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1. Introduction 

In the equatorial stratosphere, the zonal wind direction changes from westward to eastward 

and vice versa at intervals of from less than two to about three years and centered at about 

28 months (Reed et al., 1961; Veryard & Ebdon, 1961). This phenomenon is called the quasi-

biennial oscillation (QBO) from the length of its period (Angell & Korshover, 1964). The 

QBO initiates in the upper stratosphere, then descends gradually at a rate of about 1 km per 

month with an amplitude of about 20 ms-1, and diminishes near the tropopause (~16 km). 

The QBO structure for zonal wind and temperature is highly symmetric in longitude and 

latitude with a half-width of about 12° latitude, and the QBO dominates the annual and 

semiannual cycles in the equatorial stratosphere (e.g., Baldwin et al., 2001; Pascoe et al., 

2005). The QBO can also be seen in changes in the abundances of ozone (e.g., Angell & 

Korshover, 1964; Randel & Wu, 1996) and other trace gases (e.g., Luo et al., 1997; Dunkerton, 

2001) because their transport and chemistry are strongly dependent on the wind and 

temperature fields, respectively.  

The QBO plays a very important role in the stratosphere not only because the QBO is the 

largest variation in the equatorial stratosphere but also because its effects significantly 

extend to the northern extratropical stratosphere (e.g. Holton & Tan, 1980, 1982), with the 

result that the stratospheric polar vortex tends to be weaker (stronger) during the QBO 

easterly (westerly) phase in the lower stratosphere. In addition, the QBO effect can also be 

seen in the extratropical troposphere at or near the surface not only in the Northern 

Hemisphere (NH) (e.g., Coughlin & Tung, 2001; Marshall & Scaife, 2009) but also in the 

Southern Hemisphere (SH) (Kuroda & Yamazaki, 2010), indicating that it has dynamical 

impacts on the tropospheric circulation even though the physical mechanism is still 

unknown.  

The QBO effect on the polar vortex, which has been confirmed by many statistical analyses, 
is referred to as the Holton-Tan relation (e.g., Labitzke, 1982; Naito & Hirota, 1997; Lu et al., 
2008). The Holton-Tan relation is ascribed to modulation by the QBO of the strength of the 
effective waveguide for the mid-latitude planetary waves propagating through the winter 
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stratosphere (e.g., Holton & Tan, 1980, 1982). Although the Holton-Tan relation has been 
reproduced by general circulation models (GCM) (e.g., Niwano & Takahashi, 1998; 
Hamilton 1998, Anstey et al., 2010) and chemistry-climate models (CCM) (Naoe & Shibata, 
2010), the details of its mechanism are not yet well understood because the Eliassen-Palm 
(EP) flux diagnostics do not show a more poleward propagation in the mid-latitude 
stratosphere during the easterly QBO phase. Rather, planetary waves propagate more 
equatorward as well as more upward during the easterly QBO phase in both 25-year (1980-
2004) data of the reanalysis and a CCM ensemble simulation (Naoe & Shibata, 2010) under 
the REF-1 scenario of CCM validation phase 1 (CCMVal-1) activity for stratospheric 
processes and their role in climate (SPARC) (Eyring et al., 2005). Furthermore, the polar 
vortex intensity depends not only on the QBO but also on the 11-year solar cycle (e.g., 
Labitzke & van Loon, 1999); as a result, the Holton-Tan relation varies irregularly or non-
stationarily with the solar activity (e.g., Gray et al., 2001; Labitzke, et al., 2006; Lu et al., 
2009), making the circumstances of the Holton-Tan relation more complicated than what 
Holton & Tan (1980, 1982) first suggested. 

The mechanism of the QBO is generally explained with a wave-mean flow interaction, 
wherein gravity waves and/or equatorial waves excited in the troposphere deposit their 
westward or eastward momentum, depending on the mean flow direction during their 
vertical propagation in the stratosphere, as has been demonstrated with numerical models 
(e.g., Lindzen & Holton 1968; Plumb 1977). This mechanism, which has also been 
reproduced in a laboratory experiment of Plumb & McEwan (1978), is one reason why the 
oscillation does not have a narrow annual or semiannual period but a peculiar, broad 28-
month period. The QBO is hence strongly dependent on the wave source and the 
propagation conditions, that is, the wave generation in the troposphere and the background 
wind field in the troposphere and stratosphere.  

Under the changing climate resulting from increases in greenhouse gases (GHG), the 
stratosphere is projected to continue to cool because of strong CO2 longwave emission, in a 
sharp contrast to the tropospheric warming caused by the sea surface temperature (SST) rise 
driven by the enhancement of downward longwave radiation by CO2 and H2O. This raises 
the question as to how the QBO might behave in the future under global warming caused by 
increased GHGs. To date, two equilibrium GCM simulations under doubled CO2 levels have 
projected the future QBO. Giorgetta & Doege (2005) investigated the effect of variations in 
the source strength of parameterized gravity wave forcing (GWF) with a middle atmosphere 
GCM (Roeckner et al., 2003) at the T42L90 resolution and showed that the QBO period is 
shortened when the source strength of GWF increases. The future QBO periods are 26, 22, 
and 17 months for a 0%, 10%, and 20% increase in source strength, respectively, against a 29-
month period under the current CO2 conditions. Kawatani et al. (2011) carried out a similar 
experiment with a GCM (Hasumi & Emori, 2004) at the T106L72 resolution. They did not 
employ a parameterized GWF, so that the wave forcing of the QBO was by resolved waves 
alone. In their simulation, the future QBO has a period that is 1-5 months longer than that of 
the control QBO, which has a period of 24 months. Moreover, the future QBO amplitude is 
smaller than the control; in particular, the amplitude is much smaller below 50 hPa. Thus, 
the two GCM results show an opposite change in the QBO period, although both Giorgetta 
& Doege (2005) and Kawatani et al. (2011) attributed the future QBO change mainly to 
changes in the residual circulation (mean tropical upwelling) and to the enhanced wave 
forcings. Aside from the use of a parameterized or resolved GWF, the difference in the QBO 
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period response may reside partly in the change in the mean tropical upwelling (i.e., the 
Brewer-Dobson circulation (BDC)), which is weakening in the simulation by Giorgetta & 
Doege (2005) and strengthening in that by Kawatani et al. (2011). Either way, it indicates the 
importance of the vertical momentum transport to the future QBO momentum budget.  

Climate change is driven not only by increases in GHGs but also by changes in the ozone 
layer, because the stratospheric thermal structure is substantially affected by the 

stratospheric ozone through solar heating. The quasi-global (60S-60N) stratospheric ozone 
abundances decreased from the 1970s to the mid-1990s (e.g., WMO, 2011) because of 
increases in emissions of anthropogenic ozone-depleting substances (ODSs) such as 
Chlorofluorocarbons (CFCs) and halons. Since the mid-1990s, stratospheric ozone has been 
stable or slightly increasing (e.g., WMO, 2011) because of international regulation of ODS 
production. ODS-originated halogens cause severe ozone depletion through the gas-phase 
reactions in the upper stratosphere, which in turn induces stratospheric cooling (e.g., WMO, 
2007). The CO2 increase also causes cooling in the stratosphere through emission of 
longwave radiation to space; in particular, it causes strong cooling in the upper stratosphere, 
which in turn increases ozone abundances through chemical reactions. Hence, radiation and 
chemistry interaction between ozone and CO2 (e.g., Shepherd & Jonsson, 2008) should be 
included in a model to obtain realistic simulations of climate change, at least, in the 
stratosphere. Accordingly, CCMs have advantage over GCMs because the interaction 
between dynamics, radiation, and chemistry for radiatively active gases such as O3, CH4, 
N2O, and CO2 is included in CCMs.  

In the polar regions, ODS increases led to severe ozone depletion in spring through the 
heterogeneous reactions on the polar stratospheric clouds (PSCs), which manifested as the 
Antarctic ozone hole (Chubachi, 1984; Farman et al., 1985), defined as an area with less than 
220 Dobson Units (DU) of total ozone. The ozone hole developed rapidly from about 1980 to 
the mid-1990s; since then, the area with severely depleted ozone has remained nearly 
constant, except during a few years, when wave activity was unusually active (e.g., WMO, 
2011). Severe ozone depletion also occurs in the northern polar region if the winter 
stratospheric temperature is cold enough for PSCs to form (e.g. Rex et al., 2006), though not 
as frequently as in the southern polar region. 

Here, to address future QBO behavior under climate changes due to increasing GHGs and 
decreasing ODSs, Meteorological Research Institute (MRI) CCM transient simulation data 
from 1960 to 2100 are analyzed focusing on the QBO trend and its forcings. The future QBO 
effect on the polar vortex, that is, the future Holton-Tan relation, in MRI-CCM simulations is 
described in another paper (Naoe & Shibata, 2012). Three simulations, using the three 
scenarios of CCMVal phase 2 (CCMVal-2, Eyring et al., 2008; SPARC, 2010) for the future 
projection of the stratospheric ozone and related species, are used. The scenarios used in this 
study specify only anthropogenic forcings of GHGs/SST and/or ODSs, and include no 
natural forcings, that is, neither the 11-year solar cycle nor volcanic aerosols. The simulation 
data are thereby free from the complicated overlapping effects among the QBO, solar cycle, 
and volcanic aerosols (e.g., Lee & Smith, 2003; Yamashita et al., 2011), which would 
otherwise reduce the confidence level of each detected signal.  

The rest of this paper is organized as follows. Section 2 describes the model and simulation 
conditions, and section 3 presents past and future climatologies of zonal wind and 
temperature. Section 4 describes the QBO and its forcings in the past, and section 5 treats the 
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evolutions of the QBO and of its forcings. The results are discussed in section 6, and section 
7 is a conclusion.   

2. Model simulation and data 

2.1 MRI-CCM 

MRI-CCM is an upgraded version of the MRI chemistry transport model (Shibata et al., 
2005), and its details are described by Shibata & Deushi (2008a, b) and references therein. 
The dynamics module of MRI-CCM is a spectral global model with triangular truncation, a 
maximum total wavenumber 42 (about 2.8° by 2.8° in longitude and latitude), and 68 layers 
in the eta-coordinate extending from the surface to 0.01 hPa (about 80 km). The vertical 
spacing is about 500 m in the stratosphere between 100 and 10 hPa, with tapering below and 
above. Non-orographic gravity wave (GW) forcing by Hines (1997) is incorporated, and GW 
source strength is enhanced symmetrically with respect to latitudes between 30°S and 30°N 

by superimposing a Gaussian function (15 e-folding latitude) source (0.7 ms-1) on an 
isotropic source (2.3 ms-1). The gravity wave spectrum is isotropically launched toward eight 
equally spaced azimuths (north, northwest, west etc) at the lowest level with horizontal 

wavenumber k* = 5.010-6 (m-1).  

Biharmonic (∆2) horizontal diffusion is weakened only in the middle atmosphere from that 
in the troposphere in order to spontaneously reproduce the QBO in zonal wind while 
minimizing the changes in the troposphere (Shibata & Deushi, 2005a, b). The e-folding time 
at the maximum total wavenumber (n = 42) is 18 h below 100 hPa, 100 h above 150 hPa, and 
intermediate values in between. This e-folding time of 100 h in the middle atmosphere 
results in an e-folding time of about 3.6 years at n = 10; almost all of the power (>99%) is 
included within this total wavenumber for a representative equatorial wave of Gaussian 
meridional structure centered at the equator with a 15° e-folding latitude (Shibata & Deushi, 
2005a). In addition, vertical diffusion is not applied in the middle atmosphere in order to 
keep the sharp vertical shear in the QBO. 

The chemistry-transport module employs a hybrid semi-Lagrangian transport scheme 
compatible with the continuity equation to satisfy the mass conservation. The horizontal 
form is an ordinary semi-Lagrangian scheme, and the vertical form is equivalent to a mass-
conserving flux form in the transformed pressure coordinate specified by the vertical 
velocity. The vertical procedure employs the piecewise rational method (Xiao & Peng, 2004), 
and the horizontal procedure uses quintic interpolation. The chemistry scheme treats 36 
long-lived species including 7 families, and 15 short-lived species with 80 gas-phase 
reactions, 35 photochemical reactions and 9 heterogeneous reactions on PSCs and sulfate 
aerosols. Since MRI-CCM does not include all of the chlorine species, the chlorine species 
(CCl4, CFCl3, CF2Cl2, and CH3Cl) are lumped, except for BrCl, such that the modeled total 
chlorine corresponds to the input total chlorine at the surface.  

2.2 Simulations with the CCMVal-2 scenarios  

Two scenarios in CCMVal-2 are used for reference simulations (Eyring et al., 2008): REF-B1 
is used for simulations of the past, from 1960 to 2006, with all observed forcings of GHGs, 
ODSs, SST, solar spectral irradiance variability, and (volcanic) aerosols in the stratosphere, 
and REF-B2 is used for both past and future simulations, from 1960 to 2100, with time-
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evolving forcings of GHGs, ODSs, and SST and with fixed solar minimum and background 
aerosol conditions. Fixed conditions are used because plausible specification of future solar 
variability and volcanic aerosols is very difficult. SST/sea-ice data for the entire period from 
the spin-up (covering the 1950s) to 2100 are taken from a transient simulation (1%/year CO2 
increase) by the MRI coupled ocean-atmosphere model MRI-CGCM2.3.2 (Yukimoto et al., 
2006), in which the atmospheric GCM is nearly the same as in MRI-CCM. Note that even the 
past simulation from the 1950s uses not observed but simulated SST/sea-ice data in order to 
avoid gap in SST/sea-ice data, stemming from model SST biases, in the vicinity of the 
present condition.  

GHG and ODS abundances are assumed to be geographically uniform and specified at the 

surface (Eyring et al., 2008). The future scenarios for GHGs and ODSs are taken from the 

Special Report on Emissions Scenarios (SRES) A1B GHG scenario (IPCC, 2000) and the 

adjusted A1 halogen scenario. The A1B GHG scenario represents a future world of very 

rapid economic growth, a global population that peaks in the mid-twenty-first century and 

declines thereafter, and the rapid introduction of new and more efficient technologies, 

balanced across all GHG sources. On the other hand, the adjusted A1 halogen scenario 

includes the earlier phase-out of hydrochlorofluorocarbons (HCFCs) that was agreed to by 

the Parties to the Montreal Protocol in 2007, with other species such as CFCs, halons, and 

other non-HCFCs remaining identical to the original A1 scenario (WMO, 2007). In the 

original A1 scenario, future production of ODSs is determined from the Montreal Protocol 

limitations or the most recent annual estimates, whichever is less; future emissions are 

determined in order to yield banks consistent with those of IPCC/TEAP (2005); and the 

future annual fractional bank release is adjusted so as to attain the IPCC/TEAP (2005) bank 

for 2015.  

Beside the two reference simulations, two other simulations were performed by fixing either 

ODSs or GHGs at those values at 1960 levels; these simulations correspond to two of the 

eight sensitivity simulations of CCMVal-2 (Eyring et al., 2008). The first simulation (SCN-

B2b, i.e., fixed halogens) uses fixed ODSs and the same time-evolving GHGs and SST/sea-

ice data as REF-B2, whereas the second (SCN-B2c, i.e., no-climate-change) uses fixed GHGs 

and annually repeating SST/sea-ice data and the same time-evolving ODSs as REF-B2. Note 

that the SST/sea ice at 1960 levels is the 10-year average centered on 1960.  

CO2

N2O

CH4

CCly (ppbv)

CBry (pptv)

GHGs: A1B ODSs:  A1

 

Fig. 1. Evolutions of GHGs and ODSs. Time evolutions of the (a) SRES A1B GHGs scenario 
for CO2 (ppmv), CH4 (ppmv), and N2O (10 pptv) from 1950 to 2100, and (b) total halogens as 
CCly (ppbv) and total bromine as CBry (10 pptv) of the SRES A1 adjusted ODSs scenario. 
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Figure 1 exhibits time evolutions of GHGs (CO2, CH4, and N2O) in the A1B scenario and ODSs 
(as total chlorine, CCly, and total bromine, CBry) in the A1 adjusted scenario for 1960 to 2100. 
CO2 and N2O abundances increase monotonically throughout the entire period, reaching 
maxima of about 700 ppmv and 370 ppbv, respectively, in 2100, whereas CH4 abundances 
attains a maximum of about 2.4 ppmv around the 2050s and then decreases to about 2.0 ppmv 
in 2100. We henceforth refer to this GHGs evolution simply as the GHG increase, neglecting 
the non-monotonic behavior of CH4. CCly increases rapidly from 0.8 ppbv around 1960 to a 
maximum of about 3.7 ppbv in the first half of the 1990s and then gradually decreases to about 
1.3 ppmv in 2100. CBry also behaves qualitatively like CCly but it starts to increase much later 
(from about 1980) and attains a maximum of about 17 pptv around 2000.  

To reduce noise stemming from internal variability among simulations, REF-B2 simulations 
were performed for three members, in which different initial conditions were taken from the 
spin-up runs of the REF-B1 simulations. The three members are henceforth referred to as 
B21, B22, and B23. On the other hand, single-member simulations were made for SCN-B2b 
and SCN-B2c, referred to as Sb and Sc, respectively. These simulations can be combined into 
different ensembles, depending on the key variables; for example, a realistic forcing (B21, 
B22, B23), or idealized forcing (Sb, Sc) ensemble, or GHG increase (B21, B22, B23, Sb) or 
time-varying ODS (B21, B22, B23, Sc) ensembles.  

2.3 Data processing 

As observed data, for comparison with past simulations, we used reanalysis data sets 
compiled by the European Centre for Medium-Range Weather Forecasts (ECMWF): namely, 
ERA40 (Uppala et al., 2005) from 1958 to 1988, and ERA-Interim (Dee et al., 2011) from 1989 
to 2009. The two reanalysis data sets are smoothly merged such that the data for 1989 
overlap, without any gap in any month, thus producing a long, continuous time series of 
data from 1958 to 2009, which is henceforth referred to simply as ERA-Interim. Monthly-
mean data are used in this study for both the observation and the simulations.  

A Lanczos filter (e.g., Duchon, 1979) was applied to the monthly-mean time series to get 
band-passed data within the QBO period (20-40 months) or low-passed data in low-
frequency ranges, with periods much longer than the QBO period. The cut-off for the low 
frequency data period was set at 120 months. The running-mean was used as an alternative 
way of deriving low-frequency data. Student's t-test was used to evaluate the linear trend in 
the QBO and related quantities over the entire integration period, and results were 
considered statistically significant at the 95% or 99% confidence level. 

3. Simulated global atmosphere  

3.1 Zonal mean climatology  

Simulated annual- and zonal-mean temperature and zonal wind in the past 30 years (1970-
1999) are displayed for B21, Sb, and Sc in Figs. 2 and 3, together with observed values. 
Although the overall features of temperature are very similar between the observation and 
the simulations, the simulated temperatures show common biases in the mid- and high-
latitude stratosphere in both the NH and SH, which are substantially due to biases during 
the winter. In the NH, the simulated temperatures show local minima at around 200 hPa in 
the polar lower stratosphere, above which temperatures increase monotonically upward to 
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the stratopause. On the other hand, observed temperatures exhibit a local warm maximum 
at around 200 hPa and a local cold minimum at around 30 hPa, in the polar lower 
stratosphere, indicating that MRI-CCM simulations show a cold bias in the lower 
stratosphere and a warm bias in the upper stratosphere at high latitudes.  

(a) (b)

(c) (d)

 

Fig. 2. Annual- and zonal-mean temperature. Latitude-pressure cross sections for annual- 
and zonal-mean temperature (K) in the past 30-year (1970-1999) are for (a) ERA-Interim, (b) 
B21, (c) Sb, and (d) Sc. The contour interval is 10 K, and blue colors represent lower 
temperatures and red colors higher temperatures. 

(a) (b)

(c) (d)

 

Fig. 3. Annual- and zonal-mean zonal wind. Same as Fig.2 except for zonal wind (ms-1). The 
contour interval is 5 ms-1, and blue colors represent positive (westerly) winds and red colors 
negative (easterly) winds.  
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Consistent with these temperature biases, the simulated zonal winds also show common 
biases in the subtropical jet and the polar night jet as a result of the thermal wind balance. 
The core velocity of the subtropical jet is too strong, and its separation from the polar night 
jet is too weak; that is, the zonal wind at around 50 hPa and 60°N is too strong, and the polar 
night jet in the upper stratosphere is too weak. In the SH, there are also cold biases in the 
mid- and high-latitude lower stratosphere at around 200 hPa. Similar to the NH, in the SH 
the simulated subtropical jet is stronger than the observed one, but the simulated polar 
night jet is weaker.  

3.2 Future climate change in temperature and zonal wind  

Figures 4 and 5 display the changes in the future 30-year period (2070-2999, 100 years later 
than the past 30-year period (1970-1999)) in annual- and zonal-mean temperature and zonal 
wind. During this future period, the ODS abundances are almost restored to pre-1970s levels 
(Fig. 1), so that the forcing is almost entirely due to GHGs alone. The temperature changes 
in the three B2 members (B21, B22, and B23) and in the fixed-halogen simulation Sb exhibit 
very similar CO2- (GHG-) induced patterns (e.g., Yukimoto et al., 2006; IPCC, 2007): 
warming in the troposphere through SST warming (indirect CO2 effect) and cooling in the 
stratosphere (direct CO2 effect) (Kodama et al., 2007). In addition, weak but substantial 
cooling is seen in the tropical lower stratosphere. The tropospheric warming reaches a 
maximum of about 4 K in the tropical upper troposphere, reflecting the enhanced latent heat 
release resulting from intensified convective activity caused by the SST rise. In the B2 
simulations, the maximum stratospheric cooling, to about -6 K, in the upper stratosphere is 
caused both by enhanced CO2 terrestrial radiation and by recovered ozone solar radiation as 
described below.  

(c)(a) (b)

 

Fig. 4. Future changes in temperature. Latitude-pressure cross sections of future changes 
(difference between 2070-2099 and 1970-1999) in annual- and zonal-mean temperature (K) 
for (a) B21, (b) Sb, and (b) Sc. The contour interval is 1 K for B21 and Sb and 0.5 K for Sc, and 
blue colors represent cooling and red colors warming. 

In the no-climate-change simulation Sc, on the other hand, strong warming occurs in the 
upper stratosphere above about 5 hPa in both hemispheres, except in the southern high 
latitudes, where prominent warming occurs in the lower stratosphere at 300-30 hPa, 
centered at 100 hPa, and the cooling above 30 hPa. This temperature change pattern is 
completely different from the CO2-induced pattern and is due solely to the ODS decrease, or 
equivalently, the ozone recovery, because the average ODS concentration was higher in the 
past 30 years (1970-1999) than in the future 30 years (2070-2099) (Fig. 1). In fact, stratospheric 
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ozone abundances were projected to recover to or exceed pre-1980 levels globally in the 
future, except for the tropical lower stratosphere due to the increased inflow of ozone-poor 
tropospheric air mass (e.g., SPARC, 210). In other words, the upper stratospheric cooling in 
the past 1970-1999 was due to an ozone decrease caused by gas-phase reactions with 
reactive chlorine and bromine atoms photodissociated from ODSs under strong ultraviolet 
solar radiation, whereas the pattern in the southern high latitudes was associated with 
severe ozone depletion (i.e., the ozone hole) caused by heterogeneous reactions on PSCs 
(e.g., SPARC, 2010). This ODS-decrease effect is also included in the B2 simulations; thus, 
temperature changes similar to those in Sc can be obtained by subtracting the changes in Sb 
from those in the B2 members (not shown). 

(c)(a) (b)

 

Fig. 5. Future changes in zonal wind. Same as Fig.4 except for zonal wind (ms-1). The 
contour interval is 1 ms-1, and blue colors represent positive (westerly/eastward) 
acceleration and red colors negative (easterly/westward) acceleration.  

Zonal wind changes in the three B2 members and Sb display a very similar pattern in the 
polar night jet regions in both hemispheres and in the equatorial lower stratosphere. 
Westerly wind intensification extends from the upper region of the subtropical jet upward 
along the equatorward flank of the polar night jet axis, reaching a maximum at around 70 
hPa and 40° in both hemispheres. In the SH, the westerly wind intensification also extends 
down to the surface at around 55°S, resulting in poleward spreading of the subtropical jet. 
In the tropics, westerly wind strengthening (eastward acceleration) occurs above 30 hPa and 
weakening (westward acceleration) at 50 hPa, below which very weak westerly wind 
strengthening occurs down to the surface. In the no-climate-change simulation Sc, on the 
other hand, the zonal wind change pattern is completely different. In the SH, weakening of 
the polar night jet and both weakening of the poleward and strengthening of the 
equatorward flank of the subtropical jet down to the surface occur, changes which are 
almost opposite to those in B2 and Sb in the troposphere above southern high latitudes. This 
change in the subtropical jet in Sc means that the equatorward shift of the jet is associated 
with ozone recovery (e.g., Son et al., 2008). In the NH, the poleward flank of the polar night 
jet is slightly intensified above the middle stratosphere. In the tropics, there is almost no 
change in the troposphere and stratosphere, consistent with the temperature results. 

3.3 Evolution of the Brewer-Dobson circulation and the ozone hole area 

The GHG increase affects the mass exchange between the troposphere and the stratosphere, 

which can be evaluated as the upward mass flux across the tropopause. Most GCMs and 
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CCMs (e.g., Butchart et al., 2006; Austin & Li, 2006; Garcia & Randel, 2008) show an 

acceleration of BDC resulting from an increase in GHGs, but balloon measurements do not 

necessarily support these model results, even given the large uncertainties and sparse 

observations in both time and space (Engel et al., 2009). Figure 6 depicts the evolution of the 

global upward mass flux anomaly (49-month running mean) at 100 hPa, calculated from the 

residual mass stream function. It is evident that the simulations with the GHG increase 

scenarios (B21, B22, B23, and Sb) result in a nearly linear increase of the upward mass flux 

across 100 hPa, and the trend slopes are very similar at about 8×109 kgs-1 per century. On the 

other hand, the simulation results for the no-climate-change scenario Sc exhibit no trend at 

all. This feature can be also analyzed in the equatorial stratosphere, as displayed in Fig. 7, 

which depicts the low-frequency (period longer than 10 years) components of the residual 

vertical velocity *w  (in units of 10-4 ms-1, averaged from 10°S to 10°N) from 70 to 1 hPa. 

Note that some high-frequency components remain, due to leakage of the Lanczos filter. The 

magnitude of *w  is very small in the lower stratosphere, with a minimum at 50 hPa; above 

50 hPa it increases with altitude, gradually up to about 5 hPa and steeply above that. This 

vertical structure does not change in the GHG-increase simulations or in the no-climate-

change simulation during the whole integration period, consistent with equilibrium CO2-

doubling simulations (e.g., Kawatani, et al., 2011).  

(c)

(a) (b)

 

Fig. 6. Upward mass flux at 100 hPa. Evolution of the upward mass flux (1010 kgs-1) at 100 
hPa for (a) B21, (b) Sb, and (c) Sc. The 49-month running mean is applied to eliminate short-
term variations. 

 

Fig. 7. Low-frequency residual vertical velocity. Time-pressure cross section of the low 
frequency (period longer than 120 months) component of the residual vertical velocity 
(averaged between 10S and 10N) from 70 to 1 hPa. Units are 10-4 ms-1.  
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ODSs will continue to induce an ozone hole over the Antarctic from late winter to spring in 
the future, as long as their abundances exceed certain values (e.g., SPARC, 2010). Figure 8 
exhibits the evolutions of the annual maximum ozone hole area in the ODS time-evolving 
simulations (B21, B22, B23, and Sc). Different from these simulations, no ozone hole appears 
in the fixed-ODS simulation Sb, even if the GHGs-induced climate change progresses. Even 
though the inter-simulation variation is not especially small, the features of all of these 
simulations are very similar with regard to the long-term evolution of the ozone hole area:  
(1) initial appearance around 1980, (2) followed immediately by a rapid increase until the 
later 1990s, (3) then nearly saturated values until about 2010, and (4) followed by a gradual 
decrease, with disappearance around 2070. Features 1-3 qualitatively correspond to the 
observed features (e.g., WMO, 2011), aside from the short-term variations. The fact that the 
evolution of the ozone hole area in Sc is similar to that in the three B2 members indicates 
that the effect of the GHG increase on the ozone hole in the SH is limited.  

(c) (d)

(a) (b)

 

Fig. 8. Ozone hole area in SH. Evolution of the annual maximum ozone hole area in the SH 
in (a) B21, (b) B22, (c) B23, and (d) Sc. Units are 106 km2. 

4. Characteristics of the QBO  

4.1 Vertical structure and power spectrum of the QBO 

Figure 9 shows the observed and simulated zonal-mean zonal wind (averaged from 10°S to 
10°N) between 100 and 5 hPa for the 20 years from 1990 to 2009. Monthly averages are 
subtracted from the values of each month to extract anomalies from the seasonal cycle, so 
that the semi-annual oscillation (SAO) in the upper stratosphere becomes smaller than or 
similar to the QBO. It is evident that all of the simulations reproduced the overall features of 
the observed QBO, such as the stronger westerly shear than easterly shear during the phase 
transition as well as the stalling of the descent of the easterly winds. Empirical orthogonal 
function (EOF) analysis revealed that EOF 1 and 2 explain major parts of the variance as in 
observations (e.g., Wallace et al.,1993) (not shown). The simulated QBOs realistically 
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descend to as low as 100 hPa, whereas their amplitudes are smaller than the observed 
amplitude, particularly below about 50 hPa in the lower stratosphere, a common bias among 
three-dimensional models (Takahashi, 1999; Hamilton et al., 1999; Scaife et al., 2000; 
Giorgetta et al., 2002; Butchart et al., 2003; Shibata & Deushi, 2005a; Watanabe et al., 2008; 
Kawatani et al., 2011). The differences among the simulations are not necessarily discernible 
in Fig. 9.  

 

Fig. 9. Zonal wind evolution in the tropics. Evolution of zonal-mean zonal wind (averaged 
between 10S and 10N) from 100 to 5 hPa for the 20 years from 1990 to 2009: (a) ERA-Interim, 
(b) B21, (c) Sb, and (d) Sc.  

Figure 10 depicts the power spectrum in the low-frequency domain (periods longer than 16 
months) for the observed and simulated wind averaged 10°S to 10°N from 100 to 1 hPa. The 
observed power, extending from about 18 to 240 months, is evidently much broader than 
the simulated power. This is because the simulations include only the anthropogenic forcing 
of GHGs and ODSs without the natural forcings of the solar 11-year cycle and volcanic 
aerosols. The broad spectral peaks at around 28 months, which represent the QBO, are 
distributed similarly between the observation and the simulations, though the observed 
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QBO has less power than the simulated QBO in the upper stratosphere. On the basis of the 
power spectrum distribution, we defined the QBO as the components with a period between 
20 and 40 months. In the higher frequency domain (periods shorter than 16 months), the 
power spectrum is a narrow monomodal distribution concentrated at an annual frequency 
below 10 hPa, and a bimodal distribution sharply concentrated at annual and semiannual 
frequencies above 10 hPa, in both the observation and the simulations (not shown). The 
QBO power is the largest of these two or three peak powers below the middle stratosphere.  

(c) (d)

(a) (b)

 

Fig. 10. Power spectra of zonal wind. Power spectra (ms-1) of zonal-mean zonal wind 
averaged from 10°S to 10°N for periods > 16 months: (a) ERA-Interim, (b) B21, (c) Sb, and  
(d) Sc. The analysis period was from 1958 to 2009 for ERA-Interim, and from 1960 to 2009 for 
the simulations.  

4.2 Forcings of the QBO 

Figure 11 displays the composite relations within the QBO cycle at 30 and 70 hPa for B21 

between the QBO zonal wind and the three major forcings, parameterized gravity-wave 

forcing (GWF), resolved-wave forcing (Eliassen-Palm flux divergence, EPD), and vertical 

advection of zonal momentum ( * ( / )w u z  , WUZ), calculated for the entire period of 1960-

2099. Note that all of the forcing terms and the zonal wind are band-passed (20-40 months) 

values with the QBO components extracted by a Lanczos filter. In making the composite 

figures, we assumed that each cycle expands in 2 phase space with a peak power period of 

28 months, even though each cycle had a different period. Although the fine structures such 

as steep gradient during the phase transitions disappear due to the band-pass filtering, basic 

configuration among the QBO and its forcings are represented in Fig. 11. 

AT 30 hPa, GWF is retarded by about one-seventh cycle relative to zonal wind, so that 
positive (eastward acceleration) GWF occurs approximately from after the initial stage of the 

westerly shear descent (equivalently, u/t > 0) to the initial stage of the easterly shear 

descent (u/t < 0); conversely, negative (westward acceleration) GWF continues from after  
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Fig. 11. Composite relations among the QBO and its forcings. Composite relations among 
zonal wind (U, red solid curve with closed circles), parameterized gravity wave forcing 
(GWF, black dashed curve), resolved wave forcing (EPD, green solid curve), and vertical 
advection (WUZ, cyan solid curve) at (upper) 30 hPa and (lower) 70 hPa over two cycles for 
an average QBO cycle (28 months). All quantities are averaged from 10°S to 10°N and band-
pass filtered (20-40 months). Units are ms-1 for U, 10-2 ms-1 day-1 for forcing/advection.  

the initial stage of the easterly shear descent to the initial stage of the westerly shear descent. 
The amplitude of WUZ is three-quarters that of GWF amplitude and is almost of opposite 
phase, thus partially cancelling GWF. Therefore, GWF promotes the descent of the vertical 
shear, and WUZ hinders it. EPD lags GWF by about one-seventh cycle, and thus lags the 
zonal wind by approximately one-quarter cycle. Of these three forcings, GWF and WUZ are 
the largest and second largest terms, but as a result of the partial cancellation due to their 
being of almost opposite phase, the sum of GWF and WUZ has a similar amplitude to that 
of EPD. At other altitudes, a similar relation quantitatively holds true, particularly at 20 hPa 
and above, although the deviation from the relation at 30 hPa increases in the lower 
stratosphere (50-70 hPa). AT 50 hPa, GWF is nearly in-phase with zonal wind, whereas 
WUZ and EPD lag the zonal wind by about four- and three-sevenths cycle, respectively, and 
are thus out of phase with zonal wind. In addition, the amplitudes of GWF and WUZ 
decrease from around 0.13 and 0.10 ms-1 day-1, respectively, at 30 hPa to 0.04 and 0.03 ms-1 

day-1, respectively, at 70 hPa, resulting in similar amplitudes among GWF, WUZ, and EPD 
at 70 hPa. The Differences in the phase relation among all of the simulations were very 
small.  

The vertical advection WUZ consists of two terms. One is associated with low-frequency (<< 
the QBO frequency) vertical wind, and the other with the vertical wind from the secondary 
circulation of the QBO (e.g., Plumb & Bell, 1982). This is because WUZ is the product of the 
residual vertical wind and the vertical shear of zonal wind, both of which have two major 
peaks in power spectrum at the QBO and annual frequencies below the middle stratosphere, 
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similarly to zonal wind as stated before. Thus, since cross terms with annual or semiannual 
component cannot create the QBO term of broad-period range, the QBO acceleration of 
zonal wind due to WUZ is expressed as  

    * * *~
QQ Q L

L Q

WUZ

u u u u
w w w

t z z z
                                 

 (1) 

where the superscripts Q and L represent the QBO and the low-frequency components, 
respectively. The first term on the right-hand side of the approximation sign represents the 
contribution of the lower-frequency (background) vertical wind, corresponding to the 
interaction with BDC, and the second term is the interaction between the background zonal 
wind shear and the QBO secondary circulation. Henceforth the first term is referred to as 
BDT and the second term as SCT. Just below the maximum power altitude at 30 hPa, the 
magnitude of each term on the right hand side of Eq. (1) is, on average, as will be 
demonstrated later 
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where |(X)Q| represents the QBO amplitude of X.  

It is evident that the residual vertical velocity is one order smaller than the vertical shear of 

zonal wind for both the QBO and the low-frequency components. Because the QBO vertical 

shear of zonal wind is almost of opposite phase to the QBO vertical wind (e.g., Plumb & 

Bell, 1982; Andrews et al., 1987), and the low-frequency term of vertical shear of zonal wind 

and that of vertical wind are negative- and positive-definite, respectively, at 30 hPa 

throughout the whole period from 1960 to 2100, BDT and SCT exert acceleration in 

approximately the same direction with a ratio of about 8 to 1, indicating that BDT is the 

major acceleration term of the vertical momentum advection. The magnitude of BDT is also 

much larger than that of SCT at other altitudes, in particular in the lower stratosphere, 

because the vertical shear is larger in the QBO than in the low-frequency and the residual 

vertical wind is larger in the low-frequency than in the QBO. However, other features such 

as acceleration direction and trend differ depending on altitude and latitude. In the lower 

stratosphere at 50 hPa and below, for example, BDT and SCT do not always exert 

acceleration in the same direction because the low-frequency vertical shear did not hold but, 

in the middle of the integration period (1960-2099), changes its sign from negative to 

positive at 50 hPa and from positive to negative at 70 hPa over the equator as a result of the 

climate change caused by the GHG increase.   

5. Evolution of the QBO  

5.1 Future change of the zonal wind forcing in the tropical stratosphere 

Changes in the zonal wind forcings affect the background zonal wind, which in turn 
modifies the QBO through the interactions between the background zonal wind and the 
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QBO; thus, such changes are one of the crucial factors affecting the future QBO. Figures 12-
14 depict annual mean GWF, WUZ, and EPD in the past (30 years, 1970-1999) and their 
changes after 100 years (30 years, 2070-2099) in the low-latitude (30°S-30°N) stratosphere 
from 70 to 5 hPa. GWF and EPD generally exert negative (westward) acceleration in this 
domain, except in some regions: namely, in the upper stratosphere around 15° in both 
hemispheres, and at 50 hPa in the deep-tropics (10°S-10°N) for GWF, and at 30 hPa south of 
the equator for EPD. On the other hand, WUZ exerts positive (eastward) acceleration almost 
everywhere in this domain. 

It is evident that the distributions of the forcing magnitude are commonly very different 
between the mid-tropics (15°S-15°N) and higher latitudes. In the mid-tropics, the magnitude 
of GWF is minimal below 50 hPa, and above 50 hPa it is maximal and more concentrated 
south of the equator. The magnitude of WUZ shows a similar pattern with a broader 
maximum above 50 hPa. The magnitude of EPD is also minimal in the mid-tropics, and the 
width of the minimum area becomes narrower with altitude; the magnitude is largest at 50 
hPa, and then the minimum area becomes more concentrated downward toward the 
equator. The EPD minimum over the tropics reflects the suppression of the propagation of 
Rossby waves from the mid-latitudes and subtropics against the easterly background zonal 
wind (Fig. 3). 

 

Fig. 12. GWF in the past and future. Annual and zonal mean GWF (left) in the past 30-year 
period (1970-1999) and (right) the changes in the future 30-year period (2070-2099) for 
(upper) B21, (middle) Sb, and (lower) Sc. The contour interval is 2x10-2 ms-1 per day for the 
left panels and 1x10-2 ms-1 per day for the right panels. 
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Fig. 13. WUZ in the past and future. Same as Fig.12 except for WUZ. 

 

Fig. 14. EPD in the past and future. Same as Fig.12 except for EPD. Units are 10-2 ms-1 per 
day. The contour interval is 2 for the values greater than -12, except that the outer contours 
in the left panels have the values -16, -32, and -64. The contour interval is 1 for values greater 
-2, but for values less than -2, the contour interval is 2 in the right panels. 

Future changes in GWF and EPD are larger outside of the mid-tropics below the middle 
stratosphere in GHG-increase simulations, owing to the shift of the zero line of zonal wind 
(e.g., Deushi & Shibata, 2011). In contrast, future GWF and EPD changes are small in the 
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mid-tropical middle stratosphere, in particular at around 30 hPa, in GHG-increase 
simulations. On the other hand, in the mid-tropical middle stratosphere, the future WUZ 
changes are larger negative values with a large cell structure. In the no-climate-change 
simulation, the future changes in the QBO forcings are very small everywhere.  

5.2 Trend of the QBO zonal wind 

Figure 15 exhibits the QBO zonal wind (averaged from 10°S to 10°N) at 30 hPa for the whole 

period from 1960 to 2099 in simulations for B21, Sb, and Sc. It is evident that the QBO zonal 

winds show long-term decreasing trends in all of the GHG-increase simulations, whereas in 

the no-climate-change simulation Sc, the QBO zonal wind shows no long-term trend at all. 

To quantify the trends, the QBO amplitude was calculated by two independent methods, 

that is, direct and wavelet methods. The direct method assumes that the QBO amplitude is 

√2σ, analogous to a monochromatic wave, where σ is the root mean square of the QBO time 

series over three cycles, even though the QBO time series is not a single sinusoidal wave 

(Pascoe et al., 2005; Baldwin & Gray, 2005). The cycles are defined as periods from one zero 

point to the third consecutive zero point, and the QBO amplitude is assigned to the center 

time of the three cycles. In this way, the QBO amplitudes are first calculated discretely in 

time, about a half (14 months) cycle apart, and then monthly amplitudes are obtained 

through cubic interpolation with Lagrange polynomials. This procedure results in a QBO 

amplitude that is a low-passed (> 3 cycles~7 years) data with a temporal resolution of about 

14 months. The wavelet method used a Morlet mother wavelet (plane wave modified by a 

Gaussian envelope) with non-dimensional frequency ω0=6 (e.g., Torrence & Compo, 1998), 

so the result of the wavelet analysis incorporates a mean information within approximately 

three cycles centered at time and frequency concerned.  

 

Fig. 15. QBO wind evolution. Zonal-mean zonal wind averaged from 10°S to 10°N at 30 hPa 
for the whole period 1960-2099 for (a) B21, (b) Sb, and (c) Sc. A band-pass filter (20-40 
months) was applied to obtain the QBO component. 
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Fig. 16. QBO amplitude evolution. Evolution of the QBO amplitude of zonal-mean zonal 
wind at 30 hPa in B21 (black solid), B22 (green solid), B23 (red solid), Sb (blue dashed), and 
Sc (cyan dashed). 

Figure 16 depicts the QBO amplitude of the zonal-mean zonal wind (averaged from 10°S to 
10°N) at 30 hPa in all simulations. The QBO amplitudes of the GHG-increase simulations 
steadily decreases from about 16 ms-1 in the 1960s and 70s to about 12 ms-1 in the 2080s and 
90s, resulting in, on average, a linear trend of about 0.3 ms-1 per decade. On the other hand, 
in the no-climate-change simulation Sc, the QBO amplitude does not seem to show a distinct 
trend. Nevertheless, close inspection reveals that the amplitude, like the GHG-increase 
simulations, decreases until about year 2000, and thereafter gradually increases. As a result, 
the overall trend is a small positive slope. Among all simulations, other features such as 
decadal variations are very different from one simulation to another, even within the B2 
three members.  

Different from the distinct decreasing trend of the QBO amplitude, the QBO period does not 
exhibit any significant trend as depicted by the local wavelet power spectrum of the QBO 
zonal wind at 20 hPa, where the power maximizes (Fig. 17). The QBO powers are mainly 
confined to between 22 and 32 months, and the peak power frequencies (periods) stabilize at 
28 months, in spite of some excursions toward 20-24 months in the GHG-increase 
simulations. Similarly to the direct evaluation, the QBO powers show a common decreasing 
trend in the GHG-increase simulations. The no-climate-change simulation Sc, on the other 
hand, shows a very stable QBO without a substantial trend in either frequency or power 
magnitude.  

 

Fig. 17. QBO local wavelet power spectrum at 20 hPa. Evolution of the local wavelet power 
spectrum of the zonal-mean zonal wind averaged from 10°S to 10°N at 20 hPa in the QBO 
period for (a) B21, (b) Sb, and (c) Sc. Units are m2s-2 and the contour interval is 20. 
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Fig. 18. Vertical profile of the QBO local wavelet power spectrum. Evolution of the wavelet 
power of the QBO zonal-mean zonal wind (averaged from 10°S to 10°N) from 70 to 10 hPa 
for (a) B21, (b) Sb, and (c) Sc. Units are m2s-2 and the contour interval is 20.  

Figure 18 exhibits the evolution of the QBO local wavelet power from 70 to 10 hPa for B21, Sb, 
and Sc simulations. Below 30 hPa, the QBO powers show an apparent decreasing trend in the 
GHG-increase simulations, whereas they do not at 10 hPa. The no-climate-change simulation 
Sc, on the other hand, does not seem to show a discernible trend for the QBO zonal wind at 
any altitude. To quantify linear trends in the QBO amplitude, the linear regression is 
calculated not for the monthly interpolated amplitude but for the original about half-cycle 
(~14 months) interval amplitude using the least squares method at each altitude.  

Figure 19 depicts the vertical profile of the linear trend in the QBO zonal wind amplitude from 
70 to 10 hPa for all simulations. The GHG-increase simulations all exhibit a statistically 
significant (at the 99% confidence level) negative trend below 20 hPa, except for that of B23 at 
20 hPa. The maximum negative trends at 30 hPa are about 0.3 ms-1 per decade, and negative 
trend below and above 30 hPa are 0.2-0.1 ms-1 per decade. In the upper stratosphere, the trends 
are near zero or small positive, but the differences among the simulations are not small. The 
no-climate-change simulation exhibits a near-zero trend in the lower stratosphere below 50 
hPa, and a small but statistically significant positive trend above 30 hPa. These results 
demonstrate that the GHG increase is responsible for the decrease in the QBO amplitude 
below 20 hPa and that ODS changes alone cause the increase above 30 hPa.  

 

Fig. 19. Trends of the QBO amplitude. Vertical profiles of the linear trends (ms-1 per decade) 
in the QBO amplitude for the zonal-mean zonal wind (averaged from 10°S to 10°N) from 70 
to 5 hPa in all simulations. Open circles and diamonds represent the trend being different 
from zero at the 99% and 95% confidence levels (t-test), respectively. The QBO amplitude 
was calculated by the direct method.  
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5.3 Trends in the forcings of the QBO zonal wind 

The QBO trends of the zonal wind amplitude are statistically significant below 20 hPa in the 
GHG-increase simulations and above 30 hPa in the no-climate-change simulation; therefore, 
the forcings of the QBO zonal wind themselves show similar trends. Figure 20 exhibits the 
evolutions of the QBO forcing terms, GWF, WUZ, and EPD, at 30 hPa in all simulations. As 
shown by the composite relations among the QBO and its forcings (Fig. 11), GWF has the 
largest amplitude and EPD the smallest amplitude during the whole period (1960-2099). 
Although the short-term variations are considerable, it is evident that the forcings show 
decreasing trends in the GHG-increase simulations and that they do not in the no-climate-
change simulation. Similarly to the quantification of the trend of the QBO zonal wind 
amplitude, linear regression was used to calculate the trends of the forcings. In addition, to 
include different responses at different frequencies, that is, a larger response at a smaller 
frequency, even in the QBO narrow-frequency domain (period of 20-40 months) and to get 
more direct contribution to the trend of the QBO zonal wind, each raw forcing was 
integrated over time and band-passed to yield the corresponding zonal wind response (see 
Eq. (1)). For example, uGWF is the integrated QBO zonal wind (response wind) due to GWF. 
Following this procedure, the linear regressions were calculated. Note that the trends in the 
forcing amplitudes are not additive, even though forcings are additive in the temporal 
space, owing to their different phases (Fig. 11).  

GWF_amp

WUZ_amp

EPD_amp

(m/s/day)

(a)

(b)

(c)

 

Fig. 20. QBO forcing evolution. Same as Fig. 16 except for (a) the parameterized gravity 
forcing (GWF), (b) the momentum vertical advection (WUZ), and (c) the resolved wave 
forcing (EPD).  

Figure 21 displays the vertical profiles of GWF and uGWF from 70 to 5 hPa for all simulations. 
The GHG-increase simulations exhibit the same statistically significant negative trend at 30 
ant 70 hPa and, in most cases, at 50 hPa as well, with a maximum of about 0.2x10-2 ms-1 day-1 
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per decade for GWF at 70 hPa. At 20 hPa the trends are dispersed around zero, and at 10 
and 5 hPa, the GWF shows statistically significant positive values of nearly the same 
magnitude. The trends of integrated zonal wind uGWF are qualitatively similar to those of 
GWF but the statistically significances are not necessarily so.  

 

 

Fig. 21. GWF amplitude evolution. Same as Fig.19 except for (left) GWF and (right) the 
GWF-induced zonal wind uGWF, which was calculated by time-integration of GWF. Units are 
10-2 ms-1day-1 per century for GWF and ms-1 per decade for uGWF. 

For example, while most GHG-increase simulations show a statistical significant negative 
trend at 70 hPa and positive trend above 10 hPa both in uGWF and in GWF, the number of 
statistically significant trends decreases at 50 and 30 hPa and increases at 20 hPa in uGWF 
compared with GWF. The no-climate-change simulation exhibits statistically significant 
positive trends of about 0.1x10-2 ms-1 day-1 per decade at 20 and 30 hPa, and a negative trend 
of similar magnitude at 5 hPa for GWF.  

The vertical transport of zonal momentum WUZ shows a statistically significant trend at 
almost all altitudes in the GHG-increase simulations (Fig. 22). A negative trend of about 
0.1x10-2 ms-1 day-1 per decade is seen at 30 and 50 hPa, and a positive trend of nearly the 
same magnitude at 70 hPa and above 20 hPa. The no-climate-change simulation exhibits 
almost no trends at any altitude in both WUZ and uWUZ, and most apparent trends are thus 
not statistically significant. The resolved-wave forcing EPD and uEPD exhibit a vertically flat 
structure (Fig. 23), and the trend magnitudes are smaller than those of the other forcings in 
all simulations; nevertheless, most of the trends are statistically significant.  

 

 

Fig. 22. WUZ amplitude evolution. Same as Fig.19 except for (left) WUZ and (right) the 
WUZ-induced zonal wind uWUZ. 
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Fig. 23. EPD amplitude evolution Same as Fig.19 except for (left) EPD and (right) the EPD-
induced zonal wind uEPD. 

6. Discussion 

The GHG-increase simulations have thus far demonstrated that the QBO amplitude 
decreases linearly below 20 hPa with rates of 0.1-0.3 ms -1 per decade and increases above 10 
hPa with rates of 0-0.1 ms -1 per decade (Fig. 19). As shown by the difference between the B2 
and Sb simulations, the trends of the B2 members tend to be smaller below 20 hPa than the 
Sb trend, but the difference between them is not substantial. That is, the inter-member 
variations are too large to ascribe the difference between the B2 members and Sb to the 
forcing difference, that is, ODSs. On the other hand, the small but statistical significant 
increasing trends of less than 0.1 ms -1 per decade at 30 hPa and above exhibited by the no-
climate-change simulation is likely an effect of the ODS decrease, although to confirm this 
result , an Sc ensemble simulation should be performed. 

The cause of the QBO trend should reflect the trends of the forcings, GWF, EPD, and WUZ. 
However, because the forcings include not only external quantities but also internal ones 
related to the QBO, separating the forcings from the responses is not straightforward. For 
example, the propagation of the resolved waves and that of the parameterized gravity 
waves strongly depend on the background QBO wind, as does the deposition of their 
momentum on the QBO. The vertical advection WUZ is also affected by the QBO, because 
WUZ is explicitly expressed as the product of the QBO and the background wind field (Eq. 
(1)). In addition, the trends in the forcing amplitude are not additive because of the phase 
differences as stated before; thus, evaluation of their total effects is not straightforward 
either, if the signs of the forcing trends are not the same. 

(c)(a) (b)

 

Fig. 24. Residual vertical velocity evolution at 30 hPa. Evolutions of the residual vertical 
velocity for the low-frequency component (period longer than 120 months, solid) and the 
amplitude of the residual vertical velocity of the QBO frequency (dashed) at 30 hPa in 
simulations for (a) B21, (b) Sb, and (c) Sc. Units are 10-3 ms-1. 
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(c)(a) (b)

 

Fig. 25. Zonal wind vertical shear evolution at 30 hPa. Same as Fig.24 except for the vertical 
shear of zonal wind. Units are 10-3 s-1. 

Almost all of the trends in the forcings and their response winds in the GHG-increase 
simulations exhibit negative trends at 30 hPa, where the trend of the QBO wind is the largest 
negative; therefore, the forcings and responses are qualitatively consistent. At 50 hPa, the 
magnitude of the negative trend in WUZ is significantly larger than that of the GWF (small 
negative) or the EPD trend (nearly zero or small positive), which is also consistent with the 
negative trend in the QBO wind. At 20 hPa, the trends are on average nearly zero in GWF, 
have small positive values in WUZ, and small negative values in EPD, as are those of their 
responses, which is not consistent with the small but significant negative trend in the QBO 
wind. At 70 hPa, GWF exhibits a statistically significant negative trend, and its magnitude is 
largest compared with the magnitudes of the trends at other altitudes. WUZ, on the other 
hand, exhibits a statistically significant positive trend, the magnitude of which is about 
three-fourths that of GWF. EPD tends to have a small negative trend, but its response is 
nearly zero in the ensemble mean, indicating that EPD plays a minor role at 70 hPa. 

(c)(a) (b)

 

Fig. 26. Residual vertical velocity evolution at 70 hPa. Same as Fig.24 except at 70 hPa. 

(c)(a) (b)

 

Fig. 27. Zonal wind vertical shear evolution at 70 hPa. Same as Fig.25 except at 70 hPa. 

WUZ trends in the GHG-increase simulations are statistically significant below the middle 

stratosphere but they show sharp contrasts in sign, being negative at 70 hPa and positive at 

50 and 30 hPa, although their magnitudes are almost the same at 0.1x10-2 ms-1day-1 per 
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decade (Fig. 22). To explore the cause of this, we evaluated the trend of each component, 

that is, BDT and SCT, of WUZ (Eq. 1). Figure 24 depicts the evolution of the residual vertical 

velocities of the low-frequency and the QBO at 30 hPa in simulations for B21, Sb, and Sc, 

and Fig. 25 displays the evolution of the vertical shears. The tendencies of the residual 

vertical velocity and the vertical shear at 50 hPa are very similar to those at 30 hPa, aside 

from the background levels. Figures 26 and 27 depict the same evolutions as Figs. 25 and 26, 

but at 70 hPa. The tendency of WUZ depends on those of BDT and SCT (Eq. (1)), each of 

which is further decomposed into two terms. As a result, to evaluate of the tendency of 

WUZ it is necessary to know the tendencies of four terms: low-frequency residual vertical 

velocity *Lw , QBO vertical shear ( / )Qu z  , QBO residual vertical velocity *Qw , and low-

frequency vertical shear ( / )Lu z  . It should be noted that *Lw always shows an increasing 

trend in all of the GHG-increase simulations, but the trends of the other three terms depend 

on altitude. At 30 hPa in the GHG-increase simulations, they are decreasing; thus, SCT also 

has a negative trend because of the decrease in *Qw  and ( / )Lu z  . On the other hand, BDT 

has both an increasing component *Lw and a decreasing component ( / )Qu z  , resulting in a 

decreasing trend comparable to that of SCT. At 50 hPa the tendencies of the four terms are 

qualitatively similar to those at 30 hPa, but the SCT tendency is much smaller than the BDT 

tendency, in which the decrease in ( / )Qu z   is much larger than the increase in *Lw . As a 

result, BDT shows a slightly larger decreasing trend at 50 hPa than at 30 hPa. 

At 70 hPa, the BDT components are a rapidly increasing *Lw  and a very slowly decreasing 

( / )Qu z  , leading to an increasing trend in BDT. The SCT components are both increasing but 

very small, so SCT is much smaller than BDT. At 20 hPa, both SCT components are increasing, 

so SCT has a positive trend. Although ( / )Qu z   is decreasing, BDT has a positive trend 

comparable to the SCT trend. These results indicate that the BDT trend is of similar magnitude 

to the SCT trend at 30 and 20 hPa, while the SCT trend is much smaller than the BDT trend at 

50 and 70 hPa. This altitude dependence of SCT derives mainly from the low-frequency 

vertical shear, which is very small as well as its tendency in the lower stratosphere.  

In this study the source strength of GWF was fixed in all simulations, irrespective of the 

ODS evolution and/or the GHG-induced global warming, wherein convective precipitation 

increased (e.g., Yukimoto et al., 2006; IPCC, 2007) as manifested in the strong warming in 

the tropical upper troposphere (Fig. 4). This fixation of source strength is different from the 

precedent simulations of equilibrium CO2 doubling. Giorgetta & Doege (2005) varied the 

GWF source by 0% to 20% and showed that a statistically significant reduction in the QBO 

period occurred in runs with a 10% or 20% increase. Kawatani et al. (2011) demonstrated 

that wave momentum fluxes increase by 10%–15% in the equatorial lower stratosphere, 

though those relevant to the QBO forcing do not increase as much. Since tropical convective 

precipitation is closely linked to gravity and equatorial wave generation (e.g., Horinouchi et 

al., 2003), we assume that the fixation of the GWF source differs more or less from reality. 

Thus, to specify appropriate changes in the GWF source, observations of relations between 

the QBO and other independent quantities such as SST/precipitation or outgoing longwave 

radiation are needed.  

For example, Taguchi (2010) demonstrated a connection between the QBO and El Niño-
Southern Oscillation (ENSO): the QBO signals have a weaker amplitude and faster phase 
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propagation under El Niño conditions, when the west-east contrast of SST and precipitation 
drastically changes in the tropical Pacific (e.g., Philander, 1990). However, since the tropical 
upwelling is also enhanced (Randel et al., 2009) during El Niño conditions, isolation of the 
SST/precipitation effect is required for evaluation of the GWF source in the troposphere. On 
the other hand, according to Fischer and Tung (2008), the QBO period does not show any 
trend but has been stable within 24-32 months for five decades (from 1953 to 2007) despite 
period variations due mainly to stalling of the westerly phase. These findings indicate that 
further investigation is required to identify the tropospheric factors affecting the QBO.  

7. Conclusion 

To investigate future changes in the QBO in the tropical stratosphere, transient simulations 
were carried out for the period from 1960 to 2100 with MRI-CCM by inputting observed and 
projected GHGs and/or ODSs at the surface. SST/sea ice, generated by an MRI coupled 
ocean-atmosphere model, was also specified so as to be compatible with the GHGs 
abundances. Three types of simulations were performed to evaluate the effects of a GHGs 
increase and an ODSs decrease, both in combination and separately: The first type used the 
REF-B2 scenario of CCMVal-2, in which both GHGs and ODSs evolve following observed 
values for past simulations, and specified SRES A1B scenario for GHGs and the adjusted A1 
scenario for ODSs for future simulations. The second type of simulation used an SCN-B2b 
scenario, in which GHGs were the same as in REF-B2 but ODSs were fixed at 1960 levels. 
The third type used an SCN-B2c scenario, in which ODSs were the same as in REF-B2 but 
GHGs/SST were fixed at 1960 levels. The REF-B2 simulation was carried out with three 
members, and the other two were performed with a single member.  

The future climate change due to increasing GHGs was characterized as tropospheric 
warming as a result of SST warming (indirect CO2 effect), with maximum warming in the 
tropical upper troposphere, and cooling in the stratosphere (direct CO2 effect), with 
maximum cooling in the upper stratosphere. Zonal wind changes were characterized by 
westerly wind intensification from the upper region of the subtropical jet upward along the 
equatorward flank of the polar night jet axis, reaching a maximum at around 70 hPa and 40° 
in both hemispheres. In the SH, the westerly wind intensification also extends down to the 
surface at around 55°S, resulting in poleward spreading of the subtropical jet. In the tropics, 
westerly wind strengthening (eastward acceleration) occurred above 30 hPa and weakening 
(westward acceleration) at 50 hPa, below which very weak strengthening occurred down to 
the surface. The Brewer-Dobson circulation was similarly intensified in all of the GHG-
increase simulations.  

The future climate change in the no-climate-change simulation was characterized by strong 
warming in the upper stratosphere above about 5 hPa in both hemispheres, except in the 
southern high latitudes, where prominent warming occurred in the lower stratosphere at 
300-30 hPa, centered at 100 hPa, with cooling above 30 hPa. This pattern of temperature 
change was due solely to the ODSs decrease, or, equivalently, ozone recovery. The zonal 
wind change characterized by slight intensification of the polar night jet in the poleward 
flank above the middle stratosphere in the NH. In the SH, weakening of the polar night jet 
and both weakening of the poleward and strengthening of the equatorward flank of the 
subtropical jet down to the surface occurred. In the tropics, there was almost no change, 
including in the Brewer-Dobson circulation.  
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The QBO was spontaneously generated with a period of about 28-month period in the 
equatorial stratosphere by MRI-CCM under both past and current conditions in all 
simulations. The QBO frequency was very stable without any substantial trend in all 
simulations, and the QBO amplitude showed a small but statistically significant decreasing 
trend below 20 hPa with a maximum (~0.3 ms-1 per decade) at 30 hPa in GHG-increase 
simulations. ODS decreases in the future (i.e., ozone recovery) led to very small increasing 
trend (<0.1 ms-1 per decade) in the QBO amplitude above 20 hPa. The causes of the QBO 
amplitude trend were largely changes in the parameterized gravity wave forcing and the 
vertical advection of zonal wind momentum. In the QBO trend, the vertical advection was 
brought about not only by the Brewer-Dobson circulation but also by the QBO secondary 
circulation above the middle stratosphere, while the Brewer-Dobson circulation was 
dominant in the lower stratosphere, mainly because of the very weak vertical shear and the 
very small vertical shear trend of the background wind.  

The QBO effects globally extend from the stratosphere to the troposphere, and thus the 
projected decreasing trend of the QBO amplitude in the CCM simulations would likely cause, 
more or less, changes in various phenomena in the whole atmosphere. However, since the 
current CCM simulations included only forcings of SST, GHGs, and ODSs, other forcings such 
as solar irradiance variability and volcanic aerosols would induce different responses in the 
QBO, depending on the timescale of these forcings. In addition, different scenarios in GHGs 
result in different SSTs, and thereby likely in different QBO trends. Therefore, there are larger 
uncertainties in the effects of the QBO in the future than in the QBO itself.  
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