounced 

hyperhomocysteinemia and reactive oxygen species. Folate deficient condition increased 

amyloid-beta-induced apoptosis, while high level of folate supplementation abrogated the 

reactive oxygen species generation by amyloid-beta(Ho et al, 2003). Folate deprivation in 

neuroblastoma cells showed an increased immunoreactivity of phospho-tau (Ho et al, 2003). 

In apolipoprotein E-deficient mice, iron challenge increased oxidative stress in folate deprived 

animals, but not in vitamin E. Oxidative damage can be mitigated by folate supplementation 

by reducing intracellular superoxide generation or scavenging hydrogen peroxide. (Shea and 

Rogers, 2002). In primary culture of rat cerebellar granular cells, homocysteine neurotoxicity 

was partially prevented by NMDA receptor antagonist. Homocysteine-induced neuronal 

death was effectively blocked by the combination of catalase and superoxide dismutase or 

catalase alone. These findings support that the homocysteine-induced neurotoxicity is based 

on the oxidative stress and excitotoxicity(Kim and Pae, 1996). 

A number of evidence supports the roles of DNA damage and apoptosis in the pathogenesis 
of several neurodegenerative disorders, including cerebral ischemia (Liu et al., 1996; Won et 
al., 1999, 2001; Bazan, 2005). In the present study, 8-hydroxy-deoxyguanosine 
immunoreactivity in the CA1 region in FAD-group increased in advance of that in CD-
group, and its peak level was noted at 12 hour after ischemia/reperfusion, which was more 
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pronounced in FAD-group. This result indicates that CA1 neurons in folate deficient 
condition are more vulnerable to ischemic DNA damage. 
Endres et al. (2005) reported that cerebral lesion volumes after ischemia and 72-hour 
reperfusion were significantly increased by 2.1-fold in folic acid-deficient 129/SV wild-type 
mice versus controls on a normal diet, and this could not be explained by obvious 
differences in physiological parameters. They also reported that abasic sites, a marker of 
oxidative DNA damage, are significantly increased in DNA from the ischemic brains of 
folate-deficient 129/SV wild-type mice at early time points after MCA occlusion than 
control mice (Endres et al., 2005). These are supported by those of previous studies which 
found that folate deficiency in humans induces extensive chromosome damage, fragile site 
expression, micronucleus formation, and increased uracil levels in bone marrow cell DNA 
(Blount et al., 1997; Crott et al., 2001). The misincorporation of uracil appears to be a key 
event in the neurotoxicity associated with folate deficiency, because the pretreatment of 
culture medium with thymidine and hypoxanthine (precursors of purines) reduces neuronal 
cell death induced by methyl donor deficiency (Blount et al., 1997). Folate deficiency could 
cause the misincorporation of uracil into the DNA of proliferating cells caused by the 
impairment of deoxynucleoside triphosphate pools (Pogribny et al., 1997; Mol et al., 1999). 
In addition, homocysteine is rapidly taken up by neurons via a specific membrane 
transporter. Increased levels of homocysteine in cell nuclei may induce DNA strand breaks 
by disturbing the DNA methylation cycle (Blount et al., 1997) or may promote DNA damage 
accumulation in neurons by impairing DNA repair (Kruman et al., 2002). 

4.5 Folate deficiency and platelet endothelial cell adhesion molecule-1 
Adhesion and trans-endothelial migration of leucocytes play a significant roles in the 

pathophysiologic events in brain inflammation after stroke. Platelet endothelial cell 

adhesion molecule-1 (PECAM-1, CD31) is a 130-kDa protein member of the 

immunoglobulin gene superfamily, which is expressed on the surface of platelets, 

monocytes, neutrophils, selected T cell subsets and on endothelial cell intercellular junctions 

(Newman, 1997). Expression levels of PECAM-1 differ in the type of organ tissues. It is 

highly expressed in kidney, lung, and trachea, while its level is at lower in brain, heart and 

liver. But, fibroblasts, epithelial cells, muscle, nonvascular cells or red blood cells do not 

express it.( Newman, 1997; Wang, 2003). 

Muller et al. (1993) showed for the first time that monocytes or neutrophils treated with the 
specific antibodies for PECAM-1 blocked transmigration across the endothelial monolayer 
in vitro assay. Blocking endothelial cell junctional PECAM-1 also inhibited leukocyte 
transmigration, indicating that PECAM-1 molecules on both the endothelial cell as well as 
the leukocyte side contributed to the transmigration process. Most of PECAM in 
endothelium is distributed in the intercellular junctions, and 15% is on the exposed apical 
surface. Qing et al(2001) found that anti-PECAM-1 antibody or PECAM-Ig chimeric 
molecule injection blocked the T cell trafficking into the CNS in TCR transgenic mice during 
inflammation. Rosenblum et al.(1994) demonstrated that anti-CD31 mAb injection before the 
damage of endothelium in pial arteriole of mouse doubled the platelet aggregation time. 
Vaporciyan et al. (1993) also showed that antibody to human PECAM-1 could block in vivo 
accumulation of rat neutrophils into the peritoneal cavity and the alveolar compartment of 
the lung. These results suggest that PECAM-1 plays a key role in the transendothelial 
migration of leukocytes in the process of inflammation. Gumina et al.(1996) showed that 
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antibodies to PECAM-1 reduce myocardial infarct size in both rat. and Murohara et al(1996) 
showed blockade of platelet endothelial cell adhesion molecule-1 protects against 
myocardial ischemia and reperfusion injury in cats. 
Brain ischaemia eventually enhances local inflammatory reaction. Accumulated leucocytes 
adhere to endothelium, probably leading to the microvasculature occlusion (Schmid-
Schonbein, 1987; del Zoppo et al, 1991). Hwang et al. (2005b) demonstrated that transient 
ischaemia in gerbils results in a significant increase of PECAM-1 immunoreactivity in the 
hippocampus. PECAM-1 expression was particularly prominent in the vulnerable neurons 
of the hippoccampal CA1 region. PECAM-1 immunoreactivity was significantly increased 
by 4 days after ischaema. In addition, serum sPECAM-1 levels in ischemic group were 
higher than those of sham group. Zaremba and Losy (2002). reported that sPECAM-1 
increases significantly in serum and in CSF in patients within 24 h after ischaemic stroke, 
compared with control group. In addition, serum and CSF sPECAM-1 levels within 24 h 
after ischaemic stroke correlated to volume of early brain CT hypodense areas, indicating 
the cerebral hypoperfusion. This suggests that PECAM-1 may be involved in inflammatory 
response mediated extent of early ischaemic brain damage. Also, sPECAM-1 levels within 
24 h and at second week after ischaemic stroke correlated positively with neurological 
stroke severity, and with the degree of functional disability within 24 h of stroke and at 
second week after the incident. Therefore, initial sPECAM-1 might be of predictive value for 
the short-term outcome of stroke ( Zaremba and Losy, 2002b). 
O’Brien et al(2003) demonstrated that PECAM-1 mediates neutrophil migration through IL-
1 beta stimulated endothelial cells. It has shown that hyperhomocysteinemia at moderate 
level activates human monocyte and induces cytokine expression including tumor necrosis 
alpha, IL-1 beta, IL-6, IL-8, and IL-12 (Su et al, 2005). In this experiment, PECAM-1 
immunoreactivity in the CA1 region was higher in folate deficient group than in the 
controls. This result suggests that folate deficiency and elevated homocysteine can enhance 
inflammatory response in post ischemic condition through NF-kB activation. Increased 
gliosis in folate deficient group may be due to elevations of PECAM-1 immunoreactivity 
and of its protein level in vessels, inducing the transmigration of lymphocytes and 
neutrophils (Michiels et al., 1998; Dangerfield et al., 2002; Hwang et al., 2005b). 
In summary, folate deficiency was found to induce early and significant neuronal death and 
gliosis in CA1 with concomitant oxidative DNA damage. These findings suggest that folate 
deficiency accelerate the pathological neuronal loss and inflammation that are activated 
after the onset of transient cerebral mild ischemia. 
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