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1. Introduction

Neutron diffraction is a well established tool to investigate the structure of matter in a wide
range of disciplines including Physics, Chemistry, Materials Sciences, Life Sciences, Earth
Sciences and Engineering. One of its most required applications is the refinement of structures
for which a considerable instrumental development has been devoted. In particular, the
improvement of the instrumental resolution has been hitherto one of the main concerns in
the development of the technique. In other words, most of the efforts in the instrumental
development and methods has been devoted to improve the abscissas of the experimental
scale (angle or momentum transfer), while on the other hand, the final results in ordinates
are normally left in arbitrary units, since most of the applications do not require an absolute
normalization.

Nevertheless, there is a growth in the requirements of updated neutron cross section
data driven by the need of improved nuclear data libraries by Nuclear Engineers, that
currently employ cross sections that sometimes are guessed or extrapolated from very old
experiments. Such need could be satisfied by the highly-developed experimental neutron
facilities to provide excellent quality data in absolute scales. However, this capacity remains
under-exploited, as well as the procedures that are necessary to perform an absolute
calibration (in the scale of ordinates), in the sense of transforming the measured number
of counts into a physically meaningful scale, and expressing the final result as a cross
section. This lack is closely related with the underdevelopment of data processing procedures
and methods specific to each experimental configuration in neutron scattering techniques.
As an example, neutron diffraction users at big facilities still employ the simple data
processing correction procedures developed for X-rays techniques (Blech & Averbach, 1965;
Paalman & Pings, 1962) in times when computer resources were limited. However, as shown
by many reference works in the literature (Copley et al., 1986; Sears, 1975), the situation in
the field of neutron scattering is far more complex, and involves the evaluation of multiple
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scattering effects that can be tackled efficiently only by numerical simulations, that nowadays
can be carried out with the currently available computer power.

To illustrate the consequences of this lack of a developed standard procedure to achieve
an absolute normalization, let us consider the long-lasting controversy about the Hydrogen
cross section for epithermal neutrons in electron-Volt spectroscopy (eVS), that began when
a cross section significantly lower than commonly accepted values was reported in the
literature (Chatzidimitriou-Dreismann et al., 1997), and supported by further experimental
results [see e.g. (Abdul-Redah et al., 2005)]. The results stirred many criticisms, both on
the theoretical likelihood of such phenomenon [see e.g. (Colognesi, 2007)], and also on
the general methodology employed in the measurements and data analysis (Blostein et al.,
2001) (Blostein et al., 2005). Different experiments contradicting the appearance of anomalies,
employing electron-Volt spectroscopy and other techniques were also reported (Blostein et al.,
2003; 2009), thus increasing the uncertainty on the matter. As an outcome of the discussion,
the idea arose that the data processing methodology employed was not ready to produce a
cross section in absolute units in eVs experiments. This thought led to the recent formulation
of a whole body of experimental and data processing procedures (Rodríguez Palomino et al.,
2011), and its application resulted in Hydrogen cross sections that are in conformity with
tabulated values (Blostein et al., 2009).

In the specific case of diffraction, the problem of absolute normalization was also addressed
(Rodríguez Palomino et al., 2007) following a similar approach, and the procedures were
applied to a set of standard samples, measured at diffractometer D4 (ILL, Grenoble,
France)(Fischer et al., 2002), and also recently to a set of light and heavy water with the aim
to study the structural characteristics (Dawidowski & Cuello, 2011). The goal of the process
(that will be the subject of the present work) is to provide a modus operandi that starts from
the experimental raw data and ends in the differential scattering cross section. The starting
point of the task consists in the description of the measured magnitudes through analytic
expressions.

Elementary textbooks state the expressions of the measured magnitude in a diffraction
experiment for point-like samples, thus finding a direct relation with the differential cross
section. However, in a real experiment where extended samples are used, the formalism that
describes the intensity of the scattered beam includes the sample geometry (Sears, 1975), and
will be the first point to be treated. The expressions that we will show describe the measured
macroscopic magnitude and its relationship with the sought microscopic differential cross
section, that is not directly accessible to the experiment due to the multiple scattering, beam
attenuation and detector efficiency effects. The evaluation of such effects is made through
numerical simulations that follow the general guidelines stated by Copley (Copley et al.,
1986). In this work we will make a detailed account of the computer code, as well as the
different strategies employed to make use of the experimental data and models of interaction
between the neutrons and the systems to feed the simulation program.

2. Preliminary notions

Elementary reference textbooks introduce the cross sections from a microscopic point of view
(Lovesey, 1986; Squires, 1978), useful to show the link with quantum-mechanic theories.
However, to make a useful comparison with experiments, the correct approach based on
macroscopic magnitudes (that we will follow in this work) was formulated by Sears (Sears,

78 Neutron Diffraction

www.intechopen.com



Data Processing Steps in Neutron Diffraction: From the Raw Data to the Differential Cross Section 3

1975). We will see in this section a detail of such expressions, and their relationship with the
microscopic cross sections, that is generally the sought magnitude.

2.1 Basic concepts

We will begin by considering the typical diffraction setup shown in Fig. 1, where incident
neutrons are monochromatic with a wave vector k0 (energy E0) and the scattered neutrons
have a wavevector k (energy E). We will start from the microscopic double-differential cross

section d2σ
dΩdE defined in introductory textbooks as the fraction of incident neutrons scattered

into the element of solid angle dΩ, with final energies between E and E + dE.

Fig. 1. Diffraction setup, showing the incident and emerging neutrons wavevectors k0 and k

and the scattering angle 2θ

The microscopic integral magnitudes we will use in this work are the differential scattering cross
section (

dσ(E0)

dΩ

)

scatt
=

∫

all final energies

(
d2σ

dΩdE

)

dE, (1)

and the total scattering cross section

σscatt(E0) =
∫

all directions

∫

all final energies

(
d2σ

dΩdE

)

dΩdE. (2)

Normally, there are other possible contributions to the total cross section from different
nuclear processes in the neutron-nucleus interaction. In this work we will consider only
scattering and absorption processes, so the total cross section is

σtot(E0) = σscatt(E0) + σabs(E0). (3)

Both scattering and absorption components are a function of the incident neutron energy E0.
The well-known tabulated free-atom total cross section is the asymptotic value that the total
cross section reaches beyond epithermal energies, as can be seen in the total cross section of
Polyethylene (Fig. 2), extracted from Granada et al. (1987).
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Fig. 2. Total cross section of Polyethylene (from Granada et al. (1987)) (circles). The dotted
line indicates the free atom limit 2σH + σC.

The macroscopic total cross section Σtot(k0), is defined as

Σtot(E0) = nσtot(E0), (4)

where n is the number density of scattering units in the sample. This magnitude describes the
macroscopic aspect of the neutron interactions with the sample. For example, the probability
that a neutron will interact after traversing a path x is

p(E0, x) = Σtot(E0) exp(−Σtot(E0)x). (5)

Very closely related is the fraction of neutrons of a collimated beam that do not interact with
the sample, called transmission factor, that in the case of a plane slab of thickness d is

t(E0) = exp[−Σtot(E0)d]. (6)

2.2 Cross sections for extended samples

Let us treat the case of an extended sample bathed by monochromatic neutrons (flying with
velocity v0), forming a beam of ρ neutrons per unit volume, so the flux is Φ = ρv0 (neutrons
cm−1 sec−1). The distribution function of the incident beam can be represented as

finc(r, k) = ρδ(k − k0) (7)

80 Neutron Diffraction
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and the distribution of neutrons arrived at a position r inside the sample without interaction
is (see Eq. (6))

f0(r, k) = ρδ(k − k0) exp[−Σtot(k0)L(r, k̂0)]. (8)

In this expression L(r, k̂0) is the distance from point r (inside the sample), to the sample
surface in the direction −k̂0.

To describe the distribution of scattered neutrons effectively observed in an experiment, the
double differential-cross section (which is a microscopic concept) must be replaced by the
macroscopic double-differential cross section, defined as the number of neutrons that emerge from
the sample with a momentum between k and k + dk of, per unit incident flux.

d2Σ

dΩdE
=

[

mk2

ρh̄2k0

∫

S(k̂)
dS ê · k̂ f (r, k)

]

. (9)

where m is the neutron mass and the integral is performed on S(k̂, the surface of the sample
that is visible from direction k̂ and ê is its normal unit vector. From this equation, we can
derive that the expression for d2Σ/dΩdE per unit cross sectional area exposed at the incident
beam A(k̂0), can be decomposed in a transmitted beam plus a distribution of scattered
neutrons

1
A(k̂0)

d2Σ

dΩdE
= T (k0) + S(k0, k), (10)

with

T (k0) =
mk0

h̄2 t(k0)δ(k − k0) (11)

and
S(k0, k) =

V

A(k̂0)

nσs

4π

k

k0
s(k0, k). (12)

In Eq. (12) σs is the bound-atom scattering cross section of the sample and V its volume.

The transmission factor, introduced for plane slabs in Eq. (6), for general geometries can be
expressed alternatively either as a volume or a surface integral, as

t(k0) =
1

A(k̂0)

∫

S(k̂)
dS ê · k̂0 exp[−Σtot(k0)L(r, k̂0)]

=1 − Σtot(k0)

A(k̂0)

∫

V
dr exp[−Σtot(k0)L(r, k̂0)].

(13)

The second term in Eq. (10) contains the effective scattering function s(k0, k), that includes
a component due to singly scattered neutrons in the sample s1(k0, k), another due to singly
scattered neutrons in the container sC(k0, k), and a third due to multiply scattered neutrons
sM(k0, k)

s(k0, k) = s1(k0, k) + sM(k0, k) + sC(k0, k). (14)

Eq. (10) is the analytical expression of the number of neutrons that interact with a sample in
a scattering experiment, and is the basis on which we will develop the expressions that must
be compared with experiments.

81Data Processing Steps in Neutron Diffraction:
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3. Numerical simulations basic theory

3.1 General expressions

The task of developing analytical expressions for s(k0, k) is involved, and does not lead
to results of practical application. Far more profitable are the numerical simulations, since
they allow a direct comparison with the experiment. Therefore, rather than developing
the expressions for s(k0, k) (than can be found in Sears (1975)), we will will examine the
expressions that link the magnitudes calculated in simulations with the experimental count
rates.

Neutrons detected in a scattering experiment generally undergo a variable number of
collisions until they emerge from the sample. We will develop the expressions for the
probabilities of detection of such neutrons after n collisions. Since the experiment does not
discriminate the number of collisions of the detected neutrons, our task will be to assess the
contributions of multiply scattered neutrons, to subtract them to the measured spectra, in
order to keep the singly scattered component, that is directly related with the microscopic
cross sections.

The basic interactions that will be described in this work are scattering and absorption. In the
scattering interaction, the probability that a neutron changes from wavevector k0 to k is

P(k0, k) =
1

σscatt(E0)

d2σ

dΩdE
. (15)

The starting point of our numerical calculations is the probability that an incident neutron
arrives to a point r and from that position is scattered with a final wave vector k, based on
Eqs. (5) and (15)

z1(r, k0, k) =
Σscatt(k0)

A(k̂0)
exp[−Σtot(k0)L(r,−k̂0)]

︸ ︷︷ ︸

Prob. per unit area that the neutron
arrives at r and is scattered

P(k0, k)
︸ ︷︷ ︸

Prob. scatt.
distribution

. (16)

Integrating (16) over all the sample volume, we get the distribution of neutrons after the first
scattering. In the integral we employ the result of Eq. (13), thus obtaining

z1(k0, k) =
Σscatt(k0)

Σtot(k0)
(1 − t(E0))P(k0, k). (17)

We observe that z1(k0, k) is directly composed by a factor related with macroscopic properties,
times another related with the sought microscopic scattering cross section. This magnitude,
however, cannot be directly observed in the experiment since in general singly-scattered
neutrons will undergo more collisions. So the distribution of neutrons detected after the first
scattering, will be one of the components of the total detected spectrum, and its expression is
based on Eq. (17), times the attenuation undergone by the neutron beam in the outgoing path
in the sample towards the detector, times the probability that the neutron is detected (detector
efficiency). The contribution from point r is

z̃1(r, k0, k) = z1(r, k0, k) e−Σtot(k)L(r,k̂)
︸ ︷︷ ︸

Attenuation
undergone by n in
the outgoing path

ε(k)
︸︷︷︸

Detector
efficiency

, (18)
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and the total contribution of the sample is the integral over all the volume

z̃1(k0, k) =
1

A(k̂0)
Σscatt(k0)P(k0, k)ε(k)

∫

V
dr e−Σtot(k0)L(r,−k̂0)e−Σtot(k)L(r,k̂)

︸ ︷︷ ︸

VH1(k0, k)

, (19)

where H1(k0, k) is the primary attenuation factor defined by Sears (1975).

This magnitude is directly related with s1(k0, k) of Eq. (14) through

z̃1(k0, k) =
Nσbound

4πA(k̂0)

k

k0
ε(k)s1(k0, k), (20)

The expression of the distribution of neutrons detected after the n-th scattering, z̃n(k0, k) is
mathematically involved and will be omitted. Its calculation will be done with numerical
simulations.

3.2 Application for diffraction experiments

In the case of diffraction experiments, the observed angular distributions result from the
integrals in final energies of the former expressions. From Eq. (12)

1
A(k̂0)

(
dΣ

dΩ

)

scatt
=

V

A(k̂0)

nσs

4π

∫

dE
k

k0
s(k0, k). (21)

The equivalent angular magnitudes (17) and (19) are

z1(k0, θ) =
Σscatt(k0)

Σtot(k0)
(1 − t(E0))

1
σscatt(E0)

dσ

dΩ
(E0, θ) (22)

z̃1(k0, θ) =
V

A(k̂0)
Σscatt(k0)

∫

dE
1

σscatt(E0)
σ(E0, E, θ) ε(E)H1(k0, k), (23)

where Eq. (23) is the single scattering component of Eq. (21).

4. Experimental procedure

The neutron diffraction experimental procedure was treated in detail by Cuello (2008). Since
we will refer in this work to experiments performed at instrument D4 (Fischer et al. (2002)) of
Institut Laue Langevin, we will draw upon its customary modus operandi to describe the steps
of a typical diffraction experiment in a steady source.

The diffractometer D4 is essentially a two-axis diffractometer as those commonly used in
powder diffraction. However two main characteristics distinguish this instrument from other
powder diffractometers. First, the use of hot neutrons of energy of some hundreds of meV,
which allows to reach higher momentum transfer than in a conventional thermal neutron
diffractometer. Second, the collimation and evacuated tubes all along the flight path from the
monochromator up to the detectors, which allows to reduce the background to extremely low
level.

The epithermal neutron spectrum produced in the fission reactions is thermalised by a piece
of graphite near the reactor core. This hot source, in thermal equilibrium at 2400 K, serves

83Data Processing Steps in Neutron Diffraction:
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to shift the Maxwellian distribution of velocities to higher energies. The extraction tube is at
no more that 1 mm of the hot source to avoid the thermalisation in the heavy water. At the
end of this extraction tube is located a double-focusing copper monochromator that allows
to choose the incident energy or wavelength; the usual wavelengths at D4 are 0.7 and 0.5 Å.
This monochromatic beam passes first through a transmission monitor (an almost transparent
detector) and then is collimated by means of a series of diaphragms and silts, defining the
size of the beam at the sample position. Between the monochromator and the monitor there is
an evacuated tube, and the sample is located in the center of a cylindrical evacuated bell-jar.
Cylindrical sample shapes are preferred, in accordance with the detector array geometry. In
this case the incident beam is perpendicular to the cylinder axis. When dealing with non
self-supporting samples, a vanadium cell is used as container.

The detection ensemble is composed of 9 banks of 64 3He detection cells. In front of each
bank an evacuated collimation tube reduces the background produced by the bell-jar wall.
The flat detection surfaces are arranged in an arc of circumference in whose center the sample
is placed. The detector ensemble is moved around the sample in order to register a complete
diffractogram, covering a scattering angle ranging 1 to 140◦ .

Besides the measurement of the sample itself, a series of ancillary measurements must
be performed. The most important one is the empty (vanadium) container. The empty
instrument, i.e., the empty bell-jar for experiments at ambient conditions or the empty sample
environment for other experiments, is the background contribution. Finally, the customary
procedure to normalise the measured intensity to an absolute scale, in barns per steradian, is
carried out through the measurement of a vanadium solid sample. This measurement is also
used to take into account the instrumental resolution.

There are two kinds of corrections to be performed on the experimental data: one set coming
from the experimental conditions and the other one from the theoretical assumptions made to
derive the structure factors. There are more or less standard programs available to perform
these corrections like, the code CORRECT (Howe et al. (1996)).

This program performs the main experimental corrections, such as the container (empty
cell) and background subtraction (empty instrument). The knowledge of dimensions
and materials of each component in the beam allows the calculation of the absorption
coefficients and the extraction of the sample diffractogram. In the case of cylindrical
geometry, these absorption coefficients are calculated using the Paalman and Pings corrections
Paalman & Pings (1962), and the multiple scattering, is evaluated using the Blech and
Averbach correction Blech & Averbach (1965), is subtracted from the experimental data.

Another instrumental parameter to take into account is the detector efficiency as a function of
the neutron energy, that depends on the geometry and the filling gas pressure of the detectors.
In the case of D4, it is well described by (Fischer et al. (2002))

ε(E) = 1 − exp
(

− 0.9599√
E

)

(24)

The last experimental correction to perform is the correction for the instrumental resolution.
Knowing the instrumental resolution, one can attempt to extract the structure factor by
performing a deconvolution process, but this is a difficult task. Instead, one can measure
a standard vanadium sample (an almost incoherent scatterer) which should give a flat
diffractogram. In fact this diffractogram is not flat because (mainly) the resolution of the
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instrument and the resolution-corrected data are obtained by taking the ratio of the sample
and vanadium diffractograms. In doing this, and because the cross section of vanadium is
well known, the data are also normalized to an absolute scale.

5. Numerical procedure

The probability functions shown in Section 3.1 are the expressions of the distributions
followed by numerical the simulations of neutron scattering experiments we will refer to.
In this section we will describe the numerical procedure employed in the simulation and the
data correction analysis.

The scheme we will develop involves

• A numeric simulation program
• An iterative correction scheme
• A method to perform absolute normalizations from experimental data

We will firstly refer to the numeric simulations developed to describe diffraction experiments.

5.1 Numeric simulations

The goal of the Monte Carlo simulations is to describe the real experiment as closely as
possible, to provide a means to assess the effects of

• multiple scattering
• beam attenuation
• detector efficiency
• scattering from the container

The simulations we will describe involve the incident beam and the sample-container set.
We do not simulate the sample environment (collimators, bell-jar container, etc.). This
background contribution is assumed to be heuristically subtracted from the experimental
data. A closer simulation of the sample environment falls in the domain of instrument design,
and is out of the scope of the present work.

The Monte Carlo program, is based on the method proposed by Bischoff (Bischoff (1969))
and Copley (Copley et al. (1986)). In this method, discrete neutron histories are tracked
and averaged in a random walk directed by interaction probabilities obtained either by
measurements or by models. In this section we will describe how neutron histories are
generated, and then how they are scored and recorded, following closely the formalism
developed in Sect. 3.1.

5.1.1 Neutron histories

A history consists in a trajectory of the neutron inside the sample composed by a series of
scattering steps. Neutron histories are originated in a random point of the sample surface
that faces the incoming beam, and consists of a series of tracks governed by the path-length
estimator followed by collisions governed by a suitable angle and energy-transfer probability.
A variance reduction technique is employed (following Bischoff (1969); Spanier & Gelbard
(1969)) to make more efficient the process. To this end the probabilities are altered, so
that the neutron never leaves the sample and never is absorbed. To compensate the biased

85Data Processing Steps in Neutron Diffraction:
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probabilities a weight is assigned to the event. Thus a neutron history has an initial weight 1,
that decreases as the neutron progresses until it drops below a significant value. In such case
the history is finished.

5.1.1.1 Path lengths

The step lengths of the trajectories are governed by the macroscopic cross sections of the
traversed materials. The distance traveled by the neutron between two scattering steps is
randomly drawn from the distribution

p(E, x) =
Σtot(E, x)t(E, x)

1 − t(E, d)
, (25)

that is the track-length distribution (5) altered , in order that the neutron never gets out of the
sample. In Eq. (25) Σtot(E, x) is the macroscopic total cross section of the sample-container
set, a distance x away from the neutron previous scattering position, taken in the current
flight direction, t(E, x) is the fraction of transmitted neutrons in that direction after traversing
a distance x, and d is the distance to the sample surface in that direction.

As mentioned above, the neutron is also forced to scatter (since absorption is forbidden in
this altered scheme). To compensate the biases in the probability, a weight is assigned to
each neutron that decreases according to the transmitted fraction in the traversed path, being
1 the initial value. Given the weight at step i − 1 the weight at step i is calculated as in
Spanier & Gelbard (1969)

wi = wi−1(1 − t(E, d))
Σscatt(E, 0)
Σtot(E, 0)

, (26)

where the ratio Σscatt(E, 0)/Σtot(E, 0) of the macroscopic scattering and total cross sections, at
position i − 1 indicates the probability that the neutron will not be absorbed, and 1 − t(E, d)
the probability that it will interact in the considered path. A history is finished when the
weight drops under a predetermined cut-off value, so the number of scattering events is not
predetermined.

To evaluate (25) and (26) the program requires as input the tabulated values of the macroscopic
total cross sections of the sample and container materials, as well as their absorption
probabilities as a function of energy. In Fig. 3 we show the input values employed for the
case of a D2O sample, with a vanadium cell as container. We observe the macroscopic cross
section of D2O (taken from Kropff et al. (1984)) and V (from Schmunk et al. (1960)), and the
typical “1/v” absorption cross sections taken from Mughabghab et al. (1984).

5.1.1.2 Direction and energy after a collision

After a collision, a new energy and flight direction must be assigned for the next step in the
neutron history. If Ei is the energy before the collision, the final energy Ei+1 and the collision
angle θ, must be drawn from the two-variable probability density (15), that can be rewritten
as

P(Ei, Ei+1, θ) =
1

σscatt(Ei)
σ(Ei, Ei+1, Ω). (27)
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Fig. 3. Input parameters employed in the simulation of a D2O sample, in a vanadium
container. In the main frame, the macroscopic total cross sections of D2O (after Kropff et al.
(1984)) and the vanadium cross section (after Schmunk et al. (1960)). Inset: The microscopic
total and absorption cross sections (Mughabghab et al. (1984)).

The process must be done in two steps (Spanier & Gelbard (1969)). First we define the
marginal density as the angular integral

P1(Ei, E) =
1

σscatt(Ei)

∫

σ(Ei, E, Ω)dΩ (28)

that for the special case of systems with azimuthal symmetry (such as liquids) can be written
as

P1(Ei, E) =
1

σscatt(Ei)

∫ 2π

0
2π sin θσ(Ei, E, θ)dθ. (29)

The integral in angles is known as the energy-transfer kernel σ(Ei, E) (Beckurts & Wirtz (1964)),
so

P1(Ei, E) =
1

σscatt(Ei)
σ(Ei, E). (30)

The energy Ei+1 is drawn solving the equation

ρ1 =
∫ Ei+1

−∞
P1(Ei, E)dE, (31)

where ρ1 is a random number uniformly distributed between 0 and 1. In the second step,
the angle is defined with the probability (27), with Ei and Ei+1 as fixed values and a second
random number

ρ2 =
1

σscatt(Ei)

∫ θ1

0
2π sin θ σ(Ei, Ei+1, θ)dθ. (32)
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Since diffraction experiments do not provide a measurement of energy transfers we must
rely on models to evaluate P(Ei, Ei+1, θ) for the different materials composing the sample.
For molecular systems the Synthetic Model formulated by Granada (Granada (1985)) proved
to be an adequate description for the energy transfer kernels and total cross sections. The
model requires a minimum input dataset to describe the molecular dynamics, and is fast
and amenable to be included in a calculation code. Since the model describes only the
incoherent cross section, it is not adequate to describe the coherence manifested in the angular
distributions, but is still a good description of the energy transfers, as tested in the calculation
of spectra from moderators. Thus, the energies drawn through Eq. (31) can be computed
with this model. In practice, the lower and upper integration limits are placed at finite values,
beyond which the contribution to the integral is negligible. In Fig. 4 we show the energy
transfer kernel (multiplied by E, for practical purposes) for D2O from the Synthetic model.
In yellow dashed curves we show the integration limits as a function of the incident energy
employed in the calculations. The curves are calculated previously and used also as input
for the simulation program, together with the input parameters of the Synthetic Model. A
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Fig. 4. Energy-transfer kernel Eσ(Ei, E) for D2O calculated with Granada’s Synthetic Model.
Yellow dashed curves show the lower and upper integration limits employed in Eq. (31). The
colored scale represents the intensity in barns.

basic input data table of the Synthetic Model for D2O is shown in Table 1. The data include
the energies of the oscillators h̄ωi and their widths h̄σi describing the molecular vibrational
modes, the vibrational masses, the bound and absorption cross sections of the atoms, their
masses, and the chemical composition of the molecule.

To draw angles from Eq. (32) we can follow two alternative procedures. The first is to employ
also the Synthetic Model, that describes only incoherent effects as mentioned above, so it will
have a narrow range of applicability, as was described by Rodríguez Palomino et al. (2007).
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atom h̄ω1 h̄ω2 h̄ω3 h̄ω4 M1 M2 M3 M4
D 14 50 150 306 40 5.2 12.1 5.87
O 40 214 290 169

atom h̄σ1 h̄σ2 h̄σ3 h̄σ4 σbound σabs M atom Numb.
D 1 21 18 19 7.63 8.2×10−5 2 2
O 4.234 3.0×10−5 16 1

Table 1. Values of the parameters of the Synthetic Model for D2O used in the calculations
(Granada (1985)). Energies (h̄ωi and h̄σi) are given in meV, masses (Mi,M atom) in neutron
mass units and cross sections (σbound and σabs) in barns. “Numb.” indicates the number of
atoms per molecule.

The second alternative is to employ the angular distributions determined by the experimental
data, as will be described in this work.

The experimental data E (0)(θ) are usually tabulated in the elastic-Q scale,

Qel = 2k0 sin(θ/2), (33)

where θ is the angle between the incident beam and the sample-detector path. However a
Qel-bin collects also all the inelastic contributions, from different initial and final energies. A
practical approach in the application of Eq. (32), is to replace σ(Ei, Ei+1, θ) by a function based
on the experimental data f (θ)

f (θ) = N E (0)(Qi(θ)), (34)

where
Qi(θ) = 2ki sin(θ/2), (35)

and N is a normalization constant. This approach involves the idea that the angular
distribution for a specific inelastic interaction is the same as the total measured distribution
for elastic and inelastic processes. This question is further discussed in Sect. 7. In Fig. 5 we
show the experimental data from a diffraction experiment on D2O at D4. The raw data and
and background measured with the empty bell-jar commented in Sect. 4 are shown, together
with the data after background subtraction, in Qel scale. The main experimental parameters
are summarized in table 2.

Parameter Value
Incident energy 324.3 meV
Beam height 5.0 cm
Beam width 0.6 cm
Cell external diameter 0.6 cm
Cell internal diameter 0.58 cm

Table 2. Experimental parameters related to the beam and sample size of the diffraction
experiment in D2O taken as example.

The justification to employ this hybrid model is that diffraction data provide an excellent
approximation to the real angular distributions, while the Synthetic Model proved to be an
adequate description for the energy transfer kernels for a wide variety of samples. Even in
the case of coherent scatterers, the model was able to reproduce moderator spectra and the
inelastic pedestal in diffraction experiments Granada (1985).
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Fig. 5. Experimental data from a neutron diffraction experiment on D2O in a vanadium
container. Inset: Raw data and background measured with the empty bell-jar. Main frame:
Experimental data after background subtraction, in Qel scale.

Finally, if the scattering process takes place in the container, a gas model is assumed. The
assumption is a good approach, since a heavy gas describes mostly elastic processes, that is a
good description of the actual interactions taking place.

5.1.2 Scoring

At each step, the contribution of the current history to the final spectrum is scored for the
set of detectors that compose the bank. For a detector placed at an angle θ with respect to
the incident beam (taken as the z axis), with a direction characterized by the unit vector d̂ =
(0, cos θ, sin θ), and if the neutron is flying inside the sample in the direction k̂ = (kx , ky, kz),
the scattering angle φ of the neutron to the detector position is calculated trough

cos φ = ky cos θ + kz sin θ (36)

The scored magnitudes are summarized in table 3

Estimator Description
z1(k0, θ) Singly scattered neutrons
z̃1(k0, θ) Detected singly scattered neutrons
z̃C(k0, θ) Detected singly scattered neutrons from cell
z̃M(k0, θ) Detected multiply scattered neutrons

Table 3. Estimators calculated in the numerical simulations
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The contribution to the distribution of neutrons after the first scattering (Eq. (17)), can be obtained
by scoring the estimator composed by the weight w1 (Eq.(26))

z1(r1, k0, θ) = w1E (0)(Q), (37)

where the normalized experimental angular distribution is employed as angular probability
expressed in the elastic-Q scale. This scale has to be recalculated at every new neutron energy
and renormalized in the accessible Q-range. It can be shown that the average over a large
number of histories of (37) leads to the desired result (22). Similarly, the distribution of detected
neutrons after the i-th scattering results from the average of the estimator

z̃i(ri, ki−1, θ) = wiE (0)(Q)t(Ei−1, ri,−k̂)ε(E), (38)

where i is the step of the history, wi is the weight of the neutron, and t(Ei, ri,−k̂) is the
transmission coefficient from the point ri inside the sample to the sample surface in the
direction k̂ to the detector position. The average of (38) over a large number of histories
converges to (23).

As we will show in the next section the experimental E (0)(Q) is corrected in successive runs,
resulting the distribution E (j−1)(Q) that is employed in Eqs. (37) and (38) as the experimental
distributions corrected in the preceding run.

The Monte Carlo process also records the sum of multiple scattering contributions occurring
either in the sample or the container

z̃M(ri, k0, θ) = ∑
i=2

z̃i(ri, k0, θ) (39)

and the contribution of single-scattering events in the container z̃C(r1, k0, θ). The average
after a large number of histories of these magnitudes are z̃M(k0, θ) and z̃C(k0, θ), i.e.
the contribution of the multiple-scattered and container-scattered neutrons to the detected
spectrum.

5.2 Iterative method

The magnitudes z̃1(k0, θ) and z1(k0, θ) defined in Eqs. (22) and (23) respectively can be
determined with the Monte Carlo procedure, as well as z̃M(k0, θ) and z̃C(k0, θ). After the
j-th Monte Carlo run is completed we can define the multiple scattering factor

f
(j)
MS(k0, θ) =

z̃
(j)
1 (k0, θ)

z̃
(j)
1 (k0, θ) + z̃

(j)
C (k0, θ) + z̃

(j)
M (k0, θ)

, (40)

and the ratio of detected singly-scattered neutrons to the total singly-scattered neutrons,
which we will call generalized attenuation factor

A(j)(k0, θ) =
z̃
(j)
1 (k0, θ)

z
(j)
1 (k0, θ)

=
V

A(k̂0)

Σtot(k0)

(1 − t(E0))

∫

dE
σ(E0, E, θ)
dσ

dΩ
(E0, θ)

ε(E)H1(k0, k). (41)
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It is illustrative to point out that in the case of purely elastic scattering this magnitude is simply
related with the first order attenuation factor defined in Sect. 3.1 as

Aelast =
V

A(k̂0)

Σtot(k0)

(1 − t(E0))
ε(E0)H1(k0, k0). (42)

The iterative correction process consists in applying to the experimental angular distribution
E (0)(Q), the correction factors defined in Eqs. (40) and (41) after a Monte Carlo run. The
angular distribution thus corrected serves as input for the next run. Thus, in the first run, the
raw experimental angular distribution (background subtracted) E (0) is employed as input,
and in the run j + 1, we employ the distribution originated in run j as

E (j+1)(Q) =
f
(j)
MS(k0, θ) E (0)(Q)

A(j)(k0, θ)
. (43)

The process finishes when no appreciable changes in the angular distribution are observed.

5.3 Summary of input data

Table 4 summarizes the input data required to perform a simulation of a diffraction
experiment, with references to the specific example presented in this work. This set of data
constitutes the minimum knowledge that must be gathered to perform the experimental
program proposed in this work.

Data Reference
Measured angular distribution, Background
subtracted

Figure 5

Total cross section of the sample and the
container

Figure 3

Absorption cross section of the sample and the
container

Figure 3

Detector bank efficiency as a function of energy Eq. (24)
Input parameters for the model that describes
inelastic interactions

Table 1, Figure 4

Geometry parameters for the proposed
experimental setup and sample environment

Table 2

Table 4. Summary of input data required in the numeric simulation of diffraction
experiments. The reference indicates the specific data presented in this work.

6. Examples and applications

In this section we will show selected results of the collected experience in the application of
this method (Dawidowski & Cuello (2011); Rodríguez Palomino et al. (2007)).

We begin showing diffraction experiments carried out on a series of D2O and H2O mixtures
at room temperature, at the diffractometer D4 already mentioned in Sect. 4 (Institute Laue
Langevin). We will mainly concentrate on the results for pure H2O and D2O. The incident
neutron beam wavelength was λ0 = 0.5 Å (energy 0.324 eV). The sample holder was a
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Fig. 6. Total scattering distribution calculated in successive iterations, compared with the
experimental data, for D2O and H2O.

thin-walled cylindric vanadium can, 6 mm inner diameter and 60 mm height, situated at the
centre of an evacuated bell jar.

To illustrate the iterative process we compare results from pure D2O and H2O in Figs. 6 and
7. Fig. 6 shows the total scattering calculated in 8 iterations. In H2O where the level of
multiple scattering is higher, the total scattering calculated in the first two iterations differ
substantially from the original experimental data. The reason is that the experimental data
firstly employed as the input for the angular distribution, also includes the components of
multiple scattering and the attenuation effects that have to be corrected. As the iterative
process progresses, the corrected experimental data approach closer to the distribution of
singly scattered neutrons. We observe that the convergence is achieved starting from iteration
4 in H2O and from iteration 2 in D2O.

The effect of the iterative process is also illustrated in Fig. 7, where we show the results
on both samples in the first and eighth iterations. In the Figure, we show the distribution
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Fig. 7. Calculated components of a diffractogram compared with the experimental data for
D2O and H2O. Also shown the distribution of singly scattered neutrons z1(k0, θ) (orange
line).

of singly scattered detected neutrons z1(k0, θ), and the contributions from the cell zc(k0, θ)
and multiple scattering zM(k0, θ). Also shown in the same figure are the distributions of
singly scattered neutrons z1(k0, θ), that corresponds also to the corrected experimental data
in the current step of iteration. As the total scattering resulting from the calculation process
converges to the experimental data, the rest of the components also converge to stable values.

In Fig. 8, we show the attenuation (A(8)(k0, θ)) and multiple scattering ( f
(8)
MS(k0, θ)) factors

after the convergence of the process.

The conclusion of the correction process described in this work is portrayed in Fig. 9, where
we show the experimental data and their corresponding corrected data.

6.1 Absolute normalization

The procedure shown in the previous sections achieves the goal to correct the experimental
data for attenuation, detector efficiency and multiple scattering effects. The corrected
diffractogram is thus proportional to the desired angular distribution of singly scattered neutrons
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developed in Sect. 3.1. As we showed, Equation (22) is the analytic expression of this
magnitude that is directly related with dσ/dΩ, the sought result in diffraction experiments.
Then,

Z
exp
1 (k0, θ) = Kz1(k0, θ). (44)

The constant K encompasses experimental magnitudes that are independent of the sample,
such as the intensity of the incident flux, the efficiency of the detector system, and the monitor
normalization.
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scattering power of the samples as a function of hydrogen concentration. Right inset: the
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The value of K is obtained by integration in angles or its equivalent in Q in Eqs. (22) and (44)

K =
Σtot(k0)

Σscatt(k0)

1
1 − t(E0)

∫ 2π

0
Z

exp
1 (k0, θ)2π sin θdθ

=
Σtot(k0)

Σscatt(k0)

1
1 − t(E0)

∫ 2k0

0
Z

exp
1 (k0, Q)

2π

k2
0

QdQ.

(45)

To perform the integral, the data must be extrapolated up to θ = 1800.

In Fig. 10 we show the values of K obtained for the the different D2O-H2O mixtures as
a function of the scattering power of the samples. Also shown is K calculated from the
diffractogram of a vanadium rod 6 mm diameter, 6 cm height (typically employed as calibrator
sample), subjected to the same corrections. We observe a variation about 5% around the mean
value. The reason for it will be analyzed in the next section.

The result of the calibration process is shown in Fig. 11, where the differential cross sections
of D2O and H2O are shown expressed in barns per steradian. The data are thus properly
normalized, and their integral in Q is the total cross sections an the incident neutron energy
(324 meV).
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7. Discussion

It is worth to comment about the coefficient K, the constant that links the scattering
power of the samples with the number of registered counts (Eq. (44)). If the correction
procedure is accurate in its different aspects, this coefficient should be an instrumental
constant independent of the sample. The observed decreasing trend with the higher
Hydrogen-containing samples, has been already noticed in Ref. Rodríguez Palomino et al.
(2007). The causes there analyzed were possible systematic errors in the description of the
detector bank efficiency, and the presence of a sample-dependent background, that increases
with the higher Hydrogen-containing samples. Regarding the detector efficiency, it was
exhaustively checked during the process of calibration of D4C Fischer et al. (2002). However,
the sample-dependent background is a subject that remains to be treated, both from the
numerical and the experimental points of view, and is not only a problem in diffraction
experiments but a general issue in neutron scattering experiments.

It is interesting also to explore the limits of the present prescription by comparing the corrected
data of D2O from samples of different sizes, shown in Fig. 12. There is a general good
agreement, except for the largest discrepancies shown at lower Q values, where the relative
importance of the multiple scattering component is more significant. Improvements on the
model should be explored regarding the angular distributions we employed, that were based
on the experimental data. The present model involves the assumption that the angular
distribution for inelastic processes is the same as for elastic processes. A more accurate
procedure would involve a detailed knowledge of the double differential cross section of the
studied material, that is normally out of the possibilities of the experimenter that performs a
diffraction experiment. The present prescription is intended to keep as reasonable as possible
the number of required parameters that are external to the experiment itself. A detailed
assessment of this approach with a combination of diffraction and inelastic experiments,
remains yet to be done, and should be left for special cases where the inelasticity plays a
primary role. The convergence of the iterative process proves the self-consistency of the
method. However we must be cautious, because the accuracy of its results will still depend
on the goodness of the model employed to describe the system.

8. Conclusions

In this paper we showed a procedure to obtain the link between the arbitrary experimental
scale in neutron diffraction experiments (number of recorded counts per monitor counts) with
the corresponding cross sections that collects updated knowledge about simulations and cross
sections, to describe the processes as realistically as possible. The process involves multiple
scattering, attenuation and detector efficiency corrections, that are calculated by a Monte
Carlo method. We also developed the mathematical expressions of the magnitudes calculated
by Monte Carlo and their experimental counterparts. Those expressions link the measured
macroscopic magnitudes with the sought microscopic one.

It is also important to stress that the present prescription is a step ahead over the
Paalman-Pings and Blech-Averbach corrections customarily employed, that assume a model
of elastic and isotropic scattering. The shortcomings of those simplified approaches compared
with the present prescription was analyzed in Rodríguez Palomino et al. (2007), where
differences up to 20% were found in hydrogenated samples in which the elastic isotropic
model is completely inaccurate.
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An important issue, yet to be tackled, is the role of vanadium as a normalizer. The usual
measurement of a vanadium sample in D4 does not yield, in general, angular distributions
according to theoretical differential cross sections (Cuello & Granada (1997)), because of the
instrumental resolution effects. A complete simulation of the instruments with the available
simulation software (e.g. McStas), together with the sample simulation must be the next step
to solve the issue. The approach we employed in our normalization procedure based on an
integral of the diffractograms, avoids the resolution problems in vanadium normalization, but
is still a pending issue, regarding the general diffraction measurements.

As a future perspective, the computer code shown in this work will be developed in a
user-friendly format, to allow general users to apply it for different systems in diffraction
experiments.
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