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1. Introduction

In the last ten years, the number of natural gas (NG) vehicles worldwide has rapidly

grown with the biggest contribution coming from the Asia-Pacific and Latin America regions

(IANGV, 2011). As natural gas is the cleanest fossil fuel, the exhaust emissions from natural

gas spark ignition vehicles are lower than those of gasoline-powered vehicles. Moreover,

natural gas is less affected by price fluctuations and its reserves are more evenly widespread

over the globe than oil. In order to increase the efficiency of natural gas engines and to

stimulate hydrogen technology and market, hydrogen can be added to natural gas, obtaining

Hydrogen - Natural Gas blends, usually named as HCNG.

This chapter gives an overview of the use of HCNG fuels in internal combustion engines.

The chemical and physical properties of hydrogen and natural gas relevant for use in internal

combustion engines are described. Then a survey on the impact of hydrogen on natural gas

engine performance and emissions is presented with reference to research activities performed

on this field.

2. Data reduction

In this section the main physical quantities used in this chapter are presented and discussed.

The stoichiometric air-fuel ratio on mass basis (AFRstoich), defined in equation 1, is the mass of

air needed to fully oxidize 1 kg of fuel, while AFR is the ratio between air and fuel mass flow

rates, equation 2. The ratio between the actual AFR and the AFRstoich, is the relative air-fuel

ratio, equation 3. If λ > 1 the mixture is lean and the oxidation takes place with excess of air

respect to the stoichiometric amount; for λ values lower than 1 the mixture is rich, and the fuel

oxidation is not complete. The ratio 1/λ is defined as the equivalence ratio φ, equation 4.

AFRstoich =

(

ma

m f

)

stoich

(1)

AFR =
ma

m f
(2)

λ =
AFR

AFRstoich
(3)
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2 Will-be-set-by-IN-TECH

φ =
1

λ
(4)

Equation 5 defines the indicated mean effective pressure (imep), an engine parameter which

evaluates the work obtained by an engine cycle,
∮

p dV, divided by the engine displacement.

The Coefficient of Variation of imep, COVimep, is the ratio of the standard deviation of the

indicated mean effective pressure and the average imep over a representative number of

cycles, equation 6.

imep =
1

Vd

∮

p dV (5)

COVimep =
σimep

imepavg
(6)

In case the effect of mechanical efficiency has to be taken into account, the brake mean effective

pressure (bmep) is considered. In 4-stroke engines, the bmep is calculated from the torque

measured at the engine shaft, according to equation 7:

bmep =
T · 4π

Vd
(7)

The stoichiometric reaction equation of a methane-hydrogen blend reads as:

(α CH4 + β H2) +

(

2 α +
β

2

)

(O2 + 3.76 N2) → αCO2 + (2 α + β) H2O +

(

2 α +
β

2

)

3.76 N2

(8)

where α + β = 1. The quantities α and β represent the mole per each species in the blend, and

it is immediate to observe that the reduction of the C/H ratio, compared to pure methane,

brings about a theoretical reduction of the CO2.

The burning velocity represents a main property for the combustion characteristics of the fuels

and is defined as the velocity at which unburned gases move through the combustion wave

in the direction normal to the wave surface (Glassman & Yetter, 2008). The laminar burning

velocities can be obtained using the following equation 9 (Mandilas et al., 2007) being Ss the

unstretched flame speed, ρb and ρu the burned and unburned gas densities. Equation 10

relates the unstretched flame speed, the stretched flame speed Sn, the stretch rate κ and the

Markstein length Lb.

ul = Ss
ρb

ρu
(9)

Ss − Sn = κLb (10)

The stretch rate κ is calculated from the position of the flame front, R = R(t), with the

following equation 11 (Chen, 2009):

κ =
1

R

dR

dt
(11)

The Markstein length characterizes the variation in the local flame speed due to the influence

of external stretching and determines the flame instability with respect to preferential

diffusion (Markstein, 1964).

18 Fossil Fuel and the Environment
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A review of Hydrogen-Natural Gas Blend Fuels in Internal Combustion Engines 3

3. Natural gas

The main natural gas constituent is methane and the composition is strictly dependent on the

origin gas field. Table 1 shows the composition of a natural gas sample obtained by the Italian

distribution network, determined by means of gas chromatographic analysis.

Natural gas has been widely investigated as fuel for road vehicles because of its lower impact

on the environment than gasoline and more widespread resources.

Constituent Composition [% vol.]

Methane 88.98

Ethane 6.85

Propane 1.27

Butane 0.24

Pentane 0.04

Hexane 0.003

Nitrogen 0.96

Carbon dioxide 1.61

Table 1. Example of natural gas composition.

Ristovski et al. (2004) performed an experimental activity on a passenger car converted to

operate either on gasoline or on compressed natural gas (CNG). Fuelling the engine by CNG,

both regulated (CO, NOx and HC) and unregulated emissions (PAHs and formaldehyde) were

lower than gasoline.

Prati, Mariani, Torbati, Unich, Costagliola & Morrone (2011) tested a bifuel passenger car

fuelled alternatively by gasoline and natural gas on a chassis dynamometer over different

driving cycles, in order to evaluate the effects of fuel properties on combustion, exhaust

emissions and engine efficiency. The results showed that gasoline produced CO emissions

higher than NG over the real world Artemis driving cycles, as a consequence of mixture

enrichment during load transients. A detailed description of the driving cycles is reported

in Barlow et al. (2009). Over the type approval New European Driving Cycle (NEDC), NG

involved higher HC emissions compared to gasoline as a consequence of the higher light-off

temperature for the catalytic oxidation of CH4, which is the major constituent of HC when

the vehicle is fuelled by NG, while there were no differences over the Artemis driving cycles

which were performed after a warming up conditioning of the vehicle. NOx emissions were

higher for gasoline over all the test cycles. CO2 emissions for CNG showed a reduction

between 21% and 29% over the tested driving cycles as a consequence of the reduced carbon

content of the fuel and the lower fuel consumption on mass basis. A 5% fuel consumption

reduction, expressed in MJ/km, is observed over the NEDC for the CNG respect to gasoline,

while for the Artemis the reduction ranges between 10% and 22%. The higher gasoline

consumption is the consequence of the mixture enrichment during transients. Particulate

emissions referred to gasoline were higher than NG ones over the NEDC and comparable

over the Artemis. Particle number observed was also higher for gasoline, with the exception

of the Artemis Motorway.

19A Review of Hydrogen-Natural Gas Blend Fuels in Internal Combustion Engines
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Fig. 1. Flame speeds of methane and iso-octane versus equivalence ratio φ (Mandilas et al.,
2007).

One of the drawbacks of the NG fuel is the laminar burning velocity lower than gasoline, as

shown in Figure 1 (Mandilas et al., 2007) requiring, as a consequence, a higher spark advance.

4. Hydrogen production and storage

4.1 Hydrogen production

The production of hydrogen is an important aspect since it is not present as a free chemical

species in nature. Hydrogen can be produced in several ways, but reforming from fossil fuels

or partial oxidation and electrolysis are the most employed from an industrial point of view.

The electrolysis consists in splitting the water molecule in hydrogen and oxygen as indicated

in the next reaction equation:

H2O + ∆hr → H2 +
1

2
O2 (12)

If the energy for water electrolysis is provided by renewable energy sources, hydrogen

production is an environmental friendly process, without green-house gas emissions. Two

main types of industrial electrolysis units are used today, which differ in the type of electrolyte

adopted. The first type of electrolysers is characterised by an alkaline aqueous solution of

25 − 35% in weight of potassium hydroxide (KOH) to maximise the ionic conductivity, in

which the hydroxide ions (OH−) are the charge carriers (Ulleberg, 2003). In the second type

20 Fossil Fuel and the Environment
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A review of Hydrogen-Natural Gas Blend Fuels in Internal Combustion Engines 5

of electrolysers the electrolyte is an ion conducting membrane that allows H+ ions to be

transported from the anode to the cathode side to recombine forming hydrogen. They are

known as Proton Exchange Membrane (PEM) electrolysers (Barbir, 2005). However, water

electrolysis powered by renewable energy sources is not competitive considering the current

energy costs but it may become more economical in the future (Bartels et al., 2010).

The nowadays most economical sources of hydrogen are coal and natural gas, with significant

experience in the operation of these types of plants, which will continue to be built and

operated. The fuel reforming is a process in which hydrocarbon fuels, such as natural

gas, are converted into a hydrogen-rich reformate gas. A reformer accomplishes the task

by thermo-chemically processing hydrocarbon feedstock in high temperature reactors with

steam and/or oxygen. Effective reformers should efficiently produce pure hydrogen with low

pollutants emission. The methane steam reforming global reaction is reported as an example

in the following reaction 13.

CH4 + H2O → CO + 3 H2 + ∆hr (13)

The reformate gas is composed of 40% − 70% hydrogen by volume and carbon monoxide,

carbon dioxide, water, nitrogen and traces of other compounds. The water-gas shift

conversion removes CO and increases hydrogen content. Shift step takes place at high

temperatures of about 350 − 480◦C, followed by a low-temperature shift (180 − 250◦C).

4.2 Hydrogen storage

Hydrogen has been recognized as an ideal energy carrier but it has not yet been widely

employed in the transportation sector. The lack of an efficient storage prevents its application,

in particular as fuel for transportation. Because of the low density of hydrogen at ambient

conditions, it is a challenge to store enough energy on-board to allow for an acceptable vehicle

range. The density can be increased by pressurizing or liquefying hydrogen. High-pressure

gaseous hydrogen, up to 700 bars, is considered a potential safety hazard due to problems

of material resistance. For vehicle application, cylinders are made of composite fibre due to

weight considerations. Indeed, tanks add a relevant weight to the vehicle, much greater than

the stored fuel, which is the 3% of the total weight (cylinder plus fuel) for a 700 bars approved

system (Sørensen, 2005).

Liquid hydrogen storage requires refrigeration to a temperature of about 20 K, and the

liquefaction process requires at least 15.1 MJ/kg. The on-board storage pressures for the

liquid hydrogen are only slightly above the atmospheric, with typical values around 6 bars.

The vessel for storing liquid hydrogen consists of several metal layers separated by highly

insulating materials. The main drawback is the hydrogen boil-off from the storage caused by

the need to control tank pressures by venting valves. Boil-off usually starts after a dormancy

period and then proceeds at a level of 3% − 5% per day (Sørensen, 2005).

As an alternative, even more challenging options have been proposed and investigated. Most

attention is paid to storage in solid materials and especially metal hydrides. Here, hydrogen

gas is fed to a tank containing a metal powder and is absorbed as hydrogen atoms in the

metals crystal lattice to form a metal hydride. In metal hydrides, hydrogen can be stored

with energy densities up tp 15000 MJ/m3, higher than that of liquid hydrogen, which is 8700

21A Review of Hydrogen-Natural Gas Blend Fuels in Internal Combustion Engines
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MJ/m3 (Sørensen, 2005). The main disadvantage, however, is the weight of the storage alloys.

Furthermore refuelling times are affected by absorption rates.

Other storage options are under investigation but still at prototypal stage (Bakker, 2010).

5. HCNG blends

Table 2 compares the main physical properties for pure fuels, methane and hydrogen. In the

same table, LHV represents the Lower Heating Value of the fuel, AFR is the air-to-fuel ratio

and LHVstoich, mix [MJ/Nm3] is the volumetric lower heating value for a stoichiometric air-fuel

mixture.

CH4 H2

Adiabatic flame temperature of stoichiometric mixtures [K] 2210 2400

Flammability limits in air at 25◦C and 1 bar [% vol.] 5.0-15 4.0-75

Minimum ignition energy in air at φ = 1 and 1 bar [mJ] 0.47 0.02

LHV [MJ/kg] 50.0 120.3

LHVvol [MJ/Nm3] 35.3 10.6

AFRstoich 17.2 34.3

LHVstoich, mix [MJ/Nm3] 3.351 3.143

Table 2. CH4 and H2 properties (Glassman & Yetter, 2008).

Table 3 shows the main fuel characteristics of natural gas and hydrogen-natural gas blends

with 10% (HCNG10), 20% (HCNG20) and 30% (HCNG30) of hydrogen in volume. The

volumetric hydrogen content is calculated according to equation 14.

H2[%vol.] =
VH2

VNG + VH2

(14)

The volumetric Lower Heating Value is the fuel energy per unit volume, so it is a measure

of the energy that can be stored in the fuel tank. It is 7% lower than NG for HCNG10, 14%

for HCNG20 and 21% for HCNG30. LHVstoich, mix, which is proportional to the engine power

output, is negligibly affected by hydrogen addition.

Natural Gas HCNG10 HCNG20 HCNG30

H2 [% vol.] - 10 20 30

H2 [% energy] - 3.2 7.0 14.4

LHV [MJ/kg] 45.3 46.2 46.7 48.5

LHVvol [MJ/Nm3] 36.9 34.3 31.7 29.2

AFRstoich 15.6 15.8 16.1 16.4

LHVstoich, mix [MJ/Nm3] 3.375 3.367 3.358 3.349

Table 3. NG and HCNG fuel properties.
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5.1 Combustion characteristics

Since hydrogen laminar combustion speed is about eight times greater than methane,

it provides a reduction of combustion duration when mixed with natural gas in small

concentrations. Many studies have been carried out to measure the flame speed of

hydrogen-methane air mixtures at different hydrogen concentrations and equivalence

ratios. Ilbas et al. (2006) performed the measurements at ambient temperatures with

hydrogen-methane blends up to 100% hydrogen.

Fig. 2. Flame speed of different fuels versus equivalence ratio φ (Ilbas et al., 2006).

Figure 2 shows the flame speed for methane and a 50% hydrogen-methane blend plotted

versus the equivalence ratio. The maximum flame speed for the blend is 0.69 m/s while the

maximum for methane is 0.39 m/s for an equivalence ratio φ = 1.1. The flammable regions

were also widened as the hydrogen content increased in the mixtures.

Figure 3, where the flame speed is plotted versus hydrogen content, shows the non-linear

dependence of this property on hydrogen percentage.

Mandilas et al. (2007) performed experiments in a spherical stainless steel vessel at initial

temperatures up to 600 K and initial pressures up to 1.5 MPa to study the effects of hydrogen

addition on laminar and turbulent premixed methane-air flames. The burning velocity, ul ,

was found using equation 9. Methane can be ignited for 0.6 ≤ φ ≤ 1.3, with the peak burning

velocity occurring at φ = 1.0. The addition of H2 extends the ignition limits to the range

0.5 ≤ φ ≤ 1.4 and increases the values of ul at lean equivalence ratios, while ul does not

increase for rich equivalence ratios. The authors also compared the turbulent velocity utr for

methane and a blend with 30% of hydrogen. As in the laminar case, the addition of hydrogen

23A Review of Hydrogen-Natural Gas Blend Fuels in Internal Combustion Engines
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Fig. 3. Flame speeds versus hydrogen content in methane-hydrogen blends at φ = 1 (Ilbas
et al., 2006).

extends the ignition limits and higher utr values, in particular at lean air-fuel mixtures, are

attained compared to methane.

A comparison of results obtained by several authors for the unstretched laminar burning

velocity versus the equivalence ratio, for HCNG20, is shown in Figure 4 (Miao et al., 2009).

It is observed in any case that the maximum flame speed is attained at φ ∼= 1.1 with values

around 0.5 m/s.

5.2 The impact of HCNG blends on engine efficiency and exhaust emissions

The reduction of combustion duration promoted by hydrogen addition results in increased

engine efficiency respect to natural gas and enhances combustion stability, reducing

cycle-by-cycle variation. Nagalingam et al. (1983) proved that the high burning rate of HCNG

blends requires an ignition timing lower than natural gas to obtain the Maximum Brake

Torque (MBT).

The MBT spark advance versus the hydrogen content, shown in Figure 5 (Karim et al., 1996),

is noticeably affected by hydrogen addition, in particular for very lean air-fuel mixtures. The

plot shows that for blends containing significant amount of hydrogen, small adjustments to

the ignition timing are needed when the equivalence ratio is changed.

The engine efficiency can be increased fuelling the engine by HCNG blends. Sierens &

Rosseel (2000) developed a fuel system which supplies hydrogen-natural gas mixtures in

variable proportion to the engine. For low brake mean effective pressures high efficiency

can be achieved by increasing the hydrogen content reducing throttling losses. The authors

24 Fossil Fuel and the Environment
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Fig. 4. Unstretched laminar burning velocity ul versus the equivalence ratio φ for HCNG20
(Miao et al., 2009).

found that 10% hydrogen increases engine efficiency moderatly whereas 20% hydrogen gives

negligible extra benefit, as shown in Figure 6.

Recently, Ma et al. (2010) investigated the effect of high hydrogen volumetric content, up to

55%, on the performance of a turbocharged lean burn natural gas engine. The authors found

that the addition of hydrogen significantly extends the lean limit, decreases burn duration and

yields higher thermal efficiency. The plot of the engine efficiency versus λ, Figure 7, shows

a negative trend in engine efficiency for natural gas for λ values greater than 1.3, while the

blend with the higher hydrogen content shows positive trend up to λ = 1.6.

The increased hydrogen/carbon ratio and engine efficiency bring a reduction of CO2

emissions. By the way, as a consequence of a faster combustion, higher temperature are

attained in the combustion chamber, increasing NOx emissions in HCNG fuelled engines

compared to natural gas, for a given equivalence ratio φ. NOx can be kept down and

engine efficiency further improved if the engine is run with lean mixtures or adopting EGR at

stoichiometric air-fuel ratio.

Sierens & Rosseel (2000) found the maximum NOx emissions at a relative air-fuel ratio λ = 1.1.

For higher λ values, the reduction in heat of combustion available for the charge mixture

reduces the temperature and NOx as a consequence, as shown in Figure 8. However, such

conditions cause an increase in THC emissions, as shown in Figure 9.

Hoekstra et al. (1995) obtained very low NOx emissions operating with HCNG blends close

the lean limit, significantly extended compared with natural gas. Besides, the excellent anti

25A Review of Hydrogen-Natural Gas Blend Fuels in Internal Combustion Engines
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Fig. 5. Spark timing for maximum indicated power output versus hydrogen content (Karim
et al., 1996).

knock qualities of natural gas are not undermined by the presence of relatively small amounts

of hydrogen in the blend (Karim et al., 1996).

The effect of hydrogen on the lean limit, here defined as the λ value at which the COVimep

attains 10%, is shown in Figure 10 (Ma et al., 2010), with values of 1.2 for NG, 2.1 for HCNG30

and 2.5 for HCNG55.

The impact of hydrogen addition to natural gas on cycle-by-cycle variations have been

investigated in many scientific activities and the results showed that the coefficient of

variation in maximum pressure and in indicated mean effective pressure are reduced with

increasing hydrogen content, both with lean air-to-fuel ratio as well described by Ma et al.

(2008) in Figure 11 and Wang et al. (2008) and with large exhaust gas recirculation ratio values,

Figure 12 (Huang et al., 2009).

Numerical simulations have also been used to predict performance and emissions of internal

combustion engines fuelled by HCNG blends.

Figure 13 shows the predicted fuel consumption in terms of energy per kilometer [MJ/km]

over the NEDC versus the hydrogen content (Mariani et al., 2011). Stoichiometric air-to-fuel

ratio was considered for each fuel in order to assure an efficient exhaust after-treatment

adopting a three-way catalyst. Exhaust gas recirculation was investigated (instead of ultra

lean mixture) with the aim at improving engine efficiency and reducing NOx emissions

respect to undiluted charge. In fact, HCNG blends combustion properties are particularly

suitable for EGR, assuring a stable combustion even if the charge is diluted (Hu et al., 2009).

26 Fossil Fuel and the Environment
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Fig. 6. Engine efficiency versus relative air-fuel ratio λ for different fuels (Sierens & Rosseel,
2000).

MBT ignition timing has been adopted for all fuels and operating conditions investigated.

Fuel consumption is reduced as the hydrogen content increases due to the positive effect on

average engine efficiency over the driving cycle, with values 2.5%, 4.7% and 5.7% lower than

NG for HCNG10, 20 and 30 respectively. Fuel consumption is further reduced adopting 10%

EGR for HCNG blends, with values 5.4%, 6.6% and 7.7% lower than NG for HCNG10, 20 and

30 respectively. NOx emissions, expressed in g/km over the driving cycles, are reported in

Figure 14. Adding hydrogen higher in-cylinder temperatures are attained as a consequence of

a faster combustion, resulting in increased NOx emissions with values 3.6%, 10.7% and 19.7%

higher than NG for HCNG10, HCNG20 and HCNG30 respectively. The use of EGR results

in lower NOx emissions with respect to the case without EGR, with values about 85% lower

than CNG for each HCNG fuel.

6. Real-life cases of HCNG use

HCNG blends can be distributed by the present natural gas refuelling stations, providing

them with a mixing equipment in order to obtain blends with the selected hydrogen content.

The system must operate to assure a high accuracy of hydrogen percentage because the fuel

composition influences engine performances hence requiring customized engine calibration.

In particular, the increased combustion velocity requires a reduction of the ignition advance as

the hydrogen concentration increases to obtain the maximum engine torque. Furthermore, the

fuel supply system should be calibrated to compensate the variation of fuel properties caused

by hydrogen addition. In fact, present natural gas vehicles requires stoichiometric air-fuel

ratio to obtain a high conversion efficiency of HC, CO and NOx emissions in the three-way

27A Review of Hydrogen-Natural Gas Blend Fuels in Internal Combustion Engines
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Fig. 7. Engine efficiency versus relative air-fuel ratio λ for different fuels (Ma et al., 2010).

Fig. 8. NOx emissions versus relative air-fuel ratio λ (Sierens & Rosseel, 2000).
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Fig. 9. Hydrocarbon emission versus relative air-fuel ratio λ (Sierens & Rosseel, 2000).

Fig. 10. Lean limit versus hydrogen content in the blend (Ma et al., 2010).
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Fig. 11. COVimep versus relative air-fuel ratio λ for NG and HCNG blends (Wang et al., 2008).

Fig. 12. COVimep versus EGR for NG and HCNG blends (Huang et al., 2009).
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Fig. 13. Predicted fuel consumption versus hydrogen content over the NEDC (Mariani et al.,
2011).

catalytic converter. HCNG fuels can be used in lean burn engines or with high EGR rates

at stoichiometric conditions, exploiting their excellent combustion properties, with positive

impact on engine efficiency and low exhaust emissions.

Finally, the use of HCNG fuel can stimulate the development of the hydrogen technologies

and market which are, nowadays, the main practical problems preventing it to be

implemented.

Many research projects have been performed in the past and others are still going on to

assess the potential benefits coming by using HCNG fuels in real-life applications. The

U.S. Department of Energy Advanced Vehicle Testing Activity (AVTA) teamed with Electric

Transportation Applications (ETA) and Arizona Public Service (APS) to develop a hydrogen

pilot plant, where hydrogen is produced by means of PEM electrolyzer and is dispensed to

vehicles that operate with different HCNG blends with hydrogen ranging from 0% to 100%.

The project demonstrated the safety of operating vehicles on hydrogen and the reduction of

exhaust emissions attainable with hydrogen and HCNG fuelled vehicles compared to gasoline

(Francfort & Karner, 2006).

A hydrogen production plant with HCNG dispenser have been built in Malmö, Sweden, for

project to improve engine efficiency and reduce emissions of a bus fleet (Ridell, 2006).

In Italy, public transportation companies of Regione Emilia Romagna and the ENEA research

center are involved in experimental tests to evaluate fuel consumption and exhaust emissions

of buses for urban transport service, Figure 15 (Genovese et al., 2011).

31A Review of Hydrogen-Natural Gas Blend Fuels in Internal Combustion Engines
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Fig. 14. Predicted NOx emissions versus hydrogen content over the NEDC (Mariani et al.,
2011).

Fig. 15. Urban bus tested with HCNG blends (Genovese et al., 2011).

Regione Lombardia, Fiat Research Center, Sapio, CNR-Istituto Motori and Seconda Universitá

degli studi di Napoli are involved in a project to test a passenger car fuelled by HCNG blends,

varying the hydrogen content, in order to assess the impact of hydrogen addition to natural

gas on combustion, exhaust emissions and fuel consumption, over different driving cycles,

Figure 16 (Prati, Costagliola, Torbati, Unich, Mariani, Morrone & Gerini, 2011).

32 Fossil Fuel and the Environment
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The authors of this review have designed and built an high accuracy mixing equipment to

produce HCNG blends with imposed hydrogen content. The device is developed on the

occasion of a project which involves the research group of the Seconda Universitá degli Studi

di Napoli, the Neapolitan Transportation Company (CTP), NA-MET, the company managing

the NG bus fleet and ECOS srl, an enterprise which develops CNG fuelling stations.

Fig. 16. Fiat Panda HCNG tested in the laboratory of Istituto Motori-CNR (Prati, Costagliola,
Torbati, Unich, Mariani, Morrone & Gerini, 2011).

7. Conclusion

Natural gas is employed as fuel since it is the cleanest fossil fuel with exhaust emissions from

natural gas vehicles lower than those of gasoline-powered vehicles. Some of its drawbacks

can be mitigated by enriching it with hydrogen to produce the so called hydrogen-natural gas

blends.

The laminar flame speed of methane is lower than the gasoline one and the addition

of hydrogen, which presents a laminar flame speed about eight times that of methane,

significantly improves this main combustion property.

In the past years, many authors have proved both experimentally and numerically that the

HCNG blends improve engine efficiency and reduce CO2 emissions because of the reduced

C/H ratio and fuel consumption. NOx emissions are, instead, larger than NG because of

the higher in-cylinder temperature attained, for a given equivalence ratio. Anyway, the use

of lean AFR or the EGR definitely reduces NOx emissions and bring about an extra increase

in engine efficiency. The good combustion patterns of HCNG blends help to keep low HC

emissions.
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9. Nomenclature

AFR Air-fuel ratio [kgair/kg f uel]

avg Average
CA Crank angle [◦]
COV Coefficient of variation
BTDC Before top dead center
EGR Exhaust gas recirculation
HCNG Hydrogen-natural gas blend
imep Indicated mean effective pressure [Pa]

LHV Lower heating value [MJ/kg or MJ/Nm3]
MAP Manifold absolute pressure
MBT Maximum brake torque
NG Natural gas
NEDC New European driving cycle
NOx Nitrogen oxides
PAH Polycyclic aromatic hydrocarbons
R Flame front position [m]
rpm Revolutions per minute
S Flame speed [m/s]
t Time [s]
T Torque [N m]
THC Total unburned hydrocarbon
ul Unstretched laminar burning velocity [m/s]

V Volume [m3]
WOT Wide open throttle
Greek symbols
α Mole number of NG [mol]
β Mole number of hydrogen [mol]
∆hr Enthalpy of reaction [kJ/mol]
κ Stretch rate [1/s]
λ Relative air-fuel ratio [-]
φ Equivalence ratio [-]
σ Standard deviation
Subscripts
a Air
b Burned
d Displacement
f Fuel
l Laminar
mix Mixture
n Stretched
s Unstretched
stoich Stoichiometric
tr Turbolent
u Unburned
vol Volumetric
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