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1. Introduction     

Image matching, or comparing images in order to obtain a measure of their similarity, is a 
fundamental aspect of many problems in computer vision, including object and scene 
recognition, content-based image retrieval, stereo correspondence, motion tracking, texture 
classification and video data mining. It is a complex problem, that remains challenging due 
to partial occlusions, image deformations, and viewpoint or lighting changes that may occur 
across different images (Grauman & Darrell, 2005).
Image matching can be defined as “the process of bringing two images geometrically into 
agreement so that corresponding pixels in the two images correspond to the same physical 
region of the scene being imaged” (Dai & Lu, 1999). Therefore, according to this definition, 
image matching problem is accomplished by transforming (e.g., translating, rotating, 
scaling) one of the images in such a way that the similarity with the other image is 
maximised in some sense. The 3D nature of real-world scenarios makes this solution 
complex to achieve, specially because images can be taken from arbitrary viewpoints and in 
different illumination conditions. Instead, the similarity may be applied to global features 
derived from the original images. However, this is not the more efficient solution. Besides, 
these global statistics cannot usually deal with real-world scenarios because they do not 
often give adequate descriptions of the local structures or discriminating features which are 
present on the image (Grauman & Darrell, 2005). 
Other solution to the image matching problem is to describe the image using a set of 
distinguished regions (Matas et al., 2002). These regions must own some invariant and stable 
property in order to be detected with high repeatability in images taken from arbitrary 
viewpoint. Then, the matching between two images is posed as a search in the 
correspondence space established between the associated sets of distinguished regions. If 
each region is described by a vector of image pixels, then cross-correlation can be used to 
obtain a similarity value between two regions (Mikolajczyk & Schmid, 2005). However, due 
to the high dimensionality of such vector, the generation of the correlation space typically 
presents a high computational cost. In order to reduce the computational complexity, the 
number of tentative correspondences can be limited by computing local invariant 
descriptors for distinguished regions (Matas et al., 2002; Grauman & Darrell, 2005). These 
descriptors can be also employed to estimate the similarity value between two regions. 
In this paper, we have adopted an approach which describes the image using a set of 
distinguished regions and exploits local invariant descriptors to estimate the similarity 
value between two distinguished regions belonging to different images. Thus, there are four 
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main procedures involved in the image matching process: i) detection of distinguished 
regions, ii) local invariant description of these regions, iii) definition of the correspondence 
space, and iv) searching of a globally consistent subset of correspondences. This subset of 
correspondences will permit to associate a similarity score to the images being matched. The 
main contribution of this work is the introduction of a new set of distinguished regions, the 
so called curvilinear regions.
The choice of the location and shape of the distinguished regions can be considered as a 
crucial issue in these image matching approaches (Matas et al., 2002). In a typical case, when 
images are taken from different viewpoints, local image deformations cannot be realistically 
approximated by translations and rotations, and it is required a full affine model. Then,  
correspondence cannot be established by comparing regions of a fixed shape like rectangles 
or circles since their shape is not preserved under affine transformation. Region shape must 
depend on the image data (Dai & Lu, 1999; Matas et al., 2002). In our case, the proposed 
method exploits a particular image structure. It is based on the presence, in a typical image, 
of numerous objects which can be built using cylinders or generalized cylinders (Biederman, 
1987). The main disadvantage of the method is to use shapes which must be explicitly 
present in the image, so it depends on the presence of these specific structures in the scene. 
On the contrary, curvilinear regions automatically deform with changing viewpoint as to 
keep on covering identical physical parts of a scene. 
This chapter is organised as follows: Section 2 describes related work. The curvilinear region 
detector is presented in Section 3. Section 4 describes the contour-based descriptor 
computed for each extracted region. This descriptor is compared to other similar approaches 
in Section 5.1. The correspondence algorithm is presented in Section 5.2. This Section also 
describes some experimental results and finally, Section 6 discusses extracted conclusions 
and future work. 

2. Related work 

The development of algorithms which use a set of local distinguished items for image 
matching can be traced back to the works of Moravec (1981) and Harris and Stephens (1988). 
Although the initial applications of both approaches are for stereo and short-range motion 
tracking, it can be considered that a similar strategy has been later extended to deal with 
more difficult problems. Thus, Zhang et al. (1995) propose to match Harris points over a 
large image range by using a correlation window around each point. The Harris point 
detector selects any image location that has large gradients in all directions at a 
predetermined scale. Outliers are then removed by solving for a fundamental matrix 
describing the geometric constraints between the two views of a rigid scene and removing 
matches that did not agree with the majority solution. 
Local invariant feature matching is extended to general image recognition problems in 
which a feature is matched against a large set of images by Schmid and Mohr (1997). This 
approach also employs Harris points as distinguished items, but rather than matching with 
a correlation window, they use a rotationally invariant descriptor of the local image region. 
The 2D translation and 2D rotation invariant features are extracted from the intensity 
pattern in fixed circular regions around Harris points. Invariance under scaling is handled 
by including circular regions of several sizes. This allows features to be matched under 
arbitrary orientation change between the two images. Besides, they demonstrate that 
multiple feature matches could accomplish general recognition under occlusion and clutter 
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by identifying consistent clusters of matched features. This method has been modified to 
deal with very large scale changes (Dufournaud et al., 2000) or with colour images 
(Montesinos et al., 2000). 
The Harris point detector is very sensitive to scale changes, so it does not provide a good 
basis for matching images of different sizes. In any case, representations that are stable 
under scale change have been proposed. Crowley and Parker (1984) developed a detector 
that identifies peaks and ridges in scale-space and links these into a tree structure. The tree 
structure can then be matched between images with arbitrary scale change. The Harris point 
local feature approach has been modified by Lowe (1999) to achieve scale invariance. 
Circular regions that maximise the output of a difference-of-Gaussian (doG) filters in scale-
space are employed. More recent work on graph-based matching by Shokoufandeh et al. 
(1999) provides more distinctive feature descriptors using wavelet coefficients. Harris-
Laplace regions (Mikolajczyk & Schmid, 2001) are also invariant to rotation and scale 
changes. These points are detected by the scale-adapted Harris function and selected in 
scale-space by the Laplacian-of-Gaussian operator. Hessian-Laplace regions (Lowe, 2004) 
are localised in space at the local maxima of the Hessian determinant and in scale at the local 
maxima of the Laplacian-of-Gaussian. This detector obtains higher localisation accuracy 
than the doG approach and the scale detection accuracy is also higher than in the case of the 
Harris-Laplace detector (Mikolajczyk & Schmid, 2005). The problem of identifying an 
appropriate and consistent scale for feature detection has been studied in depth by 
Lindeberg (1993, 1994). 
As it is commented above, when images are taken from different viewpoints, image regions 
are subject to affine transformations. The affine transformation includes rotation, scaling, 
skewing and translation (Bala & Cetin, 2004). It preserves parallel lines and equispaced 
points along a line. Therefore, it has been used to approximate the perspective 
transformation in some cases. Local features have been extended to be invariant to full affine 
transformations. Harris-affine regions (Mikolajczyk & Schmid, 2004) and Hessian-affine 
regions (Mikolajczyk et al., 2005) are invariant to affine image transformations. However, 
they start with initial feature scales and locations selected in a non-affine-invariant manner. 
Then, the affine neighbourhood is determined by the affine adaptation process based on the 
second moment matrix. Baumberg (2000) has proposed an invariant descriptor which 
cannot deal with scale changes. Thus, these regions are invariant under rotation, stretch and 
skew, but scale changes are dealt with by applying a scale-space approach. The error on the 
scale also influences the other components of the transformation. Tuytelaars and Van Gool 
(2004) propose two types of affine-invariant regions, one based on a combination of Harris 
points and edges and other one based on image intensities. Matas et al. (2002) describe the 
Maximally Stable Extremal Regions (MSER). They are extracted with a watershed like 
segmentation algorithm. An important issue that affine invariant approaches must take into 
account is the sensitivity to noise. Thus, affine features are sensitive to noise, so in practice 
they have typically lower repeatability than the scale-invariant features (Mikolajczyk, 2002). 
To deal with this problem, the local descriptor must allow relative feature positions to shift 
significantly with only small changes in the descriptor. This not only allows the descriptors 
to be reliably matched across a considerable range of affine distortion, but it also makes the 
features more robust against changes in 3D viewpoint for non-planar surfaces (Lowe, 2004).  
Many other features have been proposed. Some of them make use of region boundaries, 
which should make them less likely to be disrupted by cluttered backgrounds near object 
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boundaries. Thus, Matas et al. (2002) have shown that their MSERs can produce large 
numbers of matching features with good stability. Mikolajczyk et al. (2003) uses local edges 
while ignoring unrelated nearby edges, providing the ability to find stable features even 
near the boundaries of narrow shapes superimposed on background clutter. Nelson and 
Selinger (1998) employ local features based on groupings of image boundaries. Finally, Pope 
and Lowe (2000) use features based on the hierarchical grouping of image boundaries. A 
curvilinear-based region detector has been proposed by Deng et al. (2006). It starts by 
detecting curvilinear structures followed by watershed segmentation to define regions. On 
the other hand, phase-based local features have been described by Carneiro and Jepson 
(2002). These features represent the phase rather than the magnitude of local spatial 
frequencies, which is likely to provide improved invariance to illumination. Schiele and 
Crowley (2000) have proposed the use of multidimensional histograms. These histograms 
represent the distribution of measurements within image regions and they may be 
particularly useful for matching textured regions with deformable shapes. Other useful 
properties to incorporate include colour, motion, figure-ground discrimination, region 
shape descriptors, and stereo depth cues. 

3. Curvilinear regions 

3.1 Definition 

Basically, in a digital image, a curvilinear region is a set of pixels delimited by left and right 
boundaries, rl(l) and rr(l). This region can be defined by the parameter vector, {ai,wi}i=0…L,
where L is the length of the region, ai a vector defining the axis between the boundaries and 
wi the width of the curvilinear region (see Fig. 1). In a curvilinear region, the ratio between 
its average width and its total length should be less than a predefined threshold. Besides, 
left and right borders should be locally parallel, it should exist a geometric similarity around 
the region axis and the colour along this axis should be homogeneous. These items will be 
extended in next epigraphs. 

I. Symmetry around the axis 

If we define )(lw∆  as the difference of width at both sides of the medial axis: 

|)()(|)( lwlwlw
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−=∆                                                                 (1) 

Then, we can evaluate the error on the symmetry around the axis as: 
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Fig. 1. Curvilinear region definition 

In a curvilinear region, this error must be limited by a threshold. In our case, this threshold 

depends on two parameters, wU∆  and w∆σ . A curvilinear region complies with: 
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II. Ratio between  average width and length 
If we define w(l) as 

)()()( lwlwlw rl +=                                                            (4) 

Then, a curvilinear region complies with: 

wUL w ⋅≥max                                                               (5) 

where Uw is a parameter of the method and Lmax is the maximum length of the curvilinear 
region. This length is obtained from all connected pixels inside the region. 

III. Left and right borders locally parallel 

The mean value of the difference of the tangents at both sides of the region, α∆ , must be 

also bounded. If  

|)()(|)( lll rl ααα −=∆ ,                                                        (6) 

then

αα ∆≤∆ U                                                                (7) 

where α∆U  is a parameter of the method.  

Section 3.5 will present an extended description of these three curvilinear region restrictions. 
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3.2 Overview of the proposed method 

The algorithm for detecting the curvilinear regions works in a simple way. Firstly, the input 
image is segmented into a set of homogeneous colour regions, so the obtained regions 
comply with the requirement that colour must be homogeneous through the region. In order 
to achieve it in a fast way, a pyramid algorithm is employed: the Bounded Irregular 
Pyramid (BIP) (Marfil et al., 2004). The BIP divides the original image into a set of connected 
regions which present an homogeneous colour. Then, every image region is checked in 
order to look for curvilinear regions by analysing its medial axis and borders. Several 
curvilinear regions can be detected in the same object. Once the curvilinear regions have 
been extracted from the input image, an extra normalisation step is applied to compensate 
for part of the deformations (Tuytelaars & Van Gool, 2004). If the curvilinear region is 
enclosed inside an elliptical region whose centre is obtained as the centre of mass of the 
region, the normalisation step transforms this elliptical region to a circular reference region 
of fixed size. Then, normalised curvilinear regions are employed as the input of a shape 
descriptor. The used shape descriptor is described in Section 4. Basically, it is a contour-
based approach to object representation which characterises the region boundary using a 
curvature function. The obtained contour descriptor is invariant to rotation and translation, 
and partially invariant to noise, scaling and skewing. 
Finally, the approach uses these high-level features for scene recognition. The recognition 
proceeds with matching individual features to a database of features from known scenes 
using a nearest-neighbour algorithm based on a curvature matching criterion. The relative 
pose of recognised features is employed to identify the image layout. Experimental results 
show that this approach to scene recognition can match images taken from different 
viewpoints if they present a similar layout, i.e. spatial distribution of curvilinear objects. The 
image matching process is described in Section 5.2. 

3.3 Image segmentation based on the Bounded Irregular Pyramid 

In our approach, image segmentation is employed to obtain a global set of image regions. 
Subsequent stages will perform the region characterisation and they will obtain the final set 
of curvilinear regions. Particularly, we have used a pyramid segmentation algorithm 
because these approaches exhibit interesting properties with respect to segmentation 
algorithms based on a single representation. Thus, local operations can adapt the pyramidal 
hierarchy to the topology of the image, allowing the detection of global features of interest 
and representing them at low resolution levels. This general principle was briefly described 
by Jolion and Montanvert (1992): “a global interpretation is obtained by a local evidence 
accumulation.” 
In order to accumulate the local evidence, a pyramid represents the contents of an image at 
multiple levels of abstraction. Each level of this hierarchy is at least defined by a set of 
vertices Vl connected by a set of edges El. These edges define the horizontal relationships of 
the pyramid and represent the neighbourhood of each vertex at the same level (intra-level 
edges). Another set of edges define the vertical relationships by connecting vertices between 
adjacent pyramid levels (inter-level edges). These inter-level edges establish a dependency 
relationship between each vertex of level l+1 and a set of vertices at level l (reduction 
window). The vertices belonging to one reduction window are the sons of the vertex which 
defines it. The value of each parent is computed from the set of values of its sons using a 
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reduction function. The ratio between the number of vertices at level l and the number of 
vertices at level l+1 is the reduction factor.
Using this general framework, the local evidence accumulation is achieved by the successive 
building of level Gl+1=(Vl+1,El+1) from level Gl =(Vl, El). This procedure consists of three steps: 

1. Selection of the vertices of Gl+1 among Vl: This selection step is a decimation 
procedure and selected vertices Vl+1 are called the surviving vertices. 

2. Inter-level edges definition: Each vertex of Gl is linked to its parent vertex in Gl+1.
This step defines a partition of Vl.

3. Intra-level edges definition: The set of edges El+1 is obtained by defining the 
adjacency relationships between the vertices Vl+1.

The parent–son relationship defined by the reduction window may be extended by 
transitivity down to the base level. The set of sons of one vertex in the base level is named its 
receptive field. The receptive field defines the embedding of this vertex in the original image. 
In a general view of the pyramid hierarchy, the vertices of the bottom pyramidal level (level 
0, also called base level) can be anything from an original image pixel via some general 
numeric property to symbolic information, e.g. a vertex can represent an image pixel grey 
level or an image edge. Corresponding to the generalization of the vertex contents, the intra-
level and inter-level relations of the vertices are also generalized.  
After building the pyramidal structure, the segmentation of the input image can be achieved 
either by selecting a set of vertices from the whole hierarchy as region roots, or by choosing 
as roots all the vertices which constitute a level of this hierarchy. In any case, this selection 
process depends on the final application and it must be performed by a higher level task. 
The efficiency of a pyramid to solve segmentation tasks is strongly influenced by two 
related features that define the intra-level and inter-level relationships. These features are 
the data structure used within the pyramid and the decimation scheme used to build one 
graph from the graph below (Brun & Kropatsch, 2003). The choice of a data structure 
determines the information that may be encoded at each level of the pyramid and it defines 
the way in which edges El+1 are obtained. Thus, it roughly corresponds to setting the 
horizontal properties of the pyramid. On the other hand, the reduction scheme used to build 
the pyramid determines the dynamics of the pyramid (height, preservation of details, etc.). 
It defines the surviving vertices of a level and the inter-level edges between levels which 
correspond to the vertical properties of the pyramid. Taking into account these features, 
pyramids have been roughly classified as regular and irregular pyramids. A regular pyramid
has a rigid structure where the intra-level relationships are fixed and the reduction factor is 
constant. In these pyramids, the inter-level edges are the only relationships that can be 
changed to adapt the pyramid to the image layout. The inflexibility of these structures has 
the advantage that the size and the layout of the structure are always fixed and well-known. 
However, regular pyramids can suffer several problems (Bister et al., 1990): non-
connectivity of the obtained receptive fields, shift variance, or incapability to segment 
elongated objects. In order to avoid these problems, irregular pyramids were introduced. In 
the irregular pyramid framework, the spatial relationships and the reduction factor are not 
constant. Original irregular pyramids presented a serious drawback with respect to 
computational efficiency because they gave up the well-defined neighbourhood structure of 
regular pyramids. Thus, the pyramid size cannot be bounded and hence neither can the time 
to execute local operations at each level (Willersinn & Kropatsch, 1994). This problem has 
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been resolved by recently proposed strategies (Brun & Kropatsch, 2003; Haxhimusa et al., 
2003; Marfil et al., 2004). 
The bounded irregular pyramid (BIP) (Marfil et al., 2004) is a hierarchical structure that 
merges characteristics from regular and irregular pyramids. Its data structure combines the 
simplest regular and irregular structures: the 2×2/4 regular one and the simple graph 
irregular representation. The algorithm firstly tries to work in a regular way by generating, 
from level l, a 2×2/4 new level l+1. However, only the 2×2 homogeneous arrays of Vl

generate a new vertex of Vl+1. Therefore, this step creates an incomplete regular level l + 1 
which only presents vertices associated to homogeneous regions at the level below. Vertices 
of level l which generate a new vertex in Vl+1 are linked to this vertex (son–parent edges). 
Then, all vertices without parent (orphan vertices) of level l search for a neighbour vertex 
with a parent in level l + 1 whose colour will be similar to the orphan vertex’s colour (parent 
search step). If there are several candidate parents, the orphan vertex is linked to the most 
similar parent. Finally, the irregular part of the BIP is built. In this step, orphan vertices, of 
level l, search for all neighbour orphan vertices at the same level. Among the set of 
candidates, they are linked with the most similar. When two orphan vertices are twined, a 
new parent is generated at level l + 1 (intra-level twining step). This parent is a node of the 
irregular part of the BIP. The algorithm performs these two steps simultaneously. Thus, if an 
orphan vertex does not find a parent in the parent search stage, it will search for an orphan 
neighbour to link to it (intra-level twining). In the parent search stage an orphan vertex can be 
linked with the irregular parent of a neighbour. Once this is completed, intra-level edges are 
generated at level l + 1. The decimation process stops when it is no longer possible to 
generate new vertices in the regular part of the BIP. When all the levels are generated, 
homogeneous vertices without parent are regarded as roots and their corresponding 
receptive fields constitute the segmented image. 
Fig. 2 shows some segmentation results obtained using the proposed algorithm. It can be 
noted as the different homogeneous regions present in the image have been correctly 
segmented. 

3.4 Medial axis extraction 

The geometric properties used to check if a region is curvilinear or not are based on the 
extraction of the skeleton of the region. The skeleton is defined as a subset of pixels that 
preserve the topological information of the region and it must approximate the medial axis. 
There are a lot of methods to estimate the skeleton of an object and they are either based on 
distance transforms defined by different metrics or algorithms based on simple shape 
deformations (Klette, 2003). The choice of the method often depends on the task, as there is 
no “best method”. One category is based on distance transforms, where a distance skeleton is 
a subset of grid points such that every point of this subset represents the centre of a maximal 
disc contained in the given component.  A second category is based on iterative thinning 
methods, where the term linear skeleton can be used for the result of a continuous 
deformation of the frontier of a connected subset without changing the connectivity of the 
original set, until only a set of lines and points remains. In this work a distance transformed 
approach is used for each colour segmented region, therefore obtaining a skeleton for each 
region. This skeleton will be used to estimate further geometric properties.  
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Fig. 2. Segmentation results obtained using the BIP structure (Marfil et al., 2004): a-c) 
original images; and d-f) segmentation results. 

The distance from one point to another is the smallest positive integer n such that there 
exists a sequence of distinct points p0, p1, p2…pn with pi being an -neighbour of pi-1, 1 i n.
For  = 8, the distance d(p,q) is called the d8-distance. If (ip, jp) and (iq, jq) are the coordinates 
of p and q respectively, then 

{ }qpqp jjiiqpd −−= ,max),(8   (8) 

For estimating the distance transform of a region we use the algorithm described in (Klette, 
2003) which can approximate the distance transform inside the region in only two steps, so 
it has got a low computational cost. We define the original region as an image:  I(i,j) = 0, if 
the pixel (i, j) belongs to the border of the region, and I(i,j) = 255 otherwise. In the first step 
the function f1 is defined as 
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The function f1 is applied to the image I from top to bottom and from left to right, producing 
I*(i, j) =f1(i ,j, I(i, j)).  In the second step the function f2 is defined as 

{ }1)1,1(,1)1,1(,1)1,(,1),1(),,(min)),(,,(2 ++++−+++++= ∗∗ jiTjiTjiTjiTjiIjiIjif   (10) 
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and the resulting image T is calculated as T(i, j) = f2(i, j, I*(i,j)), applying f2 from bottom to top 
and from right to left, and being T the distance transform image of I. If we choose those 
pixels (is, js) in the image T such as none of the points in the vicinity A8((is, js)) has a value in 
T equal to T(is, js)+1 then those pixels (is, js) belong to the distance skeleton and they are 
supposed to be local maxima  in the distance transform. 
The resulting distance skeletons are generally not connected, so we post-process them with 
morphological operations (interpolation, dilatation, erosion and elimination of not useful 
pixels) to obtain a connected and smooth skeleton. By this way we obtain an approximation 
to the medial axis of the object. 

3.5 Skeleton classification 

Once the skeletons are calculated for each segmented region our method decides which 
parts of the skeleton belong to a curvilinear region and which not. In order to achieve this 
goal, several geometric characteristics are estimated: symmetry around the skeleton, ratio 
between average width and length, and borders parallelism (see Section 3.1). 

3.5.1 Symmetry around the skeleton 

The method checks those pixels which comply with the requirement of (3). To describe the 
algorithm we can define a skeleton as the set of connected pixels ps=(is, js),  0 s N-1, and N
the number of pixels being evaluated of the skeleton. In a first step, the normal vector is 
calculated for each pixel ps in the skeleton, and the cross-points between the normal and the 
left and right borders of the region are estimated. If we define psl and psr as these cross-
points, then we obtain the triplets (ps, psl, psr), 0 s N-1. We can implement (3) as 
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being l
sw  the Euclidean distance between pixels ps and psl and r

sw the Euclidean distance 

between pixels ps and psr.
The left side in (11) is a term that grows with the asymmetries of the region and the values 

wU∆ and w∆σ in the right side are parameters of the method. For our experiments, we have 

used wU∆ = 10 and w∆σ = 50 . The number of pixels N also appears on the right side of  (11), 

in a way that longer regions are allowed to have a higher value of asymmetry.  
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3.5.2 Ratio wL

In a similar way that Section 3.5.1, we define ws as the width of the region estimated as the 
Euclidean distance between pixels psl and psr given a position s in the skeleton. Then, (5) is 
implemented as 
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maxL is the maximum length that the curvilinear skeleton could have and is calculated with 

all the connected pixels of the skeleton of the object. wU is also a parameter of the method. 

In our experiments, it has been set to 1.5. 

3.5.3 Borders parallelism 

To check the borders parallelism requirement we estimate the tangential vectors on the 
borders at pixels psl and psr. Then, we calculate the angle between those vectors and the 
normal vector given a position s, obtaining angles sl and sr. Equation (7) is implemented as 
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U  is a parameter of the method. For our experiments, it has been set to 30 degrees.  

3.5.4 Classification algorithm 

The algorithm to classify the skeletons into the curvilinear group or the not curvilinear one 
works in an easy way. Once the skeleton has been extracted from the distance transform 
image associated to an object, the algorithm tries to join as many pixels as possible to form a 
curvilinear skeleton. So the algorithm begins in an endpoint of the skeleton and it looks for 
adding the connected pixels checking if (11), (14) and (15) are true with each new added 
pixel. If these equations are true for a pixel, then the new pixel is added and the algorithm 
will check the next connected pixel in the extracted skeleton. If the new pixel does not 
comply with all the requirements, then the curvilinear skeleton is finished and a new 
curvilinear region will begin with the next positive evaluation.  
Given an object and its skeleton, when all the pixels have been evaluated, the curvilinear 
skeletons whose endpoints are near are linked to form a longer curvilinear skeleton. At the 
end of the process, the parts of the objects whose skeleton has been evaluated as a 
curvilinear skeleton are considered as curvilinear regions. The algorithm allows to demand 
a minimum length Lmin to the regions. In our experiments, the minimum length has been set 
to 10  pixels. 
Figs. 3 and 4 present an experiment with a real scene obtained using our typical set of 
parameters. In Fig. 3, the results of the detection of objects and classification of the extracted 
skeletons are presented. Fig. 4 presents the original scene with the curvilinear skeletons 
superimposed. 
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Fig. 3. Detected segmented regions in a segmentation image. The extracted skeletons have 
been drawn (in green colour the skeletons classified as curvilinear and in red colour as not 
curvilinear). Also some estimated normal vectors (black colour) to the skeletons have been 
drawn.

Fig. 4.  Original image with the detected curvilinear skeletons (see Fig. 3). Several interesting 
objects as the ball pen, keyboard and webcam cable have been detected. Parameters used 

are: segmentation threshold = 95.0, wU∆ = 10, w∆σ = 50 , wU =1.5, U =30º, Lmin = 10 pixels. 

3.6. Normalisation stage 

As it is pointed out by Tuytelaars and Van Gool (2004), it is better to compensate for part of 
the geometric deformations through a normalisation stage, before obtaining the descriptor 
associated to the region. In our case, the geometric normalisation stage will be achieved by 
enclosing the curvilinear region inside an elliptically-shaped region and by transforming 
this region to a circular reference region of fixed size  (see Fig. 5). This process leaves one 
degree of freedom to be determined which corresponds to a free rotation of the circular 
region around its centre. In our case, it is not a problem because the shape will be 
represented using a contour descriptor which is invariant to rotation distortions. 
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Fig. 5. a) Original curvilinear region; and b) normalised region. 

4. Shape description 

Once the curvilinear regions have been extracted from the input image, they are 
characterised using a shape descriptor. Shape representation constitutes one of the most 
powerful tools to represent a planar object. Therefore, many approaches have been 
proposed to describe shapes from a small set of features. These descriptors can be divided 
into those which work on a shape as a whole (global descriptors) and those which work on the 
contours of the shape (boundary-based descriptors). Boundary-based descriptors are less 
computationally intense than global ones. However, since they are based on the shape 
contour, they cannot take into account the internal structure of the object. Therefore, 
boundary-based methods are not suited to deal with certain kinds of applications. On the 
other hand, most of the boundary-based descriptors do not need to normalise the 2D 
representation of the object to achieve common geometrical invariance. Thus, a boundary-
based method, the popular curvature scale space (Mokhtarian & Mackworth, 1986), has been 
used in the MPEG-7 standard. 
In this work, we employ a boundary-based descriptor. Particularly, this descriptor is based 
on the estimation of the curvature associated to the shape contour. By definition, the 
curvature function encodes the shape contour in terms of their local curvature or 
orientation. If c(t)=(x(t), y(t)) is a parametric plane curve, then its curvature function (t) can
be calculated as (Mokhtarian & Mackworth, 1986) 
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This equation implies that estimating the curvature involves the first and second order 
directional derivatives of the plane curve co-ordinates. This is a problem in the case of 
computational analysis where the plane curve is represented in a digital form. In order to 
solve this problem, two different approaches are often encountered: those that approximate 
the plane curve co-ordinates (interpolation-based curvature estimators), and those that estimate 
the curve orientation at each contour point with respect to a reference direction (angle-based 
curvature estimators). In addition, both type of methods can be subdivided in single scale 
methods and multiscale ones. Single scale methods are based upon an analysis of the 
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contour using a fixed set of parameters. Multiscale methods represent the evolution (or 
deformation) of the original contour when a certain parameter value is varied. 
The described shape descriptor is grouped into the angle-based curvature estimators. These 
approaches propose an alternative curvature measure based on angles between vectors 
which are defined as a function of the curve co-ordinates. Thus, the contour curvature (t)
can be defined as the variation of the curve slope (t) with respect to t, that is, the inverse of 
the curvature radius (t):

)(

1)(
)(

tt

t
t

ρ

ψ
κ =

∂

∂
=   (17) 

In order to extract (t) from a digital contour, several methods have been proposed. The 
majority of these approaches consist of comparing segments of k-points at both sides of a 
given point to estimate its curvature. Therefore, the value of k determines the cut frequency 
of the curve filtering. So, these algorithms are single scale methods in which only features 
unaffected by the filtering process may be detected. On the contrary, Beus and Tiu (1987) 
propose a multiscale angle-based approach which modifies the Freeman's approach 
(Freeman, 1978) by averaging the results obtained for several values of k. However, this 
approach is slow and, in any case, it must choose the cut frequencies for each iteration 
(Bandera et al., 2000). 
Another solution is to adapt the cut frequency of the filter at each curve point as a function 
of the local properties of the shape around it. A k-slope algorithm which estimates the 
curvature using a k value which is adaptively changed according to the local information of 
the boundary is proposed by Bandera et al. (2000). In this work, we will employ this 
curvature estimator. Thus, Fig. 6 shows several examples of curvature functions associated 
to different shape contours.  

Fig. 6. a-d) Curvilinear region shapes and associated curvature functions 
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5. Experimental results 

5.1. Shape description: a comparative study 

The proposed shape descriptor has been compared to other methods to test its performance. 
Particularly, we chose for the purpose of comparison the methods proposed by Bernier and 
Landry (2003) and Zhang and Lu (2005). The first method employs a contour-based 
descriptor, whereas the second one is rather region-based. In order to compare the 
performance of the different methods, a publicly available data set (Sebastian et al., 2001) 
was employed1. This data set consists of nine classes with eleven shapes in each cluster (see 
Fig. 7). 

Fig. 7. A data set of 99 shapes (Sebastian et al., 2001) 

The experiments were performed on a Pentium IV 2.6 GHz PC. Each shape was matched 
against all the other shapes of the data set and the number of times the test image was 
correctly classified was counted in the nth nearest neighbours (n ranging from 1 to 8) 
(Tabbone et al., 2006). Fig. 8 shows the nth nearest match rates for each approach. Although 
the results of the first nearest matches were quite similar among all methods, the results for 
the matches from 5 to 8 were better with our approach. Finally, it must be mentioned that 
these results are quite similar to the ones reported by Tabbone et al. (2006) which use a more 
computationally expensive shape descriptor defined on the Radon transform.  

                                                                
1 http://www.lems.brown.edu/vision/researchAreas/SIID/ 
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Fig. 8. Comparison of the employed shape descriptor with other approaches (see text) 

5.2. Scene recognition experiments 

Once the curvilinear regions have been detected, they are characterised using a 260-
dimensional space whose first two dimensions (x, y)i are the co-ordinates of the centre of 
mass of the region (the image co-ordinates are ranged from 0 to 256), the second two 
dimensions (h, s)i are the mean hue and saturation values of the region (HSV colour space), 
and the other 256 values {fci}i=1...256 are the curvature function of the object shape. Each image 
is then described by the properties of the associated set of curvilinear regions.  

In this image matching scheme, two images will be similar if their associated sets of 
curvilinear regions are similar. The distance between two curvilinear regions i and j can be 
defined as
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where  is equal to |hi-hj|if this value is less than , or equal to (2  -|hi-hj|) in any other 
case. The parameters i define the importance of the position, colour and shape into the 
distance measure and they have been experimentally adjusted. The * operator denotes the 
convolution and it is applied ranging from 1 to 256, providing rotation invariance. Then, 
given a query image Q and a dataset of images Bi, whose associated sets of curvilinear 
regions have been detected and characterised off-line, the image matching process firstly 
extracts the set of NQ curvilinear regions {cQ}i=1...NQ present in the query image. They are 
sorted as a function of their lengths. Then, the comparison between Q and each image Bi is 
achieved by comparing each curvilinear region in Q, cQi, with all the NBi curvilinear regions 
present in Bi, {cBi}i=1...NBi, using (18). The most similar region is selected and, if the similarity 
value, D(cQi,cBij), is less than a given threshold U, both curvilinear regions are paired. This 
implies that the selected curvilinear region of Bi cannot be paired with other curvilinear 
region of Q. Finally, a similarity value is assigned to the comparison between images Q and 
Bi. This value is defined as 
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where N’Q is the number of paired curvilinear regions. 

The images Bi are then sorted according to the obtained similarity values. To test the 
method, a database of 40 images obtained in an office-like environment has been created. 
This database can be divided into 10 different scenarios (4 different images for each 
scenario). Fig. 9 presents two example retrievals for this database. Query is the leftmost 
image in each row, and subsequent images are nearest neighbours. Detected curvilinear 
regions employed to match both images have been marked.  

To evaluate the matching performance, we have employed the normalised average rank R
(Grauman & Darrell, 2005) 
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where Ri is the rank at which the ith relevant image is retrieved, NR is the number of 
relevant images for a given query, and N is the number of examples in the database. A 
normalised average rank equal to 0 implies a perfect performance, that is all relevant images 
in the database have been retrieved as nearest neighbours of the query image. For the 
reported experiment, the normalised average rank of relevant images present an average 
value of 0.025 and a standard deviation of 0.001. 

Fig. 9. Example retrievals for a database of office-like environment images (see text for 
details)
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6. Conclusions and future work 

This chapter presents a method for image matching which is based on the detection and 
characterisation of curvilinear regions. In a curvilinear region, the ratio between its average 
width and its total length should be less than a predefined threshold. Besides, left and right 
borders should be locally parallel, it should exist a geometric similarity around the region 
axis and the colour along this axis should be homogeneous. That is, they constitute 
particular image structures and, therefore, the method is restricted to scenes where these 
particular items are presented. On the contrary, curvilinear regions automatically deform 
with changing viewpoint as to keep on covering identical physical parts of a scene. For this 
reason, they can be used as distinguished regions. The shape contour of these curvilinear 
regions is characterised using the adaptive curvature function. Experimental results show 
that this shape descriptor is invariant to rotation and translation, and partially invariant to 
noise and skewing. Scaling invariance is achieved by employing an extra normalisation 
stage. Thus, this descriptor, plus the region colour and position, can be used to match 
curvilinear regions detected on the input image with those previously stored in a database. 
This is the basis of the correspondence algorithm described in this paper: the similarity 
index between two images is determined by the presence of the same set of curvilinear 
regions localised in similar positions. 

There are many directions for further research. One of this is the integration of several types 
of distinguished regions. As we commented above, the obligatory presence of these regions 
in the images is the main disadvantage of the proposed system. Besides, further work must 
be accomplished in the correspondence algorithm to employ the most similar region 
correspondences as ground control points. These points could be used to generate a 
fundamental matrix describing the geometric constraints between the two images. Thus, 
matches that did not agree with the majority solution could be removed. 
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