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1. Introduction 

Chronic renal injury can be mediated by angiotensin II (Ang II) through hemodynamic and 

inflammatory mechanisms and attenuated by individual suppression of these mediators. 

Hypertension is usually associated with the development of vascular and renal fibrosis [3]. 

This pathophysiological process is characterized by structural changes in vasculature caused 

by increased synthesis and rearrangement of extracellular matrix proteins, such as the 

collagen type I [4]. Several studies support a major role for the renin-angiotensin system in 

the development of fibrosis [5, 6]. 

Hypertension injures blood vessels and thereby causes end-organ damage. The mechanisms 

are complicated and although they have been studied for decades in experimental animal 

models [7], they are only currently being elucidated. From the efforts of many investigators, 

we are now in the position of constructing a chain of events from the endothelium to the 

underlying matrix, to the vascular smooth muscle cells, and beyond to the adventitia, and 

surrounding tissues. The endothelial layer acts as a signal transduction interface for 

hemodynamic forces in the regulation of vascular tone and chronic structural remodeling of 

arteries [8]. Infiltration of the permeabilized endothelium by leukocytes sets the stage for an 

inflammatory cascade, involving cytokines, chemokines, growth factors, and matrix 

metalloproteinases. Altered integrin signaling, the production of tenacin, epidermal growth 

factor signaling, tyrosine phosphorylation, and activation of downstream pathways 

culminate in vascular smooth muscle cell proliferation [9]. Evidence is accumulating that 

matrix molecules provide an environment which decreases the rate of programmed cell 

death [10]. 
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Hypertension is a major risk factor for renal and cardiac damage, however, the mechanisms 
are incompletely understood. Angiotensin (Ang) II, the key effector of the local and 
circulating renin-angiotensin system (RAS), plays a central role [11-12]. In addition to its 
vasoactive and growth-promoting action, Ang II stimulates circulating leukocytes and 
endothelial cells, thereby promoting inflammation and interstitial extracellular matrix 
accumulation [13-17]. Many inflammation-mediating genes are activated by the 

transcription nuclear factor-B (NF-B), which resides inactive and bound to the inhibitory 
protein I-B in the cytoplasm of T lymphocytes, monocytes, macrophages, endothelial cells, 
and smooth muscle cells [18-19]. Ang II stimulates NADPH oxidase, which generates 
reactive oxygen species (ROS) [20]. ROS may act as signal transduction messengers for 
several important transcription factors, including NF-B and AP-1 (activator protein-1) [21]. 
Recently, Ozes et al [22]showed that Akt/protein kinase B (Akt) is essential in tumor 
necrosis factor- (TNF-)–induced activation of NF-B. Takahashi et al, [23] as well as 
Ushio-Fukai et al, [24] have demonstrated Akt activation by Ang II, which may involve 
ROS. Akt-induced activation of NF-kB upregulates numerous genes, including interleukin 
(IL)-1, IL-6, IL-8, interferon-, TNF-, intercellular adhesion molecule-1 (ICAM-1), vascular 
cell adhesion molecule-1 (VCAM-1), and the chemokine MCP-1 (monocyte chemoattractant 
protein-1). Several reports [25-27] indicated that angiotensin converting enzyme (ACE) 

inhibition decreased NF-B in renal disease. 

We have previously demonstrated that traditional Chinese medicine prescription 
documented in the ancient Chinese pharmacopoeia or monographs promoted blood 
circulation, decreased blood stasis, and improved renal function. They decreased urinary 
protein excretion ,balanced lipid metabolism and enhanced the effects of antioxidant in the 
treatment of patients with early and middle stage chronic renal failure [28-32].  

It has been showen broad foreground to postpone progression of chronic renal dysfunction. 
But it is unclear that effective composition and mechanism of renal protection. Therefore, 
the study presented here was designed to test the hypothesis that HE-86 liquid extract, 
which is effective unite refined from above Chinese prescription, would prevent chronic 
renal failure rats induced by nephrectomized, in association with decreased expression of 
angiotensin II and AT- II receptors, further to suppress high expression of inflammatory and 
growth factors. In an attempt to obtain more effective renal protection, research design 
consisted of a group of Nx rats receiving a HE-86 liquid extract treatment comparing with 
chronic renal failure rats induced by subtotal nephretomized without treatment. At same 
time, in the present study, we also assess the influence of renal mass reduction (RMR) 
caused by subtotal (5/6) nephrectomy on gene expression for NF-B, TNF- and TGF-beta1 
and evaluate the correlation between expression of these genes and activity of the intrarenal 
renin-angiotensin systems. The research result showed HE-86 played a critical role in 
improving renal disease and was a key mediator in delay process of vascular fibrosis, 
characterized by reduced lumen diameter and arterial wall thickening attributable to 
excessive deposition of extracellular matrix (ECM) through by the model study. 

2. Materials and methods 

2.1 Experimental design 

Thirty-six of the normal kidney mass were removed from adult male Munich-Wistar rats 
(BiKai, Shanghai, China) weighing 200–210 g to make animal models of CRF. In a first  

www.intechopen.com



Molecular Mechanisms of Nephro-Protective  
Action of HE-86 Liquid Extract in Experimental Chronic Renal Failure 

 

177 

session, two thirds of the left kidney were removed. One week after the first operation, the 

right kidney was removed. These procedures were performed under anaesthesia with 

sodium pentobarbital (The ShuGuang pharmaceutical factory in Shanghai). Two weeks after 

5/6-nephrectomy, 24 rats were divided into pairs such that both rats in each pair exhibited 

almost the same levels of serum creatinine, blood urea nitrogen (BUN) (Table 1). One rat 

from each pair was assigned to (i) control uraemic group (n=12), the other to (ii) treatment 

uraemic group (n=12) which received HE-86, extract liquid which is effective composition 

isolated from Chinese medicine prescription, everyday at a dose of 0.75 g/100 g body 

weight for 8 weeks. For normal controls, rats underwent a sham operation consisting of 

laparotomy and manipulation of the renal pedicles but without damage to the kidney(n=12). 

The treatment group were administered by HE-86 infuse the stomach as pair-fed with the 

control uraemic rats, and the normal rats were fed ad libitum with standard solid chow 

(BiKai Animal Lab. Company, Shanghai, China) containing 24.5% protein.  

 

 N BUN(mmol/L) Scr(μmol/L)  

sham 12 7.510.75 19.004.00 

control 12 16.170.99* 49.506.53* 

treatment 12 16.182.42* 49.239.36* 

 

Table 1. The variation of serum creatinine and blood urea nitrogen before treatment.  

Blood pressure was measured before treatment and every two weeks after surgery. The 

levels of serum creatinine (Scr), Blood urea nitrogen (BUN), 24h urine protein excreation 

and urine TGF–ǃ were determined at 4 or 8 weeks after starting the administration of HE-86, 

respectively. The remnant kidneys were removed after perfusion at the end of experiment 

for histopathological and gene expression studies.  

2.2 Analytical procedures 

Renal Function Assessment and Blood Pressure Measurement  

Serum creatinine (Scr) and Blood urea nitrogen (BUN) were measured using a Beckman Cx4 

analyser (Fullerton, CA, USA), respectively. 

24h Urinary protein concentrations were determined by the Bradford method, adapted to a 

microtiter plate assay. Coomassie reagent (USB, Cleveland, OH) was added to the diluted 

urine samples. After 10 minutes, the absorbance at 595-nm wavelength was read on ELX800 

microplate reader (Bio-Tek Instruments, VT). The protein concentrations were calculated by 

reference to bovine serum albumin (Sigma) standards.  

Systolic blood pressure was recorded by tail plethysmography using the BP2000 blood 

pressure analysis system (Visitech Systems, Inc., Apex, NC) in conscious rats at baseline and 

every 2 weeks throughout the experimental time course. 

www.intechopen.com



 
Chronic Kidney Disease 

 

178 

2.3 Immunohistochemical analysis 

Immunostaining of NF-κb (Sigma) in renal tissue sections was performed using the 

streptavidin–biotinylated peroxidase complex (SABC) method. The tissue specimens were 

divided into thin sections (4-µm thick) that were then deparaffinized. The sections were 

washed three times with distilled water for 5 min. The sections were treated with Protease K 

(Try box produced by BSD living creature technique company of Wuhan) in distilled water 

at 37°C for 15 min, and washed three times with PBS for 10 min. Endogenous peroxidase 

activity was blocked by incubating the sections with 0.3% H2O2 in methanol for 20 min at 

room temperature. The sections were washed three times with PBS for 5 min. The sections 

were incubated with 10% rabbit serum at 37°C for 60 min to reduce the non-specific 

background staining, and washed three times with PBS for 5 min. Then, the sections were 

incubated with a monoclonal anti- NF-κb antibody (7 µg/ml) dissolved in PBS containing 

3% BSA and 0.1% NaN3 at 4°C overnight, and washed three times with PBS for 10 min; 

followed by incubation with a biotinylated rabbit antibody against mouse IgG+IgA+IgM (10 

µg/ml) at 37°C for 40 min. The sections were washed three times with PBS for 5 min, and 

then incubated with peroxidase-labelled streptavidin at 37°C for 30 min. After washing 

three times with PBS for 10 min, the reaction was completed by the addition of 

diaminobenzidine–H2O2 solution for 15 min, and washed three times with distilled water 

for 5 min, then the slides were counter-stained with methylgreen.  

The primary anti- NF-κb antibody (1 : 100) was incubated with NF-κb (10 mg/ml) at 4°C 

overnight. After centrifuging the mixture at 10,000xg for 30 min, the supernatant was used 

as negative control for the primary antibody solution followed by the usual SABC method. 

There was no positive staining in the renal cortex when the primary antibody was pre-

incubated with NF-κb. 

The immunostaining of NF-κb was quantified using an image analyser IMS (FUDAN 

university of medical science portrait examination center) by evaluating the positively 

stained area of the sections under the same light intensity for microscopy. The intensity of 

colour component for red, green or blue was graded from 0 to 256°. Areas which showed 

intense brown color were extracted from the microscopic fields (number of fields for each 

tissue sample, six fields; magnification on the display: x300) under the following conditions; 

red component ranging from 104 to 158°, green component from 81 to 129°, and blue 

component from 70 to 123°.  

3. Real-time quantitative Polymerase Chain Reaction (PCR) for TNF－α, Ang II 

and AT1R 

To investigate the expression of TNF–ǂ mRNA, Ang II and AT1R real-time PCR (BC living 

creature technique company, Shanghai, China) was performed with the Opticon real-time 

PCR machine (FX scientific research Inc. Shanghai, China). Briefly, total RNA was extracted 

from renal tissues. All of the RNA samples were treated with the RNase-free DNase I 

(GIBCO BRC Inc, Shanghai, China) before the RT-PCR. Real-time quantitative one-step RT-

PCR assay was performed to quantify mRNA using real-time PCR machine (FX scientific 

research Inc. Shanghai, China). The primers used for real-time RT-PCR were as follows: 

TNF-a: forward 5’-CTCATTCCCGCTCGTGG-3’ reverse 3’-CGTTTGGTGGTTCGTCTCC- 5’; 
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AT1R: forward 5’-CTTGTTCCCTTTCCTTATC -3’reverse 3’-ACTCCACCTCACTGTCCA - 

5’. Ang II : forward 5'- ACCTG CATGA GTGTT GATAGG-3' reverse 3'-ACTTCA ATATC 

GTCAGT AACTGGAC-5'. 

Total RNA of osteoblasts was isolated by using TRIzol reagent (Invitrogen) and reverse 
transcription was performed follow manufacturer’s manual(BioTNT, Shanghai, China). 
Quantitative real-time PCR, enabling the quantification of relative gene expression, was 
performed using SYBR green DNA binding fluorescent dye. 10 μL of QuantiTect TM 
SYBR Green PCR Master Mix, 4 μL of QuantiTect TM SYBR Green primer assay 
(osteocalcin, b-actin; all provided by BioTNT), 5 μL of RNase free water and 1 μL of cDNA 
(1 ng/μL) were used for one reaction. Quantitative real-time PCR was performed in 
triplicates with the following cycler program: 95°C 10 min, denaturation step: 95°C 15 s, 
annealing step: 60°C 15 s, elongation step: 72°C 30 s; dissociation: 95°C 15 s, 60°C 1min, 
95°C 15 s, 40 cycles were performed in total. B-actin was taken as an endogenous standard 
and relative gene expression was determined using the ΔΔCt method. Gene expression 
was compared by setting control cultures to 1 (reference value) as indicated in the 
relevant figures. 

Quantitative analyses of TNF, ǂ, Ang II and AT1R expression were performed using a 
quantitative image analysis system (FR-2000,FR Science and technology Inc, Shanghai 
China). Because the pattern of expression of TNFǂ, Ang II and AT1R are diffuse in nature, 
the percentage of positive staining in the renal tissue was quantified under a ×20 power 
field of microscope. Briefly, up to 10 random areas of kidney with the early stage 
(media:intima ≥1) and advanced stage (media:intima <1) were chosen from each tissue 
section and examined. The examined area was outlined, the positive staining patterns were 
identified, and the percent positive area in the examined area was then measured. Data were 
expressed as the percentage of mean±SEM. 

4. Characterization of monoclonal anti-TGF–β antibody 

The reactivity of the produced monoclonal antibodies with Urine TGF–ǃ was screened by 
enzyme-linked immunosorbent assay (ELISA) using kit produced by Section living creature 
technique limited company of Hangzhou, China (NO,13409007) The sample solution (40 µl) 
was incubated with the monoclonal anti- TGF–ǃ antibody (40 µl) at room temperature for 1 
h in an TGF–ǃ–transferrin attached microplate. After washing with phosphate-buffered 
saline (PBS) containing 0.05% Tween 20, 0.1 ml of peroxidase-labelled goat F(ab')2 fragment 
to mouse IgG(Fc) was added into the microplate, followed by incubation at room 
temperature for 1 h. After washing with PBS containing 0.05% Tween 20, 0.2 ml of o-
phenylenediamine hydrochloride (1 mg/ml) containing 0.0124% H2O2 was added to the 
microplate, and then incubated at room temperature for 30 min. The reaction was 
terminated with 1.3 M H2SO4. The absorption at 492 nm was measured.  

4.1 Statistical analysis 

Data obtained from this study are expressed as the means ± SEM. Statistical analyses were 
performed using GraphPad Prism 3.0 (GraphPad Software, Inc., San Diego, CA). Differences 
in blood pressure, serum creatinine, blood urea nitrogen, 24h urine protein and Urine TGF–
ǃ at different time points (weeks 0 to 8) within the groups, and differences of Ang II and 
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AT1R activation, TNF–ǂ expression and NF-κb accumulation in sham, control and HE86-
treated animals were assessed by one-way analysis of variance, followed by t-test. Results 
were considered statistically significant when the P value was <0.05. 

5. Result 

Renal and systemic parameters obtained at 0 (before treatment), 32and 64 days after Nx are 

given in Table 1-5, Figure 1-5. Nx groups exhibited limited growth compared with Sham. In 

all Nx groups except treatment group, body weights were statistically different from those 

observed before treatment. Average food intake was similar among groups. 

6. Effects of HE-86 administration on biochemical parameters in uraemic rats 

Table2-3 shows the summary of renal function and 24h urine protein level. There was 

significant change in body weight between the control uraemic (control) and HE-86 treated 

uraemic (treatment) rats, although they were pair-fed. body weight of treatment group was 

showed more than control uraemic. Even 4 weeks after 5/6-nephrectomy, the levels of 

serum creatinine and BUN were markedly increased as compared to sham rats. Not only at 

4 week but also at 8 week, the uraemic rats treated with HE-86 were manifested significantly 

decreased levels of serum creatinine, BUN, respectively. Urinary protein excreation was also 

suppressed obviously at 8 week as comparing with control uraemic rats.  

 N BUN(mmol/L) Scr(μmol/L)  

sham 12 6.790.70 26.251.04 
control 12 12.093.37 50.5615.83 
treatment 12 9.812.93 38.8312.00# 

Table 2. Serum creatinine and blood urea nitrogen after 4 week treatment. #P<0.05, 
##P<0.01,when compared against empty vector-treated controls 

 N BUN(mmol/L) Scr(μmol/L)  24h urine protein(mg) 

sham 12 9.31±1.05 18.88±1.55 22.34±4.4 
control 12 14.85±2.83 53.38±12.05 41.47±8.07 
treatment 12 13.62±2.81 41.00±10.51## 29.14±5.68## 

Table 3. Serum creatinine, blood urea nitrogen and twenty-four-hour urinary protein 
excretion after 8 week treatment. #P<0.05, ##P<0.01,when compared against empty vector-
treated controls 

7. Effects of HE-86 administration on mean arterial blood pressure in uraemic 
rats 

After subtotal nephrectomy, hypertension developed in both HE-86 treatment and control 

uremic rats. Blood pressure was significantly elevated from second to eighth week after 

nephrectomy compared to sham-operated animals (P < 0.05-0.01), and the rise in blood 

pressure was equivalent (systolic blood pressure 180 to 200 mmHg) in control group. After 

using HE-86 liquid extract, hypertension was obviously suppressed in treatment group, 

showing average systolic blood pressure 140 to 160 mmHg (Table 4). 

www.intechopen.com



Molecular Mechanisms of Nephro-Protective  
Action of HE-86 Liquid Extract in Experimental Chronic Renal Failure 

 

181 

 Before 
treatment 

After treatment 

Second week Forth week Sixth week Eighth week 

sham 137.3114.72 139.1314.06 125.507.15 150.5613.97 129.6329.16 

control 140.5023.55* 212.4643.26 199.9223.55 156.3320.72 202.4415.09 

treatment 141.7726.45* 148.5038.82＃＃ 152.4629.54＃＃ 141.0014.73＃ 176.0030.70＃ 

Table 4. Systolic blood pressure. Data represent the means ± SEM for groups of twelve rats 
treated with either HE-86 or empty vector (#P<0.05,##P<0.01,when compared against empty 
vector-treated controls;*P<0.05,**P<0.01, when compared to normal sham-controls). 

8. Effects of HE-86 administration on urine TGF－β1 

High excreation of urine TGF－ǃ1, which express both glomerular and tubulointerstitial 

injuries. To demonstrate further the anti-inflammatory effect of HE-86 on rat chronic renal 
failure, we determined the TGF－ǃ1 levels within the urine by ELISA. Results demonstrated 

that compared with vehicle, He-86 treatment significantly reduced urinary TGF－ǃ1 levels, 

corrected by decrease level of serum creatinine, throughout the entire disease course (P<0.05), 
indicating that HE-86 treatment may primarily suppress the local immune and inflammatory 
response within the diseased kidney. In contrast, overexpression of urine TGF－ǃ1 was found 

in control uraemic rats as compared with normal rats (Table 5). The experimental result 
showed the administration of HE-86 significantly inversed high expression of urine TGF－ǃ in 

uraemic rats, manifesting HE-86 to attenuate the development of glomerular sclerosis. 

 N Urine TGF－ǃ(ug/L) 

sham 12 1.830.64 
control 12 1.900.56* 
treatment 12 1.770.43# 

Table 5. Effect of HE-86 liquid extract on  urine TGF－ǃ excretion in 5/6 nephrectomy in 
rats. (#P<0.05, ##P<0.01,when compared against empty vector-treated controls; *P<0.05, 
**P<0.01, when compared to normal sham-controls) 

9. Effects of HE-86 administration on localization of NF–κB in renal tissue 

Immunohistochemical analysis was performed to determine the localization of NF–κB in the 

renal cortex (Fig.1-2). NF-B, a critical transcriptional factor for controlling inflammatory 
response, has been shown to play a central role in inflammatory diseases, including kidney 
diseases [33]. In normal rats, only tubular epithelial cells were weakly stained by the 
monoclonal anti-NF–κB antibody, while glomeruli were hardly stained. In control uraemic 
rats, however, proximal tubular epithelial cells, especially of dilated tubules, were 
intensively stained by the anti-NF–κB antibody. In contrast, in the HE-86-treated uraemic 

rats activation of the NF-B in tubular epithelial cells was less prominent as compared with 
that in the control uraemic rats. The staining of NF–κB as shown in the control uraemic rats 
found increased NF–κB -positive (intensively stained) area in the renal cortex, whereas HE-
86-treated rats showed markedly decreased NF–κB -positive area as compared to the control 
uraemic rats. These data demonstrate that HE-86 markedly reduces the overexpress of NF–
κB on the remnant tubular cells.  
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Fig. 1. Immunohistochemistry demonstrates that HE-86 inhibits renal NF－B accumulation 

within the kidney. The accumulation of NF－B in the glomerular and tubulointerstitium is 
markedly increased in empty vector-treated animals (C, D), compared to normal sham-
controls (A,B), which is substantially inhibited in 5/6 nephrectomized rats treated with HE-
86 (E, F). Original magnifications, x100. 
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Fig. 2. Semiquantitative analysis of the therapeutic effect of HE-86 on NF–B localization in 

the glomerulus and tubulointerstitium using the Quantitative Image System. A: Percentage 

of glomerular and tubulointerstitial NF–B deposition in sham group. B: Percentage of NF–

B localization in glomerular and tubulointerstitial without treatment C: Percentage of 

glomerular and tubulointerstitial NF–B accumulation in twelve rats treated with HE-86 

was decreased significantly. Each bar represents data (mean ± SEM) #, P < 0.05 and ##,  

P < 0.001, when compared to empty vector-treated controls; *, P < 0.05 and **, P < 0.01, when 

compared to the normal sham-control. 

10. Effects of HE-86 administration on mRNA levels of TNF–α, Ang II and AT II 
R in renal tissue  

The effects of HE-86 on the gene expression of Ang II (Figure 3), AT1R (Figure 4) and 

TNF– (Figure 5) in the renal cortex were examined. We investigated the potential 
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mechanisms whereby HE-86 suppressed rat tubular interstitial fibrosis and glomerular 

cirrhosis. TNF-, being key proinflammatory cytokines in anti-GBM glomerulonephritis, 

and a group of chemotactic and adhesion molecules including ICAM-1, MCP-1, was 

examined. In vehicle-treated chronic renal failure rats, there was a substantial increase in 

renal mRNA expression of TNF-, Treatment with HE-86 significantly reduced 

upregulation of TNF- inflammatory genes examined (P<0.05). Furthermore, HE-86 was 

capable of attenuating renal cortical mRNAs for Ang II and AT1R as compared with the 

control uraemic rats when they were administered after the establishment of 

nephrectomized. However, the renal mRNA levels of Ang II and AT1R were markedly 

increased in control uraemic rats as compared with normal rats. The variation in the 

mRNA levels of TNF–, Ang II and AT1R in both HE-86-treated and control uraemic rats 

are related to variation in the extent of CRF. 

 

 

           Sham group               Control group         Treatment group 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A B C

＃

*

 

 

Fig. 3. Real-time PCR reveals the inhibitory effect of HE-86 liquid extract on renal Ang II 
mRNA expression(A). and Semiquantitative analysis of the therapeutic effect of HE-86 on 
Ang II mRNA localization in the glomerulus and tubulointerstitium using the FR-2000 
Image Analyze System. A: Degree of glomerular and tubulointerstitial Ang II mRNA 
expression in sham group. B: Numbers of Ang II mRNA expression in glomerular and 
tubulointerstitial without treatment C: Numbers of glomerular and tubulointerstitial cells 
with nuclear localization of Ang II mRNA in twelve rats treated with HE-86 was decreased 

significantly. Each bar represents data (mean ± SEM) ＃, P < 0.05 and ＃＃, P < 0.01, when 
compared to empty vector-treated controls; *, P < 0.05 and **, P < 0.01, when compared to 
the normal sham-control. 
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Fig. 4. Real-time PCR reveals the inhibitory effect of HE-86 liquid extract on renal 
AT1RmRNA expression(B). and Semiquantitative analysis of the therapeutic effect of HE-86 
on AT1RmRNA localization in the glomerulus and tubulointerstitium using the FR-2000 
Image Analyze System. A: Degree of glomerular and tubulointerstitial AT1RmRNA 
expression in sham group. B: Numbers of AT1RmRNA expression in glomerular and 

tubulointerstitial without treatment C：Numbers of glomerular and tubulointerstitial cells 
with nuclear localization of AT1RmRNA in nephrectomized rats treated with HE-86 was 

decreased significantly. Each bar represents data (mean ± SEM) ＃, P < 0.05 and ＃＃, P < 
0.01, when compared to empty vector-treated controls; *, P < 0.05 and **, P < 0.01, when 
compared to the normal sham-control 
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Fig. 5. Real-time PCR reveals the inhibitory effect of HE-86 liquid extract on renal 

TNF－mRNA expression(C). and Semiquantitative analysis of the therapeutic effect of HE-

86 on TNF－mRNA within the glomerulus and tubulointerstitium using the FR-2000 

Image Analyze System. A: Degree of glomerular and tubulointerstitial TNF－mRNA 

expression in sham group. B: Numbers of TNF－mRNA expression in glomerular and 
tubulointerstitial without treatment C: Numbers of glomerular and tubulointerstitial cells 

with nuclear localization of TNF－mRNA in nephrectomized rats treated with HE-86 was 

decreased significantly. Each bar represents data (mean ± SEM) ＃, P < 0.05 and ＃＃, P < 
0.01, when compared to empty vector-treated controls; *, P < 0.05 and **, P < 0.01, when 
compared to the normal sham-control. 

11. Discussion 

Renal fibrosis is a final common pathway to end-stage renal disease. Recent studies have 
shown that hypertensive nephropathy is a major leading cause of end-stage renal disease 
and the renin-angiotensin system plays a pivotal role in the development of progressive 
renal injury [34-35]. Clinical trials have shown that blocking the effects of angiotensin II 
(Ang II) with angiotensin-converting enzyme inhibitors and angiotensin-receptor blockers 
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can prevent or slow the progression of kidney damage in patients with diabetes and 
hypertension [34-36].  

As expected, 5/6 renal ablation promoted growth retardation, systemic arterial 
hypertension, impaired renal function, and severe albuminuria. These functional changes 
were accompanied by severe glomerulosclerosis, as well as expansion and intense 
macrophage infiltration of the interstitial area. Mounting evidence indicates that these 
renal structural abnormalities, which are characteristic of the Nx and other models of 
progressive nephropathies, are a consequence of the concerted action of mechanical stress, 
caused by glomerular hypertension and hypertrophy [37-38], and inflammatory 
phenomena, comprising cell infiltration and/or proliferation and extracellular matrix 
accumulation [38-39]. Moreover, a causal relationship appears to exist between these 
phenomena, because the distension of the glomerular walls due to intracapillary 
hypertension may trigger the local release of cytokines, growth factors, and, particularly, 
Ang II and AT-1 receptors [40-41]. 

The beneficial effect of RAS suppressors was initially attributed to amelioration of the 
glomerular hemodynamic dysfunction associated with progressive nephropathies. 
However, recent observations suggest that the nonhemodynamic effects of RAS suppressors 
may be equally important, given the strong proinflammatory and profibrotic effects of Ang 
II [42]. A substantial fraction of this proinflammatory ANG II may originate in the renal 
parenchyma, rather than in renal vessels or in the systemic circulation [43]. Increased 
intrarenal production of ANG II was described in various models of renal fibrosis [44-46]. A 
preliminary report has suggested that, in the 5/6 renal ablation (Nx) model, ANG II is 
expressed in renal interstitial cells, paralleling the severity of renal injury [47].  

Increasing evidence shows that angiotensin II (Ang II) plays a critical role in cardiovascular 
disease and is a key mediator in the process of vascular fibrosis, characterized by reduced 
lumen diameter and arterial wall thickening attributable to excessive deposition of 
extracellular matrix (ECM). Vascular fibrosis is a major complication of hypertension and 
diabetic mellitus. It has been shown that upregulated tissue rennin-angiotensin system is 
involved in development of vascular lesions in both human and experimental vascular 
diseases [48-49]. This observation is confirmed by the finding that infusion of Ang II is able 
to induce vascular fibrosis in rats [50]. The functional importance of Ang II in vascular 
fibrosis is further supported by the evidence that blockade of Ang II inhibits vascular 
fibrosis in diabetic and subtotal nephrectomy rats and NO-deficient mice [51-53].  

Both the hemodynamic and proinflammatory effects of Ang II are mediated by AT-1 
receptors (AT1R) [54], extensively expressed in renal tissue. In the normal rat kidney, AT1R 
are predominantly expressed in tubular cells and vessels [55]. Recent data obtained with the 
Nx model have suggested that AT1R expression is shifted from the glomerular to the 
tubulointerstitial compartment 4 wk after ablation [56]. However, the renal distribution of 
AT1R in this model and its temporal evolution have not been established. 

Beyond its hemodynamic effects, Ang II is recognized as a cytokine with an active role in 
cardiovascular remodeling. It is well known that Ang II signals through its Ang II receptor 1 
(AT1) receptor to exert most of its biological functions [57]. After binding to the AT1 
receptor, Ang II activates multiple downstream intracellular signaling pathways, including 
tyrosine kinase, mitogen-activated protein kinase (MAPK), p38, and Janus family kinase 
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[58]. Activation of these pathways leads to numerous heterogeneous downstream events 
that play essential roles in the biological activities of Ang II, such as cell growth and 
migration, ECM production, and apoptosis [58]. 

Renal expression of AT1R in rats appeared mostly in tubular cells, and to a lesser extent, at 
the interstitial area, whereas weaker expression was seen in vessels and glomeruli. This 
pattern was completely disrupted after Nx, when dense AT1R expression could be 
demonstrated in interstitial cells, far exceeding in intensity the expression of AT1R in 
tubules. The exact meaning of this finding and the cell types involved are uncertain. Several 
inflammatory cells known to infiltrate the renal interstitium in the Nx model have the 
potential to express AT1R, such as lymphocytes [59] and macrophages [60]. In addition, 
AT1R may be expressed by myofibroblasts originating from tubular cell transdifferentiation 
[61]. This hypothesis is particularly attractive because it helps to explain the progressive 
shift in AT1R expression, from tubules to the interstitial area, observed in Nx rats, and also 
because tubular cells already express AT1R under normal conditions. The simultaneous 
presence at the interstitial area of large amounts of Ang II and of the AT1R may accelerate 
the progression of the nephropathy by a positive-feedback mechanism. Consistent with this 
view is the aggravation of the renal structural injury of Nx, which was paralleled by the 
intensity of the inflammatory infiltration and of the interstitial expression of Ang II. 

It is well accepted that NF-B is a key transcriptional factor to regulate a variety of 

inflammatory responses [75]. NF-B is composed of p50 and p65 subunits, among which 
p65 is a potent transcriptional activator, strongly promoting inflammatory reaction in 

kidney diseases [76]. NFB total protein expression, and inflammation, which may have 
resulted from blockade of the oxidative stress pathway [77-78]. This was accompanied by a 
substantial attenuation in renal fibrosis, which might have resulted from the modulating 
actions of vitamins on lipid peroxidation and profibrotic activity involved in renal tissue 

damage [79-82]. In this study, marked activation of NF-B was closely correlated with the 
renal inflammation. In our study, using liquid extract isolated from clinical effective Chinese 

prescription, we were able to show that overexpression activation of NF-B was 
substantially suppressed as compared with control group. These findings are consistent 
with the improving renal function and correcting high blood pressure. 

Tumour necrosis fator-ǂ(TNF-ǂ)is a potent pro-inflammatory cytokine which is produced 
by many cell types including monocytes/macrophages, and renal mesangial and epithelial 
cells. It induces the expression of major histocompatibility complex (MHC) class I and II 
molecules, endothelial adhesion molecules and procoagulant activity of endothelium. TNF-
ǂ stimulates the release of other pro-inflammatory cytokines, chemokines and growth 
factors, including interleukin-1ǃ(IL-1ǃ), monocyte chemoattractant protein-1 (MCP-1) and 
transforming growth factor-ǃ(TFG-ǃ) [83-84]. The biological effects of TNF-ǂ are mediated 
by binding to specific receptors which are widely distributed. TNF-ǂ binds to two types of 
receptor: TNF receptor type 1 and TNF receptor type 2, which have molecular weights of 55 
kDa (p55) and 75 kDa (p75), respectively. Both receptors are necessary and act 
synergistically for cell proliferation and maturation, cytotoxicity and antiviral activity, but 
p55 is responsible for activation of NFкB and mediation of apoptosis [85].  

TNF- may contribute to renal damage by inciting an inflammatory response within the 

kidney via induction of a variety of chemokines and adhesion molecules [86-87]. There is a 
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mounting evidence to implicate TNF-ǂ in the pathogenesis of glomeruli of rodents with 

experimental nephritis, and is found in renal biopsies, sera and urine of patients with 

different types of glomerulonephritis [88-91]; In vitro and in vivo studies document that 

TNF-ǂ is produced locally within inflamed glomeruli by mesangial and epithelial cells, as 

well as by infiltrating monocytes/macrophages [89,91]; Systemic administration of TNF-ǂ 

results in glomerular damage in rabbits [92] and exacerbates the degree of glomerular injury 

in nephrotoxic nephritis in rats [93]; and blocking endogenous TNF-ǂ in nephrotoxic 

nephritis in rats ameliorates acute glomerular inflammation [94], and down-regulates 

glomerular IL-1ǃmRNA and circulating TNF-ǂ concentrations [95]. 

Treatment of Nx rats with the HE-86 promoted a significant regression of hypertension, 

high level of creatinine and blood urea nitrogen, albuminuria, and inflammatory signs such 

as urine TGF-ß and renal tissue TNF-ǂ, NF-B, Ang II and AT1R expression, whereas the 

parameters of renal structural tissue injury were strongly attenuated, compared with 

pretreatment levels. The protection achieved with effective unit from clinical prescription 

treatment was much greater than that obtained with traditional prescription alone. On the 

basis of the present study, we cannot exclude the hypothesis that the success of HE-86 was 

due to a particularly effective hemodynamic action, although previous observations from 

this laboratory [96] indicated that NOF, a new nonsteroidal anti-inflammatory, had no 

significant effect on glomerular hemodynamics. Because treatment with NOF alone had no 

effect on blood pressure, it seems unlikely that the hemodynamic effect of NOS was directly 

intensified by its association with NOF. Therefore, the efficacy of extract HE-86 was likely 

due to the simultaneous blockade of the hemodynamic and proinflammatory actions of Ang 

II, AT1R and its derivatives as TNF-, NF-B, TGF-ß and by abrogation of the complex 

interplay between hypertension and inflammation. The present findings support other 

scholars’ observations of the Nx model, which similarly indicated the superiority of the 

combination of a RAS suppressor with an anti-inflammatory agent [97-99]. It is noteworthy 

that HE-86 afforded partial regression of the nephropathy associated with Nx even though it 

was started 4 week after surgery, when renal injury was already established. This 

observation suggests that both continued stimulation of Ang II and AT1 receptors and 

production of inflammatory factors continue to play an important pathogenic role even 

during the late phases of the process, necessitating vigorous and persistent treatment to 

prevent further renal deterioration. 

Taken together with our previous data and the present results, it is likely that HE-86-

induced reduction of renal rennin-angentensin system is mediated, at least partly, by 

reducing the overload of inflammatory factors activity on remnant kidney unit. In summary, 

HE-86effective composition coming from clinical validly treating patients with chronic renal 

failure especially for early and middle stage, partially reversed the nephropathy and renal 

inflammation associated with the Nx model, showing much more effective protection than 

with traditional Chinese medicine prescription.  

12. References 

[1] Wolf G, Ziyadeh FN. Renal tubular hypertrophy induced by angiotensin II. Semin 
Nephrol. 1997;17:448–454 

www.intechopen.com



 
Chronic Kidney Disease 

 

190 

[2] Guijarro C, Egido J: Transcription factor-kappa B (NF-kappa B) and renal disease. 

Kidney Int 59: 415–424, 2001 

[3] Weistuch JM, Dworkin LD. Does essential hypertension cause end-stage renal disease? 

Kidney Int. 1992;41:S33–S37.  

[4] Yoshioka K, Tohda M, Takemura T, Akano N, Matsubara K, Ooshima A, Maki S. 

Distribution of the type I collagen in human kidney diseases in comparison with 

type III collagen. J Pathol. 1990;162:141–148.  

[5] Albaladejo P, Bouaziz H, Duriez M, Gohlke P, Levy BI, Safar ME, Benetos A. 

Angiotensin-converting enzyme inhibition prevents the increase in aortic collagen 

in rats. Hypertension. 1994;23:74–82.  

[6] Anderson S, Meyer TW, Renke HG, Brenner BM. Control of glomerular hypertension 

limits glomerular injury in rats with reduced renal mass. J Clin Invest. 1985;76:612–

619.  

[7] Wilson C, Byrom FB. Renal changes in malignant hypertension. Lancet. 1939;i:136–143.  

[8] Davies PF, Barbee KA, Volin MV, Robotewskyj A, Chen J, Joseph L, Griem ML, Wernick 

MN, Jacobs E, Polacek DC, dePaola N, Barakat AI. Spatial relationships in early 

signaling events of flow-mediated endothelial mechanotransduction. Ann Rev 

Physiol. 1997;59:527–549. 

[9] Jones PL, Crack J, Rabinovitch M. Regulation of tenacin-C, a vascular smooth muscle cell 

survival factor that interacts with the alpha v beta 3 integrin to promote epidermal 

growth factor receptor phosphorylation and growth. J Cell Biol. 1997;139:279–293.  

[10] Isik FF, Gibran NS, Jang YC, Sandell L, Schwartz SM. Vitronectin decreases 

microvascular endothelial cell apoptosis. J Cell Physiol. 1998;175:149–155. 

[11] Ingelfinger JR, Dzau VJ. Molecular biology of renal injury: emphasis on the role of the 

renin-angiotensin system. J Am Soc Nephrol. 1991;2:S9–S20.  

[12] Lindpaintner K, Ganten D. The cardiac renin-angiotensin system: an appraisal of 

present experimental and clinical evidence. Circ Res. 1991;68:905–921.  

[13] Haller H, Park JK, Dragun D, Lippoldt A, Luft FC. Leukocyte infiltration and ICAM-1 

expression in two-kidney one-clip hypertension. Nephrol Dial Transplant. 

1997;12:899–903.  

[14] Hsueh WA, Law RE, Do YS. Integrins, adhesion, and cardiac remodeling. 

Hypertension. 1998;31:176–180.  

[15] Roy-Chaudhury P, Hillis G, McDonald S, Simpson JG, Power DA. Importance of the 

tubulointerstitium in human glomerulonephritis, II: distribution of integrin chains 

beta 1, alpha 1 to 6 and alpha V. Kidney Int. 1997;52:103–110.  

[16] Ridker PM, Hennekens CH, Roitman Johnson B, Stampfer MJ, Allen J. Plasma 

concentration of soluble intercellular adhesion molecule 1 and risks of future 

myocardial infarction in apparently healthy men. Lancet. 1998;351:88–92.  

[17] Remuzzi G, Bertani T. Pathophysiology of progressive nephropathies. N Engl J Med. 

1998;339:1448–1456.  

[18] Lenardo MJ, Baltimore D. NF-kappa B: a pleiotropic mediator of inducible and tissue-

specific gene control. Cell. 1989;58:227–229.  

[19] Barnes PJ, Karin M. Nuclear factor-kappaB: a pivotal transcription factor in chronic 

inflammatory diseases. N Engl J Med. 1997;336:1066–1071.  

www.intechopen.com



Molecular Mechanisms of Nephro-Protective  
Action of HE-86 Liquid Extract in Experimental Chronic Renal Failure 

 

191 

[20] Marumo T, Schini Kerth VB, Brandes RP, Busse R. Glucocorticoids inhibit superoxide 

anion production and p22 phox mRNA expression in human aortic smooth muscle 

cells. Hypertension. 1998;32:1083–1088. 

[21] Sen CK, Packer L. Antioxidant and redox regulation of gene transcription. FASEB J. 

1996;10:709–720.  

[22] Ozes O, Mayo L, Gustin J, Pfeffer S, Pfeffer L, Donner D. NF-kappaB activation by 

tumour necrosis factor requires the Akt serine-threonine kinase. Nature. 

1999;401:82–85.  

[23] Takahashi T, Taniguchi T, Konishi H, Kikkawa U, Ishikawa Y, Yokoyama M. 

Activation of Akt/protein kinase B after stimulation with angiotensin II in vascular 

smooth muscle cells. Am J Physiol. 1999;276:H1927–H1934.  

[24] Ushio-Fukai M, Alexander R, Akers M, Yin Q, Fujio Y, Walsh K, Griendling K. Reactive 

oxygen species mediate the activation of Akt/protein kinase B by angiotensin II in 

vascular smooth muscle cells. J Biol Chem. 1999;274:22699–22704.  

[25] Hernandez-Presa MA, Bustos C, Ortego M, Tunon J, Ortega L, Egido J. ACE inhibitor 

quinapril reduces the arterial expression of NF-kappaB-dependent 

proinflammatory factors but not of collagen I in a rabbit model of atherosclerosis. 

Am J Pathol. 1998;153:1825–1837.  

[26] Morrissey JJ, Klahr S. Rapid communication: enalapril decreases nuclear factor kappa B 

activation in the kidney with ureteral obstruction. Kidney Int. 1997;52:926–933.  

[27] Ruiz-Ortega M, Bustos C, Hernandez-Presa M, Lorenzo O, Plaza J, Edigo J. Angiotensin 

II participates in mononuclear cell recruitment in experimental immune complex 

nephritis through nuclear factor-kB activation and monocyte chemoattractant 

protein-1 synthesis. J Immunol. 1998;161:430–439. 

[28] He Li qun, Wang yi, Cao he xin, Li jun. The effect of kangxianling decoction on PDGF-

mRNA、TNF͉-mRNA expression of CRF Rat renal tissue J. China experiments 

the square to learn 2003,9:Ȑ5ȑ:29-32 

[29] He liqun、Li jun、Li yi. The effect of “FUZHENGHUOXUE Decoction” on the 

expressions of fibronectin and transforming growth factor-͊mRNA in renal tissue 

of the CRF rats. J. Chinese medicine 2005. 46：Ȑ6ȑ：454-457  

[30] LI Jun、HE Li-Qun、LI Yi、HOU Wei-Guo：The Effect of kang xian ling 2 decoction 

on serum lipide metabolism of chronic renal fail rats. J. International medical 
science of China 2003, 3:(3ȑ204-206  

[31] Wang chen、He liqun. Experimental Study on Effect of Renal Failure Granule in 

Treating Uremia CJIM, 2002;8(3):208-211  

[32] HE Li-Qun Cai Gan The clinical observation of the JIAN-PI-QIN-HUI prescription on 

spleen deficiency and dampness heat style patients with chronic renal failure J.The 
combination with Chinese and western medicine 2005, 14：Ȑ4ȑ：270-274  

[33] Muller DN, Dechend R, Mervaala EM, Park JK, Schmidt F, Fiebeler A, Theuer J, Breu V, 

Ganten D, Haller H, Luft FC. NF- B inhibition ameliorates angiotensin II–induced 

inflammatory damage in rats. Hypertension. 2000; 35:193–201. 

[34] Flack JM, Peters R, Shafi T, Alrefai H, Nasser SA, Crook E: Prevention of hypertension 

and its complications: theoretical basis and guidelines for treatment. J Am Soc 

Nephrol 2003, 14(Suppl 2):S92-S98  

www.intechopen.com



 
Chronic Kidney Disease 

 

192 

[35] Klahr S, Morrissey J: Progression of chronic renal disease. Am J Kidney Dis 2003, 

41(Suppl 1):S3-S7 

[36] Taal MW, Brenner BM: Renoprotective benefits of RAS inhibition: from ACEI to 

angiotensin II antagonists. Kidney Int 2000, 57:1803-1817 

[37] Brenner BM. Nephron adaptation to renal injury or ablation. Am J Physiol Renal Fluid 

Electrolyte Physiol 249: F324-F337, 1985. 

[38] Fujihara CK, Antunes GR, Mattar AL, Andreoli N, Malheiros DM, Noronha IL, and 

Zatz R. Cyclooxygenase-2 (COX-2) inhibition limits abnormal COX-2 expression 

and progressive injury in the remnant kidney. Kidney Int 64: 2172-2181, 2003 

[39] Floege J, Burns MW, Alpers CE, Yoshimura A, Pritzl P, Gordon K, Seifert RA, Bowen-

Pope DF, Couser WG, and Johnson RJ. Glomerular cell proliferation and PDGF 

expression precede glomerulosclerosis in the remnant kidney model. Kidney Int 41: 

297-309, 1992. 

[40] Akai Y, Homma T, Burns KD, Yasuda T, Badr KF, and Harris RC. Mechanical 

stretch/relaxation of cultured rat mesangial cells induces protooncogenes and 

cyclooxygenase. Am J Physiol Cell Physiol 267: C482-C490, 1994. 

[41] Lee LK, Meyer TW, Pollock AS, and Lovett DH. Endothelial cell injury initiates 

glomerular sclerosis in the rat remnant kidney. J Clin Invest 96: 953-964, 1995. 

[42] Ruiz-Ortega M, Lorenzo O, Suzuki Y, Ruperez M, and Egido J. Proinflammatory 

actions of angiotensins. Curr Opin Nephrol Hypertens 10: 321-329, 2001. 

[43] Van Kats JP, Schalekamp MA, Verdouw PD, Duncker DJ, and Danser AH. Intrarenal 

angiotensin II: interstitial and cellular levels and site of production. Kidney Int 60: 

2311-2317, 2001 

[44] Gilbert RE, Wu LL, Kelly DJ, Cox A, Wilkinson-Berka JL, Johnston CI, and Cooper ME. 

Pathological expression of renin and angiotensin II in the renal tubule after subtotal 

nephrectomy: implications for the pathogenesis of tubulointerstitial fibrosis. Am J 

Pathol 155: 429-440, 1999 

[45] Pelayo JC, Quan AH, and Shanley PF. Angiotensin II control of the renal 

microcirculation in rats with reduced renal mass. Am J Physiol Renal Fluid 

Electrolyte Physiol 258: F414-F422, 1990 

[46] Rodriguez-Iturbe B, Quiroz Y, Nava M, Bonet L, Chavez M, Herrera-Acosta J, Johnson 

RJ, and Pons HA. Reduction of renal immune cell infiltration results in blood 

pressure control in genetically hypertensive rats. Am J Physiol Renal Physiol 282: 

F191-F201, 2002 

[47] Noronha IL, Fujihara CK, and Zatz R. The inflammatory component in progressive 

renal disease—are interventions possible (Abstract)? Nephrol Dial Transplant 17: 

363, 2002 

[48] Ford CM, Li S, Pickering JG, Itoh H, Mukoyama M, Pratt RE, Gibbons GH, Dzau VJ. 

Angiotensin II stimulates collagen synthesis in human vascular smooth muscle 

cells. Involvement of the AT(1) receptor, transforming growth factor-beta, and 

tyrosine phosphorylation. Arterioscler Thromb Vasc Biol. 1999;19:1843–1851. 

[49] Miao CY, Tao X, Gong K, Zhang SH, Chu ZX, Su DF. Arterial remodeling in chronic 

sinoaortic-denervated rats. J Cardiovasc Pharmacol. 2001;37:6–15. 

www.intechopen.com



Molecular Mechanisms of Nephro-Protective  
Action of HE-86 Liquid Extract in Experimental Chronic Renal Failure 

 

193 

[50] Lombardi DM, Viswanathan M, Vio CP, Saavedra JM, Schwartz SM, Johnson RJ. Renal 

and vascular injury induced by exogenous angiotensin II is AT1 receptor-

dependent. Nephron. 2001;87:66–74. 

[51] Hayashi T, Sohmiya K, Ukimura A, Endoh S, Mori T, Shimomura H, Okabe M, 

Terasaki F, Kitaura Y. Angiotensin II receptor blockade prevents microangiopathy 

and preserves diastolic function in the diabetic rat heart. Heart. 2003;89:1236–1242.  

[52] Kakinuma Y, Kawamura T, Bills T, Yoshioka T, Ichikawa I, Fogo A. Blood pressure-

independent effect of angiotensin inhibition on vascular lesions of chronic renal 

failure. Kidney Int. 1992;42:46–55. 

[53] Boffa JJ, Lu Y, Placier S, Stefanski A, Dussaule JC, Chatziantoniou C, Tharaux PL, 

Ardaillou R. Regression of renal vascular and glomerular fibrosis: role of 

angiotensin II receptor antagonism and matrix metallo-proteinases. J Am Soc 

Nephrol. 2003;14:1132–1144. 

[54] Ruiz-Ortega M, Lorenzo O, Suzuki Y, Ruperez M, and Egido J. Proinflammatory 

actions of angiotensins. Curr Opin Nephrol Hypertens 10: 321-329, 2001 

[55] Harrison-Bernard LM, Navar LG, Ho MM, Vinson GP, and el-Dahr SS. 

Immunohistochemical localization of ANG II AT1 receptor in adult rat kidney 

using a monoclonal antibody. Am J Physiol Renal Physiol 273: F170-F177, 1997 

[56] Cao Z, Bonnet F, Candido R, Nesteroff SP, Burns WC, Kawachi H, Shimizu F, Carey 

RM, de Gasparo M, and Cooper ME. Angiotensin type 2 receptor antagonism 

confers renal protection in a rat model of progressive renal injury. J Am Soc 

Nephrol 13: 1773-1787, 2002. 

[57] Zhuo J, Moeller I, Jenkins T, Chai SY, Allen AM, Ohishi M, Mendelsohn FA. Mapping 

tissue angiotensin-converting enzyme and angiotensin AT1, AT2 and AT4 

receptors. J Hypertens. 1998;16:2027–2037. 

[58] Touyz RM, Berry C. Recent advances in angiotensin II signaling. Braz J Med Biol Res. 

2002;35:1001–1015. 

[59] Nath KA, Chmielewski DH, and Hostetter TH. Regulatory role of prostanoids in 

glomerular microcirculation of remnant nephrons. Am J Physiol Renal Fluid 

Electrolyte Physiol 252: F829-F837, 1987 

[60] Okamura A, Rakugi H, Ohishi M, Yanagitani Y, Takiuchi S, Moriguchi K, Fennessy PA, 

Higaki J, and Ogihara T. Upregulation of renin-angiotensin system during 

differentiation of monocytes to macrophages. J Hypertens 17: 537-545, 1999 

[61] Ng YY, Huang TP, Yang WC, Chen ZP, Yang AH, Mu W, Nikolic-Paterson DJ, Atkins 

RC, and Lan HY. Tubular epithelial-myofibroblast transdifferentiation in 

progressive tubulointerstitial fibrosis in 5/6 nephrectomized rats. Kidney Int 54: 

864-876, 1998. 

[62] Border WA, Noble NA: Interactions of transforming growth factor-beta and 

angiotensin II in renal fibrosis. Hypertension 1998, 31:181-188  

[63] Gaedeke J, Peters H, Noble NA, Border WA: Angiotensin II, TGF-beta and renal 

fibrosis. Contrib Nephrol 2001, 135:153-160  

[64] Wolf G: Link between angiotensin II and TGF-beta in the kidney. Miner Electrolyte 

Metab 1998, 24:174-180 

www.intechopen.com



 
Chronic Kidney Disease 

 

194 

[65] Wolf G, Haberstroh U, Neilson EG: Angiotensin II stimulates the proliferation and 

biosynthesis of type I collagen in cultured murine mesangial cells. Am J Pathol 

1992, 140:95-107  

[66] Kagami S, Border WA, Miller DE, Noble NA: Angiotensin II stimulates extracellular 

matrix protein synthesis through induction of transforming growth factor-beta 

expression in rat glomerular mesangial cells. J Clin Invest 1994, 93:2431-2437 

[67] Wolf G, Zahner G, Schroeder R, Stahl RA: Transforming growth factor beta mediates 

the angiotensin-II-induced stimulation of collagen type IV synthesis in cultured 

murine proximal tubular cells. Nephrol Dial Transplant 1996, 11:263-269  

[68] Wolf G, Ziyadeh FN, Stahl RA: Angiotensin II stimulates expression of transforming 

growth factor beta receptor type II in cultured mouse proximal tubular cells. J Mol 

Med 1999, 77:556-564 

[69] Gibbons GH, Pratt RE, Dzau VJ: Vascular smooth muscle cell hypertrophy vs 

hyperplasia: autocrine transforming growth factor-beta 1 expression determines 

growth response to angiotensin II. J Clin Invest 1992, 90:456-461 

[70] Rumble JR, Gilbert RE, Cox A, Wu L, Cooper ME: Angiotensin converting enzyme 

inhibition reduces the expression of transforming growth factor-beta(1) and type IV 

collagen in diabetic vasculopathy. J Hypertens 1998, 16:1603-1609  

[71] Peters H, Border WA, Noble NA: Targeting TGF-beta overexpression in renal disease: 

maximizing the antifibrotic action of angiotensin II blockade. Kidney Int 1998, 

54:1570-1580  

[72] Benigni A, Zoja C, Corna D, Zatelli C, Conti S, Campana M, Gagliardini E, Rottoli D, 

Zanchi C, Abbate M, Ledbetter S, Remuzzi G: Add-on anti-TGF-beta antibody to 

ACE inhibitor arrests progressive diabetic nephropathy in the rat. J Am Soc 

Nephrol 2003, 14:1816-1824 

[73] Houlihan CA, Akdeniz A, Tsalamandris C, Cooper ME, Jerums G, Gilbert RE: Urinary 

transforming growth factor-beta excretion in patients with hypertension, type 2 

diabetes, and elevated albumin excretion rate: effects of angiotensin receptor 

blockade and sodium restriction. Diabetes Care 2002, 25:1072-1077  

[74] Agarwal R, Siva S, Dunn SR, Sharma K: Add-on angiotensin II receptor blockade 

lowers urinary transforming growth factor-beta levels. Am J Kidney Dis 2002, 

39:486-492 

[75] Barnes PJ, Karin M: Nuclear factor-kappaB: A pivotal transcription factor in chronic 

inflammatory diseases. N Engl J Med 336 : 1066 –1071, 1997 

[76] Guijarro C, Egido J: Transcription factor-kappa B (NF-kappa B) and renal disease. 

Kidney Int 59 : 415 –424, 2001 

[77] Nava M, Quiroz Y, Vaziri N, Rodriguez-Iturbe B: Melatonin reduces renal interstitial 

inflammation and improves hypertension in spontaneously hypertensive rats. Am J 

Physiol Renal Physiol 284: F447–454, 2003  

[78] Rodriguez-Iturbe B, Zhan CD, Quiroz Y, Sindhu RK, Vaziri ND: Antioxidant-rich diet 

relieves hypertension and reduces renal immune infiltration in spontaneously 

hypertensive rats. Hypertension 41: 341–346, 2003 

[79] Chade AR, Rodriguez-Porcel M, Herrmann J, Krier JD, Zhu X, Lerman A, Lerman LO: 

Beneficial effects of antioxidant vitamins on the stenotic kidney. Hypertension 42: 

605–612, 2003  

www.intechopen.com



Molecular Mechanisms of Nephro-Protective  
Action of HE-86 Liquid Extract in Experimental Chronic Renal Failure 

 

195 

[80] Chade AR, Rodriguez-Porcel M, Herrmann J, Zhu X, Grande JP, Napoli C, Lerman A, 

Lerman LO: Antioxidant intervention blunts renal injury in experimental 

renovascular disease. J Am Soc Nephrol 15: 958–966, 2004  

[81] Hahn S, Kuemmerle NB, Chan W, Hisano S, Saborio P, Krieg RJ Jr, Chan JC: 

Glomerulosclerosis in the remnant kidney rat is modulated by dietary alpha-

tocopherol. J Am Soc Nephrol 9: 2089–2095, 1998  

[82] Li D, Saldeen T, Romeo F, Mehta JL: Oxidized LDL upregulates angiotensin II type 1 

receptor expression in cultured human coronary artery endothelial cells: The 

potential role of transcription factor NF-kappaB. Circulation 102: 1970–1976, 2000 

[83] Vassalli P. The pathophysiology of tumor necrosis factor. Annu Rev Immunol 1992; 10: 

411-452 

[84] Feldmann M, Brennan FM, Maini R. Cytokines in autoimmune disorders. Int Rev 

Immunol 1998; 17: 217-228 

[85] Tartaglia LA, Ayres TM, Wong GHW, Goeddel DV. A novel domain within the 55 kd 

TNF receptor signals cell death. Cell 1993; 74: 845-853 

[86] Tipping PG, Kitching AR, Cunningham MA, Holdsworth SR. Immunopathogenesis of 

crescentic glomerulonephritis. Curr Opin Nephrol Hypertens 1999; 8: 281–286  

[87] Couser WG. Sensitized cells come of age: a new era in renal immunology with 

important therapeutic implications. J Am Soc Nephrol 1999; 10: 664–665 

[88] Ortiz A, Egidl J. Is there a fole for specific anti-TNF strategies in glomerular diseases. 

Nephrol Dial Transplant 1995; 10:309-311 

[89] Takemura T, Yoshioka K, Murakami K, Akano N, Okada M, Aya N, Maki S. Cellular 

localization of inflammatory cytokines in human glomerulonephritis. Virchows 

Arch 1994; 424: 459-464 

[90] Ozen S, Saatci U, Tinaztepe K, Bakkaloglu A, Barut A. Urinary tumor necrosis factor 

levels in primary glomerulopathies. Nephron 1994; 66:291-294 

[91] Noronha IL, Kruger C, Andrassy K, Ritz E, Waldherr R. In situ production of TNF-

alpha, IL-1 beta and IL-2R in ANCA-positive glomerulonephritis. Kidney Int 1993; 

43: 682-692 

[92] Bertani T, Abbate M, Zoja C et al. Tumor necrosis factor induces glomerular damage in 

the rabbit. Am J Pathol 1989; 134: 419-430 

[93] Tomosugi NI, Cashman SJ, Hay H et al. Modulation of antibody-mediated glomerular 

injury in vivo by bacterial lipo-polysaccharide, tumor necrosis factor and IL-1. J 

Immunol 1989; 142: 3083-3090 

[94] Karkar AM, Tam FWK, Steinkasserer A et al. Modulation of antibody-mediated 

glomerular injury in vivo by IL-1ra, soluble IL-1 receptor and soluble TNF receptor. 

Kidney Int 1995; 40: 1738-1746 

[95] Karkar AM, Koshino Y, Cashman SJ et al. Passive immunization against TNF alpha and 

IL-1B protects from LPS enhancing glomerular injury in nephrotoxic nephritis in 

rats. Clin Exp Immunol 1992; 90: 312-318 

[96] Fujihara CK, Malheiros DM, Donato JL, Poli A, De Nucci G, and Zatz R. 

Nitroflurbiprofen, a new nonsteroidal anti-inflammatory, ameliorates structural 

injury in the remnant kidney. Am J Physiol Renal Physiol 274: F573-F579, 1998. 

www.intechopen.com



 
Chronic Kidney Disease 

 

196 

[97] Fujihara CK, Noronha IL, Malheiros DM, Antunes GR, de Oliveira IB, and Zatz R. 

Combined mycophenolate mofetil and losartan therapy arrests established injury in 

the remnant kidney. J Am Soc Nephrol 11: 283-290, 2000. 

[98] Hamar P, Peti-Peterdi J, Razga Z, Kovacs G, Heemann U, and Rosivall L. Coinhibition 

of immune and renin-angiotensin systems reduces the pace of glomerulosclerosis 

in the rat remnant kidney. J Am Soc Nephrol 10, Suppl 11: S234-S238, 1999 

[99] Remuzzi G, Zoja C, Gagliardini E, Corna D, Abbate M, and Benigni A. Combining an 

antiproteinuric approach with mycophenolate mofetil fully suppresses progressive 

nephropathy of experimental animals. J Am Soc Nephrol 10: 1542-1549, 1999. 

www.intechopen.com



Chronic Kidney Disease

Edited by Prof. Monika Göőz

ISBN 978-953-51-0171-0

Hard cover, 444 pages

Publisher InTech

Published online 16, March, 2012

Published in print edition March, 2012

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

Chronic kidney disease is an increasing health and economical problem in our world. Obesity and diabetes

mellitus, the two most common cause of CKD, are becoming epidemic in our societies. Education on healthy

lifestyle and diet is becoming more and more important for reducing the number of type 2 diabetics and

patients with hypertension. Education of our patients is also crucial for successful maintenance therapy. There

are, however, certain other factors leading to CKD, for instance the genetic predisposition in the case of

polycystic kidney disease or type 1 diabetes, where education alone is not enough.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Li-qun He, Dong Feixia, Qiang Fu and Jun Li (2012). Molecular Mechanisms of Nephro-Protective Action of

HE-86 Liquid Extract in Experimental Chronic Renal Failure, Chronic Kidney Disease, Prof. Monika Göőz (Ed.),

ISBN: 978-953-51-0171-0, InTech, Available from: http://www.intechopen.com/books/chronic-kidney-

disease/molecular-mechanisms-of-nephro-protective-action-of-he-86-liquid-extract-in-experimental-chronic-

ren



© 2012 The Author(s). Licensee IntechOpen. This is an open access article

distributed under the terms of the Creative Commons Attribution 3.0

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.


