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1. Introduction 

Proteins are studied by measuring different properties, typically the chemical structure 

and biochemical activity. Given that these measurements are done on the same protein 

molecule, they must be related. Despite the fact that this relationship exists, the 

mathematical nature of this relationship has remained elusive to our understanding, and 

is not commonly considered in the so called “structure-function relationship problem of 

proteins” (Punta & Ofran, 2008). While this is a fundamental problem in biochemistry and 

biology, that is, to establish a procedure that allows scientists to reliably relate protein 

structure and protein activity, the likelihood to succeed in this enterprise depends on our 

ability to understand the mere nature of this relationship. The possibility to effectively 

relate structure and activity has motivated years of research in different areas in biology, 

including biophysics, molecular biology, biochemistry, bioinformatics, and computational 

biology, among others. Although great advances have been achieved from these different 

areas of expertise, the question remains unsolved. That is, there is no general procedure 

that may have proven to effectively relate protein structure and activity. However, recent 

results in the prediction of protein three-dimensional structure (from now on referred 

simply as 3D structure) are addressing this problem with a fresh look, revealing a new 

aspect of this relationship that may explain why this particular problem has remained 

elusive. The present work reviews the general concepts being used to predict protein 3D 

structure with emphasis on the contribution of these methods to unravel the structure-

activity relationship of proteins.  

We divide this review in three sections. In the first section, we will present a mathematical 

view on the evolution of the concept about the 3D structure-activity relationship in proteins. 

The second section presents the general concepts behind template-based modelling and 

ab initio methods for the prediction of protein 3D structure. There, we will describe how 

these approaches have contributed to our current understanding of the 3D structure-activity 

relationship of proteins. Finally, we will review new methods for protein 3D structure 

prediction and how these may contribute to unravel the 3D structure-activity relationship of 

proteins. 
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2. Evolution of the 3D structure-activity paradigm from a mathematical 
perspective 

Back in 1936 Mirsky and Pauling (Mirsky & Pauling, 1936) proposed that protein activity, or 
its function within a biological context, should be determined by its 3D structure. Considering 
that the characterization of protein activity has frequently been cumbersome, the possibility to 
determine it by simply looking at the 3D structure of proteins could be considered an impulse 
to establish this relationship. Yet, determination of protein 3D structure has not been an easy 
treat either. Perhaps the main motivation to establish this relationship consists in the 
possibility to design new devices capable of reproducing the highly efficient capabilities of 
proteins (Drexler, 1994; Robson, 1999; Balzani et al., 2000) or to simply engineer proteins in 
order to adapt these for industrial use (Zaks, 2001; Huisman & Gray, 2002; Straathof et al., 2002; 
Luetz et al., 2008). Ultimately, establishing the 3D structure-activity relationship of proteins 
may serve to test our level of understanding of these molecules. 

Hitherto, the approximation most frequently used to solve this relationship is to consider 
knowledge-based classification schemes. Such schemes are based on the existence of a given 
set of proteins with known activity; from that knowledge, it has been possible to identify 
new proteins sharing similar activity, from protein sequence comparisons. Although quite 
useful to classify the ever-increasing number of new protein sequences generated 
nowadays, this type of approaches has a limited ability to assist researchers in the design of 
protein activity (see next section). Alternatively, the activity of a protein is commonly 
analyzed from the knowledge of its 3D structure using biophysical methods (Neet & Lee, 
2002; Chollet & Turcatti, 1999). In either case, previous knowledge of both protein 3D 
structure and activity is required to establish this relationship, indicating our current 
limitation in understanding this problem from basic principles. Even when new enzymatic 
activities have been designed “from scratch” (Siegel et al., 2010) the active site residues are 
nestled within previously known protein folds. It has been possible to design completely 
novel folds, such as Top7, from scratch (Kuhlman et al., 2003), but this refers to the 
sequence-3D structure relationship, which is not the main focus of this review. 

We propose that one of the reasons for this limited understanding of the 3D structure-
activity relationship of proteins is the absence of knowledge as to what type of mathematical 
relationship this one is. As we will show, determining the nature of this relationship may 
lead researchers to analyze this relationship with a new perspective and may accelerate the 
full understanding of it. 

To explain this, let us first formally describe the 3D structure-activity relationship of 
proteins as a postulate: 

P1: Protein activity depends on its 3D structure. 

That is, protein activity may be represented as a mathematical relation of the protein 3D 
structure. Since both activity and 3D structure can always be measured on a given protein, 
that is they come in pairs, we postulate that this relation may be represented by a 
mathematical function. To further describe this postulate, let us define: 

D1: Protein activity is defined as the capacity of proteins to interact with other molecules 
resulting in a change (on the interacting molecule or the environment) that is measurable 
(e.g., the chemical transformation of glucose to glucose 6-phosphate). 
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D2: Protein 3D structure is defined by two sets: the set of amino acid residues included in 
the protein and the set of physical interactions between these residues in the 3D space.  

D3. A mathematical function is a particular class of relation between sets and it describes the 
dependence between the elements of these sets: an independent variable (an element in one 
of the sets) and the dependent variable (another element in the other set). In other words, for 
a given value of the independent variable there is one value of the dependent variable.  

Postulate P1 then refers to a mathematical function between two features of proteins: the 
activity and the 3D structure. The activity is usually expressed as a quantity (kinetic 
constants such as the Michaellis-Menten constant Km) and the structure may be represented 
by a quantity also, for instance the fold classification; yet, such quantities have not been 
easily related, so a new set of measurements is needed to evaluate P1 (see below for a 
further discussion on this aspect). To do so, the question we want to address first is: what 
type of mathematical function is this? Basically, there are three types of mathematical 
functions:  

D4: Injections. In mathematics, this refers to one-to-one relations: given two sets S (3D 
Structure) and A (protein Activity), there is at least one element in S related with one 
element in A (see Figure 1A and 1B). Therefore, there can be elements of the set A that do 
not have a matching partner in set S (Figure 1B).  

D5: Surjections. This is defined as a mathematical function where given two sets S and A, 

there is an association of at least one element in S with an element in A (see Figure 1A and 

1C). Therefore, there can be elements of the set A that have one or more relations with 

elements in set S. 

D6: Bijections. These are defined as mathematical functions where for every element in set S 

there is exactly one element in set A associated to it. They occur when both an injection and 

a surjection relation exist (see Figure 1A). 

In all these cases (injections, surjections and bijections), the mathematical function f might be 

reversible: given f: S → A, then it is possible to find a function g such that g: A → S. 

However, only in the case of bijections the reversibility of the association is a necessary 

condition of the function. 

Expressing these concepts in terms of the 3D structure-activity relationship of proteins, we 

may say that this relationship presents the properties of injections. For a long time 

biochemists have characterized the activities of proteins; however, for some time many 

activities were known but no protein 3D structures were associated to them; more recently, 

with the advent of DNA sequencing, many protein sequences and 3D structures are known 

for which no activity has being assigned yet (Norin & Sundström, 2002). However, given 

postulate P1, we must expect that for each protein there have to be both an activity and a 3D 

structure associated to it; consequently, the currently unknown 3D structures or activities of 

proteins will be measured eventually. 

Alternatively, most of the current approaches to study the 3D structure-activity relationship 
of proteins treat this as a surjection: the evolution theory postulates that protein activity or 
3D structure has been conserved in different species (orthologous proteins); thus this is a 
case of a one-to-many (one function-many structures) relation. Additionally, in protein 
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evolution the term “convergence” refers to the cases where different 3D structures of 
proteins have evolved to share a similar activity; conversely, an alternative example are 
single-domain moonlighting proteins, where one 3D structure is associated with multiple 
activities, albeit, using different molecular surfaces (Jeffery, 1999, 2003, 2009; Copley, 2003). 
In any case though, the one-to-many association prevails as much as we group together 3D 
structures or activities that are not identical. That is, to the best of our knowledge, there are 
no two proteins with identical activities reported so far with perfectly different 3D 
structures, nor are there two proteins with identical 3D structures with perfectly different 
activities. Take for instance the triose-phosphate isomerase proteins; these are proteins with 
a high degree of sequence-3D structure similarity, sharing similar but not identical activities 
(see Table 1). In the case of moonlighting proteins, there is no evidence that the two different 
activities may be performed in the same protein having exactly the same 3D structure, yet 
the structure may be slightly altered to accomplish different activities (Bateman et al., 2003; 
Krojer et al., 2002).  

The need to move from considering similar to identical activity or 3D structure in the 

structure-activity relationship of proteins is important to improve our understanding of this 

relationship. On the one hand, it is convenient to assume similarity in 3D structure or 

activity of proteins in the discovery phase of biology (i.e., accelerated discovery of new 

proteins) because this assumption allows for the classification of new proteins into known 

families of proteins with known activity. Alternatively, provided the existence of an activity 

assay, it is possible to identify new proteins with such activity and presumably related in 

their 3D structure.  However, after this initial phase of discovery, full understanding of the 

activity or 3D structure of a protein requires more detailed analysis both experimentally and 

theoretically. For the theoretical part, here we claim that in order to gain a better 

understanding of the 3D structure-activity relationship of proteins it is necessary to be 

precise in the terms used to relate these properties.  

From this analysis we noted that since the 3D structure-activity relationship of proteins 

presents features of both injections and surjections, thus it may be best represented by a 

bijection. Furthermore, assuming that the injective feature is only a temporal one, and the 

surjective feature exists if and only if the definition of activity or 3D structure is not precise, we 

may conclude that the best way to analyze the 3D structure-activity relationship of proteins is 

as a bijection, where we postulate that for any given protein there is always one activity related 

to a given 3D structure. This approach necessarily implies that one has to come up with a 

rigorous and precise definition for both 3D structure and activity. Herein lies the challenge. 

This conclusion leads us to the following scenario: let us assume that there is a set S with 

every possible 3D structure of proteins, and a set A with every possible measurable activity 

of proteins; then, for a given protein 3D structure in set S there is exactly one protein activity 

in set A; conversely, for a given protein activity in set A, there is exactly one protein 3D 

structure in set S. In this scenario, there are no identical activities in set A, neither there are 

identical structures in set S. To formally express this: 

 A = f(S)  (1) 

Now, in order to express this relation in numerical terms, let us define the 3D structure as a 

matrix (e.g., adjacency matrix) and activity as a vector (e.g., list of critical residues for 
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protein activity). Choosing this set of critical residues is a convenient pick since it has been 

reported that proteins sharing high 3D structural similarity do not share the same set of 

critical residues (Cota E et al., 2000; Rivera MH et al., 2003), yet some critical residues are 

indeed shared between homologue proteins (Zhang Z & Palzkill T, 2003). Thus, representing 

3D structure as a matrix (M) and activity as a vector of critical residues (C) provides us with 

a way to express this relation formally and look for mathematical tools to define the 

mathematical function inherent to these quantities. Thus: 

 C = f(M) (2) 

In other words, given a set of contacts between the residues of a protein (3D structure), 

our problem is to find a mathematical transformation of this matrix into a vector 

containing the critical residues for the protein function. If the mathematical function 

relating M and C is a bijection, then it must be possible to transform the vector C back into 

the matrix M. In order to find the mathematical function involved in this transformation, 

having access to multiple 3D structures and multiple sets of critical residues for several 

proteins is required. 

Our analysis has several implications for the analysis of the 3D structure-activity 

relationship. In the present review, we will discuss only those relevant for the prediction 

of protein 3D structure. That is encouraged by the emergence of new approaches for the 

prediction of protein 3D structure that are based on the notion that the 3D structure-

activity relationship is a bijection. However, these approaches have been developed in the 

absence of the current mathematical context, as we will describe below; embracing this 

bijection may provide the basis to improve the current methods of protein 3D structure 

prediction. 

3. Current methods for protein 3D structure prediction 

In this section we will summarize the ideas behind them and the kind of relationship that 

they assume between 3D structure and activity. This review does not attempt to cover in 

detail these methodologies, but to present the basic aspects of them in the context of 

postulate P1. For detailed descriptions of these methodologies, there are other reviews 

published elsewhere (Jones & Thornton, 1993; Martí-Renom et al., 2000; Osguthorpe, 2000; 

Hardin et al., 2002; Koretke et al., 2002; Zhang, 2002; Godzik, 2003). 

3.1 General considerations 

Despite of the diversity of approaches to perform structural predictions, they all share a 

common design. The two key components of any method are the model generator and a 

quality evaluator (Figure 2). 

1. Model generators refer to algorithms that create native-like protein 3D structures. There 

are two ways to generate such structures: knowledge-based strategies that depend on 

the available structures in databases and ab initio strategies (also known as physics-

based), which consider physics principles to generate structures. Typically, model 

generators produce many alternative 3D structures that are potential solutions to the 

native structure of the protein. 
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2. Quality evaluators. These algorithms aim to evaluate the quality of the models 

produced by the model generators, in order to select the best models; i.e., those 

resembling the known native-like structure of proteins. Like the model generators, 

quality evaluators can be knowledge-based or ab intio.  

It is important to keep in mind that these methodologies have limitations, especially if they 

are used to gain insights into the relation between the 3D structure and activity of poorly 

characterized proteins. Knowledge-based model generators and evaluators assume 

surjective relations between structure and activity, since the common idea of modellers of 

protein 3D structures is to assist in the grouping of protein structures based on similar 

attributes (Gerstein & Hegyi, 1998; Domingues et al., 2000; Skolnick et al., 2000). Therefore, in 

these cases knowledge of the protein 3D structure may provide inaccurate information 

about the activity (Martin et al., 1998). On the other hand, ab initio methods do not take into 

account the 3D structure-activity relation to perform predictions. With this kind of 

predictions, it is unlikely to get precise information about the activity of the protein from its 

3D structure (Baker & Sali, 2001, and the results from CASP9). 

Often the 3D structure is used to interpret the activity and rarely the other way around 

(Gherardini & Helmer-Citterich, 2008), thus it is not surprising that the current methods of 

protein 3D structure prediction do not address the prediction of 3D structure from the 

activity of the protein. In spite of this limitation, current methodologies for protein 3D 

structure prediction have been important in the development of the ideas about protein 3D 

structure determinants and their relationship with activity. Consequently, in the next two 

sections we will describe briefly the current methods for protein structure predictions, their 

features and limitations to elucidate protein activity. 

3.2 Template-based modeling 

This kind of predictions uses a protein of known 3D structure as a template to build the 

model of a protein whose 3D structure is unknown (target). The most critical part of this 

methodology is to identify adequate template(s) for the target. Accordingly, template-based 

modelling is classified in two main areas: homology modelling and fold recognition. 

The idea behind homology modelling is that similar sequences have similar 3D structures 
(Doolittle, 1981, 1986; Chothia & Lesk, 1986). In this regard, the quality of a 3D model for a 
target protein depends strongly on the percentage of sequence identity between the target 
and template; the greater the identity, the more accurate the model will be. Likewise, below 
30% of identity between the target and template proteins (sometimes referred as the 
“twilight zone”; Doolittle, 1986), several false templates may be identified for the target 
protein (Sander & Schneider, 1991; Rost, 1999). In that case, templates should be searched 
with fold recognition algorithms (Rost, 1999; see below).  Templates can be found by 
searching databases of proteins with known 3D structure (e.g. the Protein Data Bank) with 
sequence alignment tools like BLAST (Altschul et al., 1990, 1997) or FASTA (Pearson & 
Lipman, 1988). Then, models of the target protein are built from the templates, taking into 
account changes that must be introduced like insertions and deletions in the template 
(indels), side chain conformations of non-conserved residues, possible rearrangements in the 
backbone, among others (Jones & Thirup, 1986; Bruccoleri & Karplus, 1987; Vásquez, 1996). 
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Afterwards, the quality of the resulting models is evaluated (Laskowski et al., 1993; Hooft et 
al., 1996; Wallner & Elofsson, 2003; Ginalski et al., 2003). 

On the other hand, fold recognition methodologies identify proteins sharing similar 3D 
structures even if they do not have any obvious sequence similarity (Jones & Thornton, 1993; 
Godzik, 2003).  Fold recognition can be performed in two ways. The first involves the 
enhancement of homology detection (Fischer & Eisenberg, 1996; Jaroszewski et al., 1998; 
Rychlewski et al., 2000), by using sequence profiles compiled from protein sequences that 
are compatible with the target. Two examples of this approach are PSI-BLAST (Altschul, 
1997) and hidden Markov models (Durbin et al., 1998). Accuracy of prediction is increased 
further if structural information (e.g. secondary structure) is incorporated in the profiles (Di 
Francesco et al., 1997a, 1997b).  The second approach is termed “threading” (Jones et al. 1992; 
Godzik & Skolnick, 1992). Here, the target sequence is forced to adopt the 3D structure of a 
potential target. Then the quality of the model is evaluated with a structure-based score. If 
the model has a high score, there is confidence that the target adopt a similar 3D structure as 
the template, otherwise the model is discarded. Once the template(s) is (are) found, a 3D-
structural model of the target protein is built following the steps described in homology 
modelling after the initial template identification. 

Template-based modelling has been recognized as the most accurate approach for protein 

structure prediction, especially if the identity between target and template is high (Chothia 

& Lesk, 1986; Sali et al., 1995; Cozzetto et al., 2009). However, as any model, these need to be 

tested in their ability to reproduce a biologically relevant feature, such as the activity. Since 

these methods assume a surjection for the structure-activity relationship, there are 

limitations imposed by such assumption, which are more notorious in the cases of low 

sequence similarity between the target and template proteins. One example of the limitation 

induced by the surjection conjecture in the structure-activity relationship of proteins is the 

TIM barrel fold, a common 3D-structure present in enzymes with very different activities 

such as oxidoreductases, hydrolases, lyases and isomerases (Greene et al., 2007). Likewise, 

the opposite situation is common: proteins with very similar activities and structurally 

unrelated. For instance, both chymotrypsin and subtilisin are serine-proteases with the same 

catalytic triad in the active site even thought they have completely different 3D-structures 

(Wallace et al., 1996).  

Furthermore, even when there is a clear similarity between target and template sequences, 

there can be measurable structural differences. The most common example is loop structure. 

Precise prediction of loop regions is usually hard to accomplish since they tend to exhibit 

higher sequence variability and often have insertions and deletions relative to templates 

(Martí-Renom et al., 2000). Loops though, play an important role conferring specificity to the 

protein activity. Another less frequent situation is when there are visible differences in 

active sites of related proteins. This can lead to inaccurate modelling of the structure of 

target proteins (Moult, 2005). One way to improve the modelling of loops would be to 

evaluate the predicted activity of the model.  

The information summarized above provides a general notion about the relationships that 

template-based modelling assumes. One-to-many relations between protein structure and 

activity are quite common with this kind of predictions. Thus, it is frequent to misrelate the 

activity of a protein from the knowledge of its fold alone (Martin et al., 1998). It is often 
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necessary to use other resources to predict the activity more accurately, as the use of local 

structural features of proteins in active sites (see Gherardini & Helmer-Citterich, 2008 for 

more details). Such tools work with the traditional approaches for predictions: knowledge-

based like the 3D-templates (Wallace et al., 1996); or physics based, for example the 

identification of clefts and pockets in protein structures (Laskowski et al., 1996; Binkowski et 

al., 2003). These methods provide a theoretic framework to understand the 3D structure-

activity relation in a one-way path: the prediction of activity from structure. 

3.3 Ab initio modeling 

Template based modelling can provide insights into the 3D structure and activity of poorly 

characterized proteins. In terms of generating reliable models it has an intrinsic limitation: it 

requires a protein of known 3D structure in order to produce a model. This may not be a 

problem in many situations, but there are proteins without any detectable template (more 

than half of the sequenced proteins in known genomes, see Yura et al., 2006). In such cases 

the alternative is ab initio modelling, also known as template-free modelling (Osguthorpe, 

2000; Hardin et al., 2002; Koretke et al., 2002). The premise of these modelling methods is that 

the protein sequence determines the native structure, which has the global minimum 

potential energy among all the alternative conformations. In other words, ab initio methods 

assume that sequence alone would be sufficient to model the structure of proteins. For this 

reason, ab inito methods are adjured to predict the structure folds that were previously 

unknown.  

Ab initio methods carry out a large-scale search for protein structures that have a particularly 

low energy for a given amino acid sequence. The two critical parts of these predictors are 

the conformational search strategy and the energy evaluation method (known as energy 

potential).  To perform a fast and efficient search of the conformational space, ab initio 

methods use sophisticated algorithms suited to solve combinatorial problems since it is 

impossible to systematically explore all the conformations of a polypeptide chain. Monte 

Carlo algorithms (Simons et al., 1999; Ortiz et al., 1999), genetic algorithms (Pedersen & 

Moult, 1997a, 1997b), zipping and assembly (Ozcan et al., 2007) and molecular dynamics 

(Duan & Kollman, 1998; Shaw DE et al. 2010) are among the most frequently used methods 

to explore the conformational space of protein structures.  Likewise, the energy potential is 

crucial to evaluate and select models of the target protein. Energy potentials can be of two 

kinds: molecular mechanics potentials, that are derived from physical-chemical calculations 

(Brooks et al., 1983; Pearlman et al., 1995) and knowledge-based potentials are constructed 

from the statistical analysis of the available structures in databases (Sippl, 1990; Koretke et 

al., 1998; Kuhlman and Baker, 2000).   

Ab initio predictions usually consume a great deal of time and computer power. Recent 

methods make simplifications on the protein 3D structure in order to keep an acceptable 

speed (Helles, 2007). One of the solutions is to reduce the number of atoms that represent 

the protein 3D structure in order to simplify the model generation process (Kolinski, 2004; 

Lee et al., 1999). An alternative to speed up calculations is to consider fragment assembly 

strategies (Simons et al., 1999; Jones & Thirup, 1986). The idea with this approach is to split 

the structure into smaller fragments composed by many residues. Fragments are selected 

from a knowledge-based database on the basis of structural compatibility with the target 
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sequence and secondary structure propensities.  The assembly of such substructures is 

determined by the energy potential and the conformation searching strategy. There are also 

multi-scale methods, like those of Cecilia Clementi, which change the resolution of the 

model depending on the questions that want to be asked of the protein (Shehu et al., 2009). 

Template-free modelling has experienced much progress since the first blind prediction 

experiment known as "Critical Assessment of Techniques for Protein Structure Prediction" 

(CASP) took place in the early 90's (Bourne, 2003; Moult, 2005). However, despite of the 

considerable efforts the accuracy of ab initio predictions is still very low, compared to 

template-based modelling. That is, models generated with ab initio methods may have very 

large deviations from the experimental structures. In other cases, the 3D structure of the 

model can be completely wrong (this is actually a common situation). These limitations have 

hindered the practical use of ab intio modeling for the inference of the 3D structure-activity 

relationship on the target proteins (Baker & Sali, 2001; the results from CASP9).  

Finally, ab initio predictions do not take into account the relation between 3D structure and 
activity explicitly, therefore they provide little reliable information about this relationship. 
On the other hand, they assume that proteins fold autonomously to the 3D structure with 
the minimum free energy (this is the case for most globular proteins), but there are cases 
where this assumption may be unjustified, as in the case of protein folding under kinetic 
control. For example, it has long been recognized that transmembrane proteins do not adopt 
their final, functional 3D-structure unassisted, but they need a translocation machinery to 
insert into the membrane and fold (Elofsson & von Heijne, 2007). Hence, the use of these 
strategies is inadequate for transmembrane proteins. Nonetheless, the ROSETTA method 
(originally developed for globular proteins) has been adapted to predict transmembrane 
proteins, with limited success (Yarov-Yarovoy et al., 2006). Additionally, ab initio predictions 
are unsuited for natively unstructured proteins (proteins that do not have a defined, unique 
structure), because they perform their activities as many alternative, rapidly interchanging 
conformations that correspond to multiple energy minima (Radivojac et al., 2007).  

Despite of these disadvantages, ab initio predictions sometimes provide insights about 
protein activity. For example, in the fourth CASP experiment, the ROSETTA method was 
able to predict the structure of a couple target proteins that are structurally related to 
proteins of known 3D structure that were missed by fold recognition methods (Bonneau et 
al., 2001; Baker & Sali, 2001). Interestingly, the activities of the target proteins were similar, 
even thought there was no significant sequence identity between the proteins. A second 
example is the signalling protein Frizzled, whose critical residues for activity (previously 
characterized) were clustered together in the predicted structure in a surface patch likely to 
be involved in key protein-protein interactions (Baker & Sali, 2001). From these examples, it 
can be concluded that ab initio methods are more effective to gain information about the 
activity if they are combined with knowledge-based approaches (carrying on their 
limitations). 

3.4 Concluding remarks about the current methods for protein 3D structure prediction 

The available methodologies for the 3D structure prediction of proteins have provided 

useful insights about the relation between 3D structure and activity, and helped to 

construct the current paradigm. However, further refinement of these methods may assist 
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to fully relate protein 3D structure with activity. In this review we propose that such 

refinement may come from the recognition of the bijective nature of the 3D structure-

activity relationship. For instance, knowledge-based methods imply a surjective 

relationship between activity and 3D structure. Consequently, predicting details on the 

activity of a modelled 3D structure of a protein can be hard, since there are examples of 

folds associated with many activities and vice versa. Furthermore, ab initio methods do not 

consider the structure-activity relationship, therefore the information they provide about 

the activity is commonly inaccurate. Additionally, template-free methods assume that 

proteins fold autonomously into a stable, minimum energy conformation, limiting their 

applicability in proteins that do not have these features because they fold under kinetic 

control.  

In summary, it is necessary to develop methods that take into account the bijective nature of 

the 3D structure-activity relationship, in order to improve the usefulness and reliability 

perhaps, of protein 3D structure prediction methods. In the following section we will 

describe the available methodologies that take into account this bijection. 

4. Emerging methods for protein structure prediction based on the bijective 

nature of protein 3D structure and activity 

The previous section outlined the current status in the protein 3D structure prediction field, 

its strengths and weaknesses with regard to activity inference. It is evident that current 

methodologies still have limitations to exploit the usefulness of the 3D structure-activity 

relationship. Fortunately, new methodologies have been developed that take into account 

the bijective nature between the 3D structure and activity of proteins. This section will 

discuss the principles behind these methods and their capabilities. 

4.1 Relevance of critical residues in the 3D structure-activity relation 

These methods are based on the concept of critical residues, which are defined as those 

residues that upon mutation abolish the activity of a protein. Such definition depends on the 

experimental procedure used to measure the activity of the protein, but generally speaking, 

residues are considered critical if they tolerate few if any mutations (Loeb et al., 1989; 

Rennell et al., 1991; Terwilliger et al., 1994; Huang et al., 1996; Axe et al., 1998). Therefore, an 

experimentally determined critical residue may be either important to maintain the 3D 

structure of a protein or critical for the interaction with another molecule, or both. Thus, 

these residues constitute a key piece of knowledge that can be exploited to relate activity 

and 3D structure. Not surprisingly, methods have been developed to predict critical 

residues from protein sequence and/or 3D structure (Elcock, 2001; del Sol Mesa et al., 2003; 

Glaser et al., 2003; Thibert et al., 2005; Cusack et al., 2007). 

Additionally, critical residues may provide a useful way to quantify structural features of 

proteins and relate them with the activity of a protein. As we mentioned earlier, there are no 

reports of two proteins with identical 3D structures with perfectly different activities and 

vice versa (please note that correctly representing both 3D structure and activity is one of the 

biggest challenges, and therefore, a Cartesian representation of the protein may not be the 

best to distinguish identical 3D structures). Hence, it is expected that proteins with similar, 
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yet strictly different 3D structures, will have different sets of critical residues. If that is the 

case, the set of critical residues for a given protein should reflect its unique 3D structural 

and activity properties. Such assumption provides the framework for methodologies that 

are based in the bijective relation between 3D structure and activity. 

In the next two sections, we will describe the available bijective approaches. To simplify, 
they are classified in two categories: phylogeny and structure-based methods. The 
usefulness of these methodologies to relate 3D structure and activity will also be 
discussed. 

4.2 Phylogeny-based approaches 

The idea behind phylogenetic methods is to exploit the evolutionary information that can be 

extracted from the analysis of the sequences of related proteins. To do so, it is necessary to 

identify a group of similar protein sequences and to construct a multiple sequence 

alignment with them. There are two types of information that can be extracted from the 

alignments: sequence conservation and sequence correlation.  

The first property refers to the frequency of a specific amino acid at a given position in the 
alignment; residues occurring at high frequencies at particular positions are considered 
conserved residues. Sequence conservation is related to the direct evolutionary pressure to 
maintain the physical-chemical characteristics of some positions in order to retain the 
activity and/or 3D structure of a family of homologous proteins. Therefore, highly 
conserved residues are regarded as critical to retain the 3D structure and activity of the 
protein. In the literature, there are many reports of methods to calculate conservation (see 
Valdar et al., 2002 and Sadowski & Jones, 2009 for comprehensive reviews). 

Residue correlation (also known as co-evolution or co-variation) is defined as concerted 
patterns of variation between two or more different positions in a multiple sequence 
alignment of homologous proteins (Altschuh et al., 1987). Such co-variating residues are 
proposed to correspond to compensatory substitutions that maintain the structural stability 
or functional properties of proteins throughout their evolutionary history. It has been 
observed that correlated residues tend to be in physical contact (Altschuh et al., 1988); thus, 
this feature was proposed to be useful in residue contact predictions (Göbel et al., 1994; 
Pazos et al., 1997; Olmea & Valencia, 1997). 

Critical residues predicted with phylogenetic approaches can be exploited to improve 
structural predictions. For example, the method reported by the group of Valencia (Olmea et 

al., 1999) uses sequence conservation and correlation as part of a structure quality evaluator 
for a fold recognition structure predictor. The authors of this work report that the method is 

capable to distinguish correct models from incorrect models generated by the TOPITS 
threading algorithm (Rost, 1995).  However, the accuracy of the algorithm decreases for 

large proteins, thus restricting its applicability. 

Another exciting application of sequence correlation and co-variation is the design of new 
proteins (a field that strongly depends on 3D structure prediction tools).  An illustrative 
example of protein engineering is the use of the Statistical Coupling Analysis method (SCA; 
Lockless & Ranganathan, 1999), which was used to design a novel artificial protein sequence 
with the same 3D structure and activity as natural WW domain proteins (Socolich et al., 
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2005; Russ et al., 2005). In order to design the protein, the method took into account the 
critical residues of the protein as well as their patterns of conservation and correlation 
(Socolich et al., 2005). Furthermore, the methodology has been used recently to design a 
light-modulated chimerical enzyme (Lee et al., 2008). 

Ultimately, conserved residues will only capture the common critical residues for a set of 
homologous proteins, and will most likely miss the critical residues specific for the activity 
and 3D structure of each protein in that set. In that sense, conserved residues may be useful 
to score common structural features of proteins but may not be useful to evaluate the 
different 3D structure and biological activity of each homologous protein. To do so, a new 
method has recently being described that is now reviewed. 

4.3 Methods based on structural information 

A complementary approach to identify critical residues is to consider only 3D structural 

properties of proteins. One of the most recent approaches to study the 3D structure of 

proteins is graph theory (Vendruscolo et al., 2002; Greene & Higman, 2003; Thibert et al., 

2005; Cusack et al., 2007; Montiel Molina et al., 2008), a theoretical approximation that has 

been used to characterize other biological systems, such as metabolism, genetic regulation 

and protein-protein interaction networks (Jeong et al., 2000, 2001; Del Rio et al., 2009). Under 

this view, protein 3D structure is modelled as a graph (network), which is defined by one set 

of nodes that represent the amino acid residues in a protein, and a set of edges that can be 

considered as molecular interactions between any two residues (nodes). The criterion to link 

two residues by an edge is based on maximum distances among the atoms of residues 

(Vendruscolo et al., 2002; Greene & Higman, 2003; Thibert et al., 2005; Cusack et al., 2007; 

Milenković et al., 2009). 

Graph theory provides the mathematical basis to study the topological properties of 

networks derived from the protein structure. One useful concept of this field to characterize 

networks is network centrality, which measures the relative importance of nodes in the 

network. Thus, centrality can be used to predict critical residues (Thibert et al., 2005; Cusack 

et al., 2007) or to study topological features of protein structures (Vendruscolo et al., 2002; 

Greene & Higman, 2003). Some of the most common centralities used to study networks 

derived from protein structures are betweenness and closeness, which relate nodes through 

the shortest paths among all the nodes in the graph (Freeman, 1977). 

Centrality is reliable when it comes to predict critical residues (Chea & Livesay, 2007), but 

how can these be used to predict 3D structural and functional features?  We have recently 

reported a tool named “JAMMING” to facilitate this task. The method predicts critical 

residues using betweenness or closeness centrality (Cusack et al., 2007). We have shown that 

JAMMING may be used to identify protein structures involved in ligand binding by 

screening thousands of conformations generated from protein 3D structures in the unbound 

form; such functional conformers were found by a scoring system that matches critical 

residues with central residues (Montiel Molina et al., 2008). Our results show that critical 

residues for a molecular interaction are preferentially found as central residues of protein 

structures in complex with a ligand. Therefore, the tool helps to relate the activity of the 

protein (binding to a molecule) with its structural properties (the conformers).  
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Fig. 1. Examples of injective and surjective functions 
A) Injective and surjective (bijection). B) Injective and non-surjective. C) Non-injective and 
surjective. D) Non-injective and non-surjective. 

 

Fig. 2. Flowchart of structural prediction methods. The protein sequence is the input of the 
model generator algorithm. As a result, the generator produces multiple models that are 
assessed by the quality evaluator. Finally, the best scoring models are selected, whereas the 
models with bad scores are discarded. 

www.intechopen.com



 
Protein Interactions 

 

362 

Species 
 

PDB 
 

Identity1 
[%] 

RMSD1 
[A] 

Km 
[mM] 

Kcat 
[1/s] 

References2 
 

Homo sapiens 1wyi 100 0.0 0.34 16320 Gracy, 1975 

Oryctolagus cuniculus 1r2t 98 0.4 0.42 8670 
Krietsch, 
1975a 

Gallus gallus 8tim 89 0.8 0.47 4300 
Xiang et al., 
2004 

Saccharomyces 
cerevisiae 

1ypi 53 1.0 1.27 16700 
Krietsch, 
1975b 

Trypanosoma brucei 1tpf 53 1.1 0.19 6000 
Kursula et al., 
2002 

Leishmania mexicana 1amk 50 1.6 0.30 4170 
Kohl et al., 
1994 

Escherichia coli 1tre 46 1.4 1.03 9000 
Alvarez et al., 
1998 

Vibrio marinus 1aw2 42 1.4 1.90 7000 
Alvarez et al., 
1998 

1 Sequence identities and RMSDs were calculated with the program DaliLite (Holm & Park, 2000) 

using 1wyi as the first molecule in all comparisons.  
2 References originally reporting the values for Km and Kcat. 

Table 1. Structural and functional features of triose-phosphate isomerases from different 

species. 

5. Conclusions 

The structure-activity paradigm has travelled a long way since the first efforts to 

characterize the 3D structure and biological activity of proteins were performed back in 

the 1930’s. Traditionally, the relationship between 3D structure and activity has been 

considered as a surjection to assist in the classification of the known proteins. 

Consequently, knowledge-based classification schemes, although useful to give sense to 

an ever-increasing list of known protein sequences, may not provide the basis to 

understand the subtleness of protein activity and structure in nature. In a similar fashion, 

most of the current methods for protein 3D structure prediction are unable to provide 

better insights about the activity of a protein of unknown structure (especially if it does 

not have a close homologue). 

In this review, we propose that the relation between structure and activity may be 

modelled by a bijection. Critical residues provide a way to relate the structure and the 

activity of proteins, especially in the situation where structure and activity are 

represented by a bijection. Current methodologies based on the bijective 3D structure-

activity relationship unnoticeably provided novel tools to explore the subtle determinants 

of protein activity, structure and their interaction. We claim that the incorporation of these 

methods into the traditional tools for protein structure prediction will improve the 

usefulness of the structural predictions to understand the details on the evolution of 

protein activity.  
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