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1. Introduction  

In this chapter, a novel multiscale method is presented that is based upon the Particle-In-

Cell (PIC) finite element approach. The particle method, which is primarily used for fluid 

mechanics applications, is generalized and combined with a homogenization technique. The 

resulting technique can take us from fluid mechanics simulations seamlessly into solid 

mechanics. Here, large deformations are dealt with seamlessly, and material deformation is 

easily followed by the Lagrangian particles in an Eulerian grid. Using this method, solid 

materials can be modeled at both micro and macro scales where large strains and large 

displacements are expected. In a multiscale simulation, the continuum material points at the 

macroscopic scale are history and scale dependent. When conventional Finite Elements are 

used for multiscale modeling, microscale models are assigned to each integration point; 

with these integration points usually placed at Gaussian positions. Macroscale stresses are 

extrapolated from the solution of the microscale model at these points and significant loss of 

information occurs whenever re-meshing is performed. In addition, in the case of higher-

order formulations, the choice of element type becomes critical as it can dictate the 

performance, efficiency and stability of the multiscale modeling scheme. Higher-order 

elements that provide better accuracy lead to systems of equations that are significantly 

larger than the system of equations from linear elements. The PIC method, on the other 

hand, avoids all of the problems that arise from element layout and topology because every 

material point carries material history information regardless of the mesh connectivity. 

Material points are not restricted to Gaussian positions and can be dispersed in the domain 

randomly, or with a controlled population and dispersion. Therefore, in analogy to Finite 

Element Method (FEM) mesh refinement, parts of the domain that might experience 

localization can have a higher number of material points representing the continuum 

macroscale in more detail. Similar to the FEM multiscale approach, each material point has a 

microscale model assigned and information passing between the macro and micro scales is 

carried out in a conventional form using homogenization formulations. In essence, the 

homogenization formulation is based on finding the solution of two boundary value 

problems at the micro and macro scales with information passing between scales. Another 

advantage of using the particle method is that each particle can represent an individual 

material property, thus in the microscale phase, interfaces can be followed without the 
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numerical overhead associated with the contact algorithms while material points move. 

Moreover, the PIC method in the macro and microscale tracks material discontinuities and 

can model highly distorted material flows. Here we aim to build and investigate the 

applicability of the PIC method in a multiscale framework.  

Three examples that showcase a fluid approach to model solid deformation are presented. 
The first numerical experiment uses a viscoelastic-plastic material that undergoes high 
strains in shear. The material is considered to be in a periodic domain. The initial 
orientation, the high-strain configuration and the softening of the shear bands are studied 
with very high resolutions using PIC method. This is a situation where a conventional FE 
approach could be very expensive and problematic. The second example is the simulation of 
the global system of tectonic plates that form the cool upper boundary layer of deep 
planetary convection cells. Creeping flow in the mantle drives the plates and helps to cool 
the Earth. This is an unusual mode of convection, not only because it takes place in a solid 
silicate shell, but also because a significant fraction of the thickness of the cold boundary 
layer (the lithosphere) behaves elastically with a relaxation time comparable to the overturn 
time of the system (Watts et al. 1980). In modeling this system, we need to account for 
Maxwell viscoelastic behavior in the lithosphere as it is recycled into the Earth’s interior. 
The lithosphere undergoes bending, unbending, and buckling during this process, all the 
while being heated and subjected to stress by the mantle flow. A Maxwell material has a 
constitutive relationship which depends upon both the stress and the stress rate. The stress 
rate involves the history of the stress tensor along particle trajectories. PIC approaches are 
an ideal way to approach this problem. For a full discussion, see (Moresi et al. 2003). The last 
example presented in this chapter is on the simulation of forming process of Advanced High 
Strength Steels (AHSS). These are materials with multiphase microstructure in which 
microstructure has a pronounced effect on the forming and spring-back of the material. The 
contribution of this chapter is on the illustration of the PIC method in solid mechanics 
through examples that include large strain deformation of viscoelastic-plastic materials as 
well as multiscale deformation of elastoplastic materials.  

2. Particle-based method: An alternate to FE method 

Particle methods are result of attempts to partially or completely remove the need for a 
mesh. In these methods, an approximation to the solution is constructed strictly in terms of 
nodal point unknowns (Belytschko et al. 1996). The domain of interest is discretized by a set 
of nodes or particles. Similar to FEM, a shape function is defined for each node. The region 
in the function’s support, usually a disc or rectangle, is called the domain of influence of the 
node (Belytschko et al. 1996). The shape function typically has two parameters, providing 
the ability to translate and dilate the domain of influence of a shape function. The 
translation parameter allows the function to move around the domain, replacing the 
elements in a meshed method. The dilation parameter changes the size of the domain of 
influence of the shape function, controlling the number of calculations necessary to find a 
solution. As the dilation parameter becomes larger, larger time steps can be taken. A set of 
basis functions also needs to be defined for a given problem.  
The principle advantage of a particle method is that the particles are not treated as a mesh 
with a prescribed connectivity. Therefore, mesh entanglement is not a problem and large 
deformations can be treated easily with these methods. Creating new meshes and mapping 
between meshes is eliminated. Refinement can be obtained by simply adding points in the 
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region of interest (Liu et al. 2004). It should be noted that most of these methods use a mesh 
to perform integration. However, this mesh can be simpler than would be needed for 
standard element-based solutions. Another advantage of the particle method is that there is 
no need to track material interfaces, since each particle has its own constitutive properties 
(Benson 1992).  
There are also difficulties in using particle methods. One of the major disadvantages of these 
methods is their relatively high computational cost, particularly in the formation of the 
stiffness matrix. The support of a shape function generally overlaps surrounding points 
unlike standard FE shape functions. In fact, the support of the kernel function must cover a 
minimum number particles for the method to be stable (Chen et al. 1998).  
The bandwidth of the stiffness matrix is increased by the wider interaction between nodes. 
There is a more irregular pattern of the sparsity, since the number of neighbors of a given 
point can vary from point to point. Thus, the number of numerical operations in the 
formation and application of these matrices increases. Additionally, higher-order shape and 
basis functions are usually used, with the result that higher-order integrations are required. 
Construction of these shape functions is also costly (Chen et al. 1998). 
Another problem is that overlapping shape functions are not interpolants (Belytschko et al. 
2001); even the value of a function at a nodal point must be computed from the contributing 
neighbors. This requirement makes essential boundary conditions more difficult to apply. 
Some techniques that have been developed to address this problem are Lagrange 
multipliers, modified variational principles, penalty methods and coupling to FEMs 
(Belytschko et al. 2001). However, there can also be difficulties with using these techniques. 
For example, the Lagrange multiplier method requires solution of an even larger system of 
equations. In addition, Lagrangian multipliers tend to destroy any structure, such as being 
banded or positive definite, that the system might exhibit (Belytschko et al. 2001). The 
modified variational approach applies boundary conditions of a lower order of accuracy. 
Coupling to FEMs by using particle methods only in regions with large deformations and 
FEMs elsewhere in the problem can reduce the cost of the solution. However, the shape 
functions at the interface become quite complicated and require a higher order of 
quadrature (Belytschko et al. 2001). Another method (Chen et al. 1998) first uses the map 
from nodal values to the function space to get nodal values of the function, then applies the 
boundary conditions, and then transforms back to nodal values. 
Many of these codes have been restricted to static problems. Chen has developed a dynamic 
code, but all of the basis functions are constructed in the original configuration (Chen et al. 
1998). 
Like their meshed counterparts, particle methods are useful for certain types of problems. 
However, because of their higher computational cost, they are not the method of choice for 
some types of problems. The PIC method, also known as Material Point Method (MPM), 
combines some aspects of both meshed and meshless methods. This method was developed 
by Sulsky and co-workers for solid mechanics problems based on the Fluid-Impact-Particle 
(FLIP) code, which itself was a computational fluid dynamics code (Sulsky et al. 1995).  
Sulsky et al. (Sulsky et al. 1995) initially considered application of MPM to 2D impact 
problems and demonstrated the potential of MPM. Later in 1996, Sulsky and Schreyer 
(Sulsky and Schreyer 1996) gave a more general description of MPM, along with special 
considerations relevant to axisymmetric problems. The method utilizes a material or 
Lagrangian mesh defined on the body under investigation, and a spatial or Eulerian mesh 
defined over the computational domain. The advantage here is that the set of material 
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points making up the material mesh is tracked throughout the deformation history of the 
body, and these points carry with them a representation of the solution in a Lagrangian 
frame. Interactions among these material points are computed by projecting information 
they carry onto a background FE mesh where equations of motion are solved. Furthermore, 
the MPM does not exhibit locking or an overly stiff response in simulations of upsetting 
(Sulsky and Schreyer 1996).  
In MPM, a solid body is discretized into a collection of material points, which together 

represent the body. As the dynamic analysis proceeds, the solution is tracked on the 

material points by updating all required properties, such as position, velocity, acceleration, 

stress, and temperature. At each time step, the material point information is extrapolated to 

a background grid, which serves as a computational scratch pad to solve the equilibrium 

equations. The solution on the grid-nodes is transferred using FE shape functions, on the 

material points, to update their values. This combination of Lagrangian and Eulerian 

methods has proven useful for solving solid mechanics problems involving materials with 

history dependent properties, such as plasticity or viscoelastic effects.  

The key difference between The PIC method developed by Moresi et al. and the classical 

MPM is the computation of updated particle weights which differ from the initial particle 

mass. This gives much improved accuracy in the fluid-deformation limits especially for 

incompressible flows (Moresi et al. 2003). This method is amendable to efficient parallel 

computation and can handle large deformation for viscoelastic materials. In the next section, 

we explain how this method is combined with the localization and homogenization routines 

to build a multiscale PIC method suitable solid mechanics applications. 

3. Numerical formulation 

3.1 Incremental iterative algorithm 

The stiffness matrix term is assembled over all cells (ܭ =  ௘ୀଵ௡௖௘௟௟݇) in the model where theܣ

stiffness matrix of each cell is 

 ݇ = ׬ ஐ೐்ܤ  Ω  (1)݀	ܤܥ

In equation (1) ܥ is a fourth order tensor that must be calculated by the appropriate 
constitutive equations at the particle level. In calculation of the global stiffness matrix, the 
effect of initial stresses (or nonlinear geometrical effects) must be considered. This is 
achieved by selecting a proper reference frame and adding nonlinear strain-displacement 
terms to the calculation of equation (1).  
We choose to use an Updated Lagrangian reference frame to build the global stiffness 
matrix. For simplicity, a quasi-static condition is considered. Therefore, the linearized 
system of equations takes the following form 

 ሺܭ୐୧୬ୣୟ୰ + ୒୭୬୪୧୬ሻܷܭ = ܨୣ ୶୲ −  ୧୬୲  (2)ܨ

Similar to FEM matrix and vector assembly, Equation (2) in extended form can be written as 

 ቀ׬ ୐୧୬ୣୟ୰்௩ܤ ݀ɓ	୐୧୬ୣୟ୰ܤܥ	 + ׬ ୒୭୬୪୧୬்௩ܤ ݀ɓቁ	୒୭୬୪୧୬ܤ߬	 u = ܨୣ ୶୲௧ା୼௧ − ׬ ୐୧୬ୣୟ୰்௩ܤ ߬	݀ɓ  (3) 

In equation (3), ܤ୐୧୬ୣୟ୰ and ܤ୒୭୬୪୧୬ are linear and nonlinear strain-displacement matrices and 

the external forces are contributions of body forces and tractions 
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ܨୣ  ୶୲௧ା୼௧ = ׬ ்ܰ௦ ଴௧ା୼௧݀sݏ݂	 + ׬ ்ܰ௩ 	݂ܾ଴௧ା୼௧݀ɓ  (4) 

In Equations (2)-(4), terms are referenced to time t and t+∆t, whereas if the Total Lagrangian 

frame were in use, terms with reference to time zero and ݐ should have been taken into 

account. Similarly, the global internal force vector is assembled over all cells (ȟܨ௜௡௧ ௘ୀଵ௡௖௘௟௟ȟܣ= ୧݂୬୲). The difference between the internal and external force vectors is the residual, or 

out-of-balance, term: 

 ܴ = ȟܨ୧୬୲ − ȟୣܨ ୶୲  (5) 

If 	ܴ < ୲୭୪ୣ୰ୟ୬ୡୣ then the current increment ሺ݊ߣ + ͳሻ୲୦ is in equilibrium and the simulation 

can move forward to the next increment, otherwise the system of linear equation is modified 

such that iterative displacements can be found from 

ܷ݀ܭ  = ܴ.  (6) 

With each new iterative displacement solution	ܷ݀, the above procedure is repeated until the 

criteria of ܴ <  ୲୭୪ୣ୰ୟ୬ୡୣ is satisfied (convergence is achieved). The preceding algorithm is theߣ

standard incremental-iterative algorithm, which can be used for both macro and micro scale 

simulation. The important factor to consider in the multiscale PIC is the coupling between 

these two scales and the constitutive relations at each scale.  
Constitutive equations of different phases at the microscale are defined using a conventional 
continuum mechanics approach for elastoplastic materials.  

3.2 Integration using particles 
Following the works of Moresi et al. (2003), the sampling points for integration of field 
variables in our multiscale PIC method are matched with the material points embedded in 
the macro scale model. These integration points are not fixed like Gauss points. Therefore, 
their positions are not known in advance and an adaptive scheme with the procedure 
outlined in the numerical implementation of Moresi et al. (2003) is used. The integral in 
Equation (1) results in a system of linear equations with unknown displacements on nodes 
with the element stiffness matrix  

 ݇௜௝௘ = ∑ ௜்ܤ௣ݓ ሺ௡೐೛௣ୀଵ ௝்ܤ௣ܥ௣ሻݔ ሺݔ௣ሻ  (7) 

where	݊௘௣ is the number of particles with weight ݓ௣	in a cell. ܤ	is the usual linear strain-

displacement tensor in FE. The fourth order tensor ܥ௣	is the stiffness matrix of the material at 

any arbitrary point P. The core significance of the multiscale PIC method lies in the way ܥ௣ is 

calculated and obtained. In single scale methods, the constitutive equations are used to build 
this matrix. However, we use microscale homogenization, also known as multi level FE, to 
build this tensor as described shortly. An incremental iterative solution strategy of full 
Newton-Raphson (N-R) is used to solve the linearized equations of motion for nodal data in an 
implicit manner (Guilkey and Weiss 2003). The effect of initial stress and nonlinear geometric 
effect (e.g. due to mismatch between material properties of particles) is taken into account by 
addition of a nonlinear term to the stiffness matrix in equation (7). In all of the analyses, a 
quasi-static situation is assumed and all body and surface forces are represented by the 
external loads. After finding the incremental displacement, the strain and deformation 
gradient for each particle are calculated and used for the macro-micro coupling.  
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3.3 Elastoplastic solid deformation 

In continuum and fluid mechanics, the underlying microscopic mechanisms are complex 

but simplified at the macroscale level. In multiscale PIC, classical elastoplasticity is used as 

the constitutive relations for the microscale phases.  

Transformation from the undeformed configuration at pseudo time ݐ଴ to the current 

configuration at pseudo time ݐ is described by a deformation gradient tensor	ܨ. The total 

deformation is multiplicatively decomposed into elastic and plastic parts. The 

decomposition is unique with the common assumption that the plastic rotation rate during 

the current increment is zero. Therefore, material rotations are fully represented in the 

elastic part of the deformation gradient tensor.  
The von Mises yield criterion defined by  

 ݂ሺߪ, ௣̅ሻߝ = ଷଶߪ ,: ߪ , −  ௣̅ሻ  (8)ߝ௬ଶሺߪ

is used, where the effective plastic strain is 

௣̅ߝ  = ׬ ටଶଷܦ௣: ௣௧ఛୀ଴ܦ ݀߬  (9) 

Hydrostatic stresses ߪ , are calculated using mean stress 		ߪ௠ = ఙ೔೔ଷ   

,௜௝ߪ  = ௜௝ߪ −  ௜௝  (10)ߜ௠ߪ

During the elastoplastic deformation, the plastic deformation rate ܦ௣ is related to the stress 

by the normality rule. The direction of ܦ௣ is perpendicular to the yield surface in the stress 

space, and the length of	ܦ௣, which is unknown at the current increment, is characterized by 

the plastic multiplier	ߣሶ. The value of the plastic multiplier is found from the consistency 

equation so that the stress state always resides on the yield surface during elastoplastic 

deformation. When the plastic multiplier is calculated, the constitutive relation between the 

objective rate of the Cauchy stress tensor and the deformation rate tensor is determined 

using the Prandtl-Reuss equation. Besides the constitutive equation for the stress state, the 

effective plastic strain is updated to keep track of the plastic evolution.  

3.4 Viscoelastic fluid deformation  

For the viscoelastic deformation, we begin our analysis from the momentum conservation 

equation of an incompressible, Maxwell viscoelastic fluid having infinite Prandtl number 

(i.e. all inertial terms can be neglected), and driven by buoyancy forces. 

௜௝,௝ߪ  = ௜݂  (11) 

where ߪ is the stress tensor and ݂ a force term. The stress consists of a deviatoric part, ߬, and 

an isotropic pressure, ݌,  

௜௝ߪ  = ߬௜௝ −  ௜௝  (12)ߜ݌

where ߜ௜௝ =   .is the identity tensor ܫ
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The Maxwell model assumes that the strain rate tensor, ܦ, defined as:  

௜௝ܦ  = ଵଶ ൬డ௏೔డ௫ೕ + డ௏ೕడ௫೔൰  (13) 

is the sum of an elastic strain rate tensor ܦ௘ and a viscous strain rate tensor ܦ௩. The velocity 

vector, ܸ, is the fundamental unknown of our problem and all these entities are expressed in 

the fixed reference frame ݔ௜. In an incompressible material, these strain rates are, by 

definition, devatoric tensors.  
The viscous and elastic constitutive laws in terms of the strain rate are, respectively  

 ߬௜௝ = ;௩ܦߟʹ 				 ɒු௜௝ =  ௘  (14)ܦߤʹ

where ߟ is shear viscosity, ߤ is the shear modulus, and ɒු is an objective material derivative 
of the deviatoric stress.  
The viscous and elastic constitutive laws are combined by summing each contribution to the 
strain rate tensor  

௜௝ܦ  = ௜௝௘ܦ + ௜௝௩ܦ = தු೔ೕଶఓ + ఛ೔ೕଶఎ  (15) 

Writing the stress derivative as the difference, in the limit of small ݐ − ȟݐ௘, between the 

current stress solution ߬ at ݐ, and the stress at an earlier time, ݐ − ȟݐ௘ 	 gives  

 ɒු௜௝ሺݐ, ࢞ሻ = limఋ ୼୲೐	  → ଴ ఛ೔ೕ೟ ሺ௧,࢞ሻ ି ఛො೔ೕ೟ ሺ௧,௧ି௱௧೐	,࢞,࢛ሺ࢞,௧ሻሻఋ௧   (16) 

Where ߬̂௜௝௧  indicates a stress history tensor which has been transported to the current location 

by the time-dependent velocity field from its position at the earlier time, ݐ − ȟݐ௘	. For each 

point in the domain, ࢞, this stress history is dependent upon the velocity history, which 

determines the path taken by the material to reach the point, ࢞, and any rotation of the 

tensor along the path.  
A common choice for ɒු is the following:  

 ɒු௜௝ = డఛ೔ೕడ௧ + ߬ᇱ௜௝  (17) 

where			߬ᇱ௜௝ is the instantaneous rate of change in the stress tensor, related to the spatial part 

of the Eulerian derivative and associated with the transport, rotation and stretching by fluid 

motion.  

 ߬ᇱ௜௝ = ௞ݑ డఛ೔ೕడ௫ೖ + ߬௜௞ ௞ܹ௝ − ௜ܹ௞߬௞௝ + ܽሺ߬௜௞ܦ௞௝ +  ௜௞߬௞௝ሻ  (18)ܦ

Here ܽ is a parameter that can take values between -1 and 1, and ܹ is the spin tensor,  

 ௜ܹ௝ = ଵଶ ൤డ௏೔డ௫ೕ − డ௏ೕడ௫೔൨  (19) 

When ܽ = Ͳ, ɒු is known as the Jaumann derivative, and when ܽ = ͳ or ܽ = −ͳ it is known 

as the upper- or lower-convected Maxwell derivative, respectively. In our implementation, 

we choose ܽ = Ͳ. This choice greatly simplifies the formulation as it ensures that ɒු is 

deviatoric when ߬ is deviatoric.  
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Numerically, with the PIC formulation, it is more convenient to compute ߬̂ directly than to 

attempt to compute the derivatives in ߬ᇱ. ߬̂ is the stress tensor stored at a material point 

accounting for rotation along the path. This gives the following form of the constitutive 

relationship.  

 ߬௜௝ = ʹ ఎఓ୼୲೐	ఎାఓ୼୲೐	 ቈܦ௜௝ + ఛො೔ೕ౴౪೐	ଶఓ୼୲೐	቉  (20) 

If we now write  

୤୤ୣߟ  = ఎఓ୼୲೐	ఎାఓ୼୲೐	  (21) 

௜௝ୣ୤୤ܦ  = ቈܦ௜௝ + ఛො೔ೕ౴౪೐	ଶఓ୼୲೐	−቉  (22) 

 ߬௜௝ =  ௜௝ୣ୤୤ (23)ܦ୤୤ୣߟʹ

It is clear that the introduction of viscoelastic terms into a fluid dynamics code is merely a 

question of being able to compute ߬̂ accurately; a simple task when particles are available. 

An important feature of this formulation is the fact that we have specified an independent 

elastic time step, ȟt௘	which is not explicitly related to the relaxation time of the material or the 

timestep mandated by the Courant stability criterion.  

The use of an independent step is appropriate because there is a large variation of relaxation 

time within the lithosphere due to temperature dependence of viscosity exhibited by mantle 

rocks (Karato 1993). While the near surface has a relaxation time comparable to the overturn 

time, the deeper, warmer parts of the lithosphere have a relaxation time several orders of 

magnitude less than this — and elasticity may be ignored altogether. If ȟt௘ is chosen to 

resolve elastic effects at the relaxation time of the cool part of the boundary layer, then, for 

regions where the relaxation time is much smaller, the elastic term simply becomes 

negligibly small and viscous behavior is recovered. In (Moresi et al. 2003), we describe the 

manner in which the stress tensor can be averaged over a moving window to ensure that the 

storage of only one history value is required to recover ߬̂ at ݐ − ȟt௘	.  
4. Multiscale formulation 

To perform multiscale simulation, a Representative Volume Element (RVE) is assigned to 

each material point. Instead of constitutive relations at the macroscale level, the 

microstructural material properties and morphologies are assumed to be known a priori. The 

realization of the RVE in terms of size and representativeness is an important factor. At the 

RVE level, the macroscale deformation gradient is used to impose boundary conditions on 

the RVE.  

After solving the microscale problem using a stand-alone multiscale PIC model, the stresses 

and tangent stiffness matrix are averaged and returned to the macroscale material point. The 

localization and homogenization (or commonly known the multilevel FEM) approaches 

explained here are mainly inspired by the works of Smit et al. (1998) and Kouznetsova et al. 

(2001). 
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After performing the homogenization, the residual forces at the material points are 

calculated. Then convergence of the macroscale iteration is checked. If convergence is 

achieved, the solver proceeds to the next increment; otherwise, the microscale solution is 

initiated to obtain the corrective stress vector. The material tangent-stiffness matrix and the 

averaged stress vector are evaluated for the corresponding material point.  

4.1 Localization 
During this phase, Boundary Conditions (BCs) are applied on the RVE model. BCs can be 

imposed in three ways: a) by prescribed displacement, b) by prescribed traction, or c) by 

periodic boundary conditions. The following formulation covers the prescribed 

displacement and periodic BC cases. The formulation for traction BC is outside the scope of 

our multiscale PIC code because it is fundamentally a displacement driven code. 

The macroscale deformation gradient is used as a mapping tensor on boundaries of the 

RVE, ݔ = ୑ୟୡ୰୭ܨ ⋅ ܺ where ݔ refers to deformed and ܺ to undeformed position vectors of the 

points along the boundary. The most reasonable estimation of the averaged properties are 

obtained with periodic BCs (Smit et al. 1998). The periodic BCs are enforced using 

symmetric displacement and antisymmetric traction BCs along opposite edges of the 

boundary Ȟ௜௝	଴ (Kouznetsova et al. 2001). 

4.2 Homogenization 
The coupling of the macro and micro scales is performed during the homogenization 

phase. In this phase of solution, the averaged stress and consistent tangent stiffness matrix 

are calculated for the multiscale constitutive relations using the computational 

homogenization method outline by Kouznetsova (Kouznetsova 2002; Kouznetsova et al. 

2004). 

The macroscale deformation gradient and 1st PK stress are volume averages of their 

microscale counterparts. 

୑ୟୡ୰୭ܨ  = ଵ௏ ׬ ୑୧ୡ୰୭݀ܨ ଴ܸ௏బ   (24) 

 ୑ܲୟୡ୰୭ = ଵ௏ ׬ ୑ܲ୧ୡ୰୭݀ ଴ܸ௏బ   (26) 

where ܲ is the traction or force. After the RVE microscale problem is solved, the values of ୑ܲ୧ୡ୰୭ are known, and one can perform the integration in equation (26) and return 

macroscale stresses to the corresponding material point. In the following, the gradient 

operator ∇଴ is taken with respect to reference configuration while ∇	is the gradient operator 

with respect to the current configuration. With account for microscale equilibrium ∇଴	୑୧ୡ୰୭ ⋅୑ܲ୧ୡ୰୭ = ͲሬԦ and the equality of ∇଴	୑୧ୡ୰୭ ⋅ ܺ =  Ԧ the following relation holdsܫ

 ୑ܲ୧ୡ୰୭ = ሺ∇଴	୑୧ୡ୰୭ ⋅ P୑୧ୡ୰୭ሻܺ + P୑୧ୡ୰୭ሺ∇଴	୑୧ୡ୰୭ ⋅ ܺሻ = ∇଴	୑୧ୡ୰୭ሺP୑୧ୡ୰୭ ⋅ ܺሻ (27) 

substitution of equation (27) into (26) and application of the divergence theorem (׬ ∇ ⋅ஐ݀ݑΩ ׬= ݊ ⋅ Ȟ୻݀	ݑ ሻ and the definition of the first PK stress vector (݌ = ܰ ⋅ ୑ܲ୧ୡ୰୭) gives 

 ୑ܲୟୡ୰୭ = ଵ௏ ׬ ∇଴	୑୧ୡ୰୭ ⋅ ሺ ୑ܲ୧ୡ୰୭ܺሻ݀ ଴ܸ௏బ =	 ଵ௏ ׬ ܰ ⋅ ୑ܲ୧ୡ୰୭ܺ݀Ȟ଴୻బ   (28) 
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where ݊ and ܰ	are the normal vectors in initial (Ȟ) and current (Ȟ଴) RVE boundaries, 

respectively. The integration in equation (28) can be simplified for prescribed displacement 

BC and a periodic BC. The consistent tangent stiffness matrix can also be calculated using 

the RVE equilibrium equation and the relation between averaged RVE stress and its 

averaged work conjugate quantity. Next, macroscale stress and stiffness matrix calculations 

are treated separately for the prescribed displacement BC and periodic BC. 

4.3 Prescribed displacement BC 
The macroscale deformation gradient is used as a mapping tensor on the boundaries of the 

RVE: 

ݔ  = ୑ୟୡ୰୭ܨ ⋅ ܺ														 			with X on	Ȟ଴  (29) 

where ݔ refers to deformed and ܺ to undeformed position vectors of the points along the 

boundary, Ȟ଴	is the initial undeformed boundary points of the RVE. 

For the case of prescribed displacement BC, integration of equation (26) simply leads to the 

following summation 

 ୑ܲୟୡ୰୭ = ଵ௏బ∑ ሺ௜ሻ݌ ሺܺ௜ሻ௜ = ଵ௏బ∑ ሺ݂௜ሻ ሺܺ௜ሻ௜   (30) 

where ሺ݂௜ሻ are the resulting external forces at the boundary nodes (that are caused by ୑ܲୟୡ୰୭ 

stress on these nodes). In the preceding equation,	 ሺܺ௜ሻ	is the position vector of the i-th node 

along the undeformed boundary Ȟ଴	of RVE. The macroscale 1st PK stress in equation (30) is 

a non-symmetric second-order tensor, and in component form for two dimensions it can be 

written as follows 

 ெܲ௔௖௥௢ = ଵ௏బ ൥∑ ଵ݂ሺ௜ሻ ଵܺሺ௜ሻ௜ ∑ ଵ݂ሺ௜ሻܺଶሺ௜ሻ௜∑ ଶ݂ሺ௜ሻ ଵܺሺ௜ሻ௜ ∑ ଶ݂ሺ௜ሻܺଶሺ௜ሻ௜ ൩  (31) 

where scalar values ଵ݂ሺ௜ሻ and ଶ݂ሺ௜ሻ	 are resulting external forces in basis direction one and 

two, respectively. Similarly, scalar values ଵܺሺ௜ሻ	and ܺଶሺ௜ሻ	refer to the initial position vector in 

directions one and two. The subscript index (i) indicates the quantity is on the i-th node 

along the boundary.  
Multiscale constitutive relations are required to determine the macroscale consistent 

stiffness matrix at ݐ = ݐ + ͳ. The components of this matrix are the derivative of the 

macroscale 1st PK stress with respect to its corresponding work conjugate, macroscale 

deformation gradient 

ܥ  = డ௉౉౗ౙ౨౥డி౉౗ౙ౨౥  (32) 

where ܥ is the fourth-order tensor of the macroscale consistent stiffness moduli. In the 

incremental iterative solver, the above derivative can be rewritten in terms of iterative 

variations of 1st PK stress and deformation gradients 

ܥ  = ఋ௉౉౗ౙ౨౥ఋி౉౗ౙ౨౥  (33) 

Equation (31) can be used to find variations of 1st PK stress 
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ߜ  ெܲ௔௖௥௢ = ଵ௏బ ൥∑ ߜ ଵ݂ሺ௜ሻ ଵܺሺ௜ሻ௜ ∑ ߜ ଵ݂ሺ௜ሻܺଶሺ௜ሻ௜∑ ߜ ଶ݂ሺ௜ሻ ଵܺሺ௜ሻ௜ ∑ ߜ ଶ݂ሺ௜ሻܺଶሺ௜ሻ௜ ൩  (34) 

To find variations in external forces ߜ ሺ݂௜ሻ one can use the RVE equilibrium equation written 

in matrix notation as 

 ൤ܭௗௗ ௕ௗܭௗ௕ܭ ௕௕൨ܭ ൤ݑߜௗݑߜ௕൨ = ൤ߜ ௗ݂ߜ ௕݂൨  (35) 

where subscript b refers to degrees of freedom of the boundary points and subscript d refers 

to degrees of freedom of internal points in the RVE domain. After solution of the RVE 

model, Equation (35) can be reduced to find the stiffness matrix that corresponds only to the 

prescribed degrees of freedom on the boundary points 

 ሾܭ௕௕ − ௕ݑߜௗ௕ሿܭௗௗሻିଵܭ௕ௗሺܭ = ߜ ௕݂ (36) 

where the left hand side term in the bracket is stiffness matrix ܭ୑୧ୡ୰୭_௕. Equation (36) may be 

rewritten in tensor notation.  

 ∑ ሾܭ௕௕ − ௗ௕ሿሺ௜௝ሻ௝ܭௗௗሻିଵܭ௕ௗሺܭ ሺ௝ሻݑߜ = ߜ ሺ݂௜ሻ  (37) 

Subscripts i and j refer to nodes on the boundary Ȟ଴		of the RVE where the displacement is 

prescribed.  

Now by substitution of equation (37) into equation (34) the numerator term in (33) is found 

as 

ߜ  ୑ܲୟୡ୰୭ = ଵ௏బ∑ ∑ ሺ௝ሻݑߜሺ௜௝ሻ୑୧ୡ୰୭_௕ܭ ሺܺ௜ሻ௝௜   (38) 

On prescribed nodes, the displacement is ݑሺ௝ሻ = ሺܨ୑ୟୡ୰୭ − ሻܫ ⋅ ܺሺ௝ሻ, and their variation is 

simply	ݑߜሺ௝ሻ = ሺܺ௝ሻ ⋅   ெ௔௖௥௢. Hence, equation (38) simplifies toܨߜ

ߜ  ୑ܲୟୡ୰୭ = ଵ௏బ∑ ∑ ܺሺ௝ሻܭሺ௜௝ሻ୑୧ୡ୰୭_௕ܺሺ௜ሻ: ୑ୟୡ୰୭௝௜ܨߜ  (39) 

Comparing equation (39) and (33), the macroscale consistent tangent stiffness matrix is 

found from the right hand side of equation (39) to be 

ܥ  = ଵ௏బ∑ ∑ ܺሺ௝ሻܭሺ௜௝ሻ୑୧ୡ୰୭_௕ ሺܺ௜ሻ௝௜  (40) 

where each component of the matrix on the right hand side is a [2x2] matrix itself. In other 

words, ܭሺ௜௝ሻ୑୧ୡ୰୭_௕ is the same as a [2x2] matrix found from the global microscale stiffness 

matrix at rows and columns of degrees of freedom i and j. 

4.4 Periodic BC 

The macroscale deformation gradient is used as a mapping tensor on opposite boundaries of 

the RVE such that the undeformed and deformed shapes of opposite edges of the RVE are 

always the same and the stresses are equal but in an opposite direction.  

ାݔ  − ିݔ = ୫ୟୡ୰୭ܨ ⋅ ሺܺା − ܺିሻand ܲା = ܲି (41) 
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where ݌ = ܰ ⋅ ௠ܲ௜௖௥௢ is the traction related to the 1st PK stress tensor and normal ܰ with 

reference to the initial configuration of the RVE. Some writers have modified the periodic 

BC of equations (41) to simple relations between top-bottom and right-left edges of an 

initially square shape two-dimensional RVE, shown in Figure  1 (Kouznetsova et al. 2001; 

Smit et al. 1999). 
The choice of periodic boundary conditions has been proven to give a more reasonable 
estimation of the averaged properties, even when the microstructure is not regularly 
periodic (Kouznetsova et al. 2001; Smit et al. 1999; Van der Sluis et al. 2001). The periodic 
boundary condition implies that kinematic (or essential) boundary conditions are periodic 
and natural boundary conditions are antiperiodic. The latter is to maintain the stress 
continuity across the boundaries. The spatial periodicity of ܰ is enforced by the following 
kinematic boundary constraints ܺ୘୭୮ሺߦଷସሻ + ଵܺ − ܺସ − ܺ୆୭୲୲୭୫ሺߦଵଶሻ = Ͳ for ଷସߦ = ଶଷሻߦଵଶ ܺୖ୧୥୦୲ሺߦ + ଵܺ − ܺଶ − ܺ୐ୣ୤୲ሺߦଵସሻ = Ͳ for ଶଷߦ =  ସଵߦ

(42) 

and natural boundary constraints ߪ ⋅ ݊୘୭୮ሺߦଷସሻ = ߪ− ⋅ ݊୆୭୲୲୭୫ሺߦଵଶሻ for ଷସߦ = ߪ ଵଶߦ ⋅ ݊ୖ୧୥୦୲ሺߦଷସሻ = ߪ− ⋅ ݊୐ୣ୤୲ሺߦଵଶሻ for ଶଷߦ =  ସଵߦ
(43) 

where on the ij-th boundary, ߦ௜௝ and ߟ௜௝ are local coordinates of nodes on the top-bottom 

and left-right edges, respectively, as shown in Figure 1. Assuming that point C1 is located 

on the origin of the rectangular Cartesian coordinate system of	ሺߦ,  ሻ, vertex 1 is fully fixedߟ

to eliminate rigid body rotation of the RVE. The kinematic boundary condition (or 

prescribed displacement due to the macroscale deformation gradient) acts only on the three 

corner nodes C1, C2 and C4. 

௜ݑ  = ሺܨ୫ୟୡ୰୭ − ሻܫ ௜ܺ 	for	݅ = ,ͳܥ  (44) 	4ܥ	and	ʹܥ

Using equations (41)-(44) one can fully define the boundary value problem of the RVE 

model. Because in a displacement-based code, stress periodicity will be approximately 

satisfied due to the displacement periodicity induced by constraints of equation (42), the 

periodicity condition may be recast in terms of displacement constraints only. ୖݑ୧୥୦୲ = ୐ୣ୤୲ݑ − ଶݑ + ୘୭୮ݑ ଵݑ = ୆୭୲୲୭୫ݑ − ଵݑ +  ସݑ

 
(45) 

Equations (44) and (45) provide a link between degrees of freedom of top-bottom and right-

left boundaries of the RVE in the microscale global stiffness matrix. 

For the periodic boundary condition, the calculation of the macroscale stress follows that of 

the prescribed displacement case and is found by equation (34). The only difference is that 

subscript i refer to the three prescribed corner nodes of C1, C2 and C4. 

Similarly, the macroscale consistent tangent moduli is found by equation (40) whereas again 
subscripts i and j correspond only to corner nodes 1, 2 and 4. Furthermore, as shown in 
Figure 2, the global stiffness matrix for the microscale is partitioned to points on corners 
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(indicated by subscript c), points on positive (subscript p) and negative (subscript n) edges, 
as well as points inside the domain of the RVE model (subscript d) 

ێێێۏ 
ௗௗܭۍ ௣ௗܭௗ௣ܭ ௣௣ܭ ௗ௡ܭ ௣௡ܭௗ௖ܭ ௡ௗܭ௣௖ܭ ௖ௗܭ௡௣ܭ ௖௣ܭ ௡௡ܭ ௖௡ܭ௡௖ܭ ௖௖ܭ ۑۑۑے

ې
ێێۏ
௖ݑߜ௡ݑߜ௣ݑߜௗݑߜۍ ۑۑے

ې = ێێۏ
ߜۍ ௗ݂ߜ ௣݂ߜ ௡݂ߜ ௖݂ ۑۑے

ې
 (46) 

where the external force vector of points inside the RVE domain satisfies ߜ ௗ݂ = Ͳ.  
 

 

Fig.  1. Typical square shape RVE in undeformed configuration 

 

Fig. 2. Partitioning of global stiffness matrix of microscale with reference to position of 
material points in an RVE with periodic boundary conditions 
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The periodic boundary condition then implies that on the microscale	ߜ ௣݂ = ߜ− ௡݂,	ݑߜ௣ =  ௡ݑߜ	

and	ݑߜ௖ = Ͳ. The rest of the procedure to calculate the consistent tangent stiffness matrix for 

the macroscale material point is similar to calculations described in previous section for the 

prescribed BC. 

5. Numerical models 

The multiscale PIC method developed in the previous sections was applied to a series of case 
studies to assess its efficiency and accuracy compared to traditional fluid mechanics or solid 
mechanics modeling and simulation methods. Two examples are presented that employ the 
PIC method, without any multiscale effect, to showcase the differences between conventional 
FE approach and PIC method. These examples are followed by some more examples of metal 
forming processes modeled using the multiscale PIC method described in previous section.  

5.1 Shear banding of viscoelastic plastic material under incompressible viscous flows 
This example is a 2D numerical experiment of a strain-softening viscoelastic-plastic material 
undergoing simple shear in a periodic domain. We anticipate the development of strong shear 
banding in this situation. Our interest lies in understanding 1) the initial orientation of the 
shear bands as they develop from a random distribution of initial softening, 2) the high-strain 
configuration of the shear bands, and how deformation is accommodated after the shear bands 
become fully softened. This experiment is similar to the ones described in Lemiale et al. (2008); 
here we use simple-shear boundary conditions and very high resolution to study several 
generations of shear bands. The sample material is confined between two plates of viscous 
material with "teeth" which prevent shear-banding from simply following the material 
boundaries. A small plug of non-softening material is applied at each end of the domain to 
minimize the effect of shear bands communicating across the wrap-around boundary. The 
example shown in Figures 3 and 4 are of a material with 20% cohesion softening and a friction 
coefficient of 0.3 (which remains constant through the experiment). The material properties of 
the sample are: viscosity = 100, elastic shear modulus = 106, cohesion = 50. This ensures that 
the material begins to yield in the first few steps after the experiment is started. 
A large number of shear bands initiate from the randomly distributed weak seeds in two 
conjugate directions in equal proportions. These two orientations are: 1) approximately 5 
degrees to the maximum velocity gradient (horizontal) and 2) the conjugate to this direction 
which lies at 5 degrees to the vertical. These orientations are highlighted in Figure 3a which 
is a snapshot taken at a strain of 0.6%.  
As the strain increases to 3% (Figure 3.b), the initial shear bands coalesce into structures 
with a scale comparable to the sample width. The orientation of the largest shear bands in 
the interior of the sample is predominantly at 10 degrees to the horizontal. This angle creates 
a secondary shear orientation, and further, smaller shear bands are seen branching from the 
major shear bands.  
At total strain between 100% and 130%, the shear bands have begun to reorganize again into 
structures sub-parallel to the maximum velocity gradient. Softening has concentrated the 
deformation into very narrow shear bands which can be seen in Figure 3c and 3d. Although 
the total strain is of order unity, the maximum strain in the shear bands is higher by nearly 
two orders of magnitude. Further deformation of the sample produces almost no 
deformation in the bulk of the material; all subsequent deformation occurs on the shear 
bands (Figure 3c evolving to Figure 3d). 
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The progression of the experiment from onset to a total shear across the sample of 130% is 
shown in Figure 3. The plot is of plastic strain overlain with material markers. Figures 4a 
and 4b are the full-size experiments from which Figure 3a and 3b were taken. Figures 4(e,f) 
are the full-size images of Figure 3(c,d).  
Although this experiment represents solid deformation, the extremely high-strains present 
in the shear bands warrant the formulation of the problem using a fluid approach.  
 

 

Fig. 3. A viscoplastic material with a strain-softening Drucker-Prager yield criterion is 
subjected to a simple shear boundary condition which gives a velocity gradient of 1 across 
the sample. The resolution is 1024x256 elements in domain of 8.0 x 2.0 in size. The strain rate 
is shown in (a,b) for an applied strain of 0.6% and 3% respectively. The scale is logarithmic 
varying from light blue (strain rates < 0.01) to dark red (strain rates > 5.0). The average shear 
strain rate applied to the experiment is 1.0. Shear bands are fully developed at 1-2% strain. 
At high strains of 100% and 130%, shown in (c,d), almost all deformation occurs in the shear 
bands. In these examples we have included light-coloured stripes, initially vertical, which 
mark the strain. The shear bands are visualized by applying dark colouring to material 
which reaches the maximum plastic strain of 1.0. 
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Fig. 4. The evolution of the shear experiment from 0.6% applied strain (a) through to 130% 
strain (f). The intermediate values of strain are 3% (b), 33% (c), 66% (d) and 100% (e). The 
resolution is 1024x256 elements in domain of 8.0 x 2.0 in size; strain markers and shear 
bands are visualized as in Fig. 3c,d.  
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5.2 Viscoelasticity in subduction models 
The model in which we demonstrate the importance of viscoelastic effects in subduction is 
one in which an isolated oceanic plate founders into the mantle. Although this model is not 
a faithful representation of a subduction zone, it is well understood, and different regimes of 
behavior have been observed and interpreted in a geological context for purely viscous 
plates (OzBench et al. 2008). The model has a viscoelastic inner core with viscoplastic outer 
layers. The lithosphere undergoes significant strain as it traverses the fluid (mantle) layer.  

Figure 5 shows subduction models in which ߤ ranges across 3 orders of magnitude with a 

constant value of the viscosity contrast between the core of the slab and the background 

mantle material of	ȟߟ = ʹ × ͳͲସ, resulting in relaxation times from 20,000 years through to 2 

million years. Contour lines of viscosity are included to differentiate between the upper 

mantle, outer plastic lithosphere and slab core.  
 

 

Fig. 5. Weissenberg number for free slab models at steady state with increasing elasticity. 

The models represent the outer 670km of the Earth. The models are run in a domain of 

aspect ratio 6; the images are then translated to show the hinge at the same position in the 

diagram for each of the cases. This steady state snapshot is taken when the subduction rate 

reaches a constant value and with the slab fully supported by the lower mantle. (a) Viscous 

only core ߟ߂ = ʹ × ͳͲସ. Viscoelastic core models have ȟߟ = ʹ × ͳͲସ with a scaled 

observation time (ȟݐ௘) of ʹ × ͳͲସ yrs for all models and elastic modulus varying as (b) ߤ = ʹ × ͳͲଵଵ	Pa (ߙ = 21 Myr) (c) ߤ = 8 × ͳͲଵ଴	Pa (ߙ = 108 Myr) (d) ߤ = 4 × ͳͲଵ଴	Pa (ߙ = 194 

Myr) (e) ߤ = 8 × ͳͲଽ	Pa (ߙ = 1080 Myr) (f) ߤ = 4 × ͳͲଽ	Pa (ߙ = 2160 Myr) 

The coloring indicates the Weissenberg number: a measure of the relaxation time to the local 
characteristic time of the system (here defined by the strain rate). In regions where this value 
is close to unity, the role of elasticity dominates the observed deformation. The increase in 
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Weissenberg number highlights the change in slab morphology during steady state 
subduction as elasticity is increased with a fold and retreat mode observed for the viscous 
core model (a) and models (b-d). As ߤ decreases, the elastic stresses increase, producing in a 
strongly retreating lithosphere for low values of ߤ.  
In Figure 6, we show the stress orientations associated with the viscosity-dominated and 
elasticity-dominated models. The stress distribution and orientation each influence 
seismicity and focal mechanisms of earthquakes. Although the near-surface morphology of 
the lithosphere is quite similar in each case, the distinct patterns of stress distribution and 
the difference in stress orientation during bending indicate very different balances of forces. 
Viscoelastic effects are clearly important in developing models of the lithospheric 
deformation at subduction zones. Particle based methods such as ours allow the modeling 
not only of the viscoelastic slab, but the continuous transition through the thermal boundary 
layer, to the surrounding viscous mantle. This makes it possible to study, for example, the 
interaction of multiple slabs in close proximity, or slabs tearing during continental collision. 
 

 

Fig. 6. The dimensionless deviatoric stress invariant and stress orientation within the core 
showing extension (red) and compression (blue) axes at the steady state time step shown in 
Figure 5 for a relaxation time of (a) 21 k yr – viscosity dominated and (b) 2,160 k yr – 
elasticity playing a dominant role in the hinge region. The eigenvectors are plotted using the 
same scale for both (a) and (b). The reference stress value is 48 MPa.  
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5.3 Multiscale modeling of AHSS 
Advanced High Strength Steels such as Dual Phase (DP) and Transformation Induced 

Plasticity (TRIP) steels have a multiphase microstructure that strongly affects their 

forming behavior and mechanical properties. DP steel’s microstructure consists of hard 

martensite inclusions in a ferrite matrix. TRIP steel has a similar microstructure with 

addition of retained austenite which then potentially transforms into martensite during 

deformation. The result of this transformation is better combination of ductility and 

strength. The multiphase nature of the DP and TRIP steels’ microstructure is the focus of 

modeling with multiscale PIC method as well as with conventional FE method (Asgari et 

al. 2008).  

One of the difficulties with FEM micromechanical models is the requirement for mesh 

refinement. Our multiscale PIC method benefits from the h-type of refinement similar to the 

one traditionally used in FEM. Using this approach, it is possible to increase the number of 

background cells as if the cells were elements in a FE model. This enrichment in the 

multiscale PIC model is schematically shown in Figure  7 for a three phase (TRIP steel) 

microscale model. Accordingly, convergence tests were used to certify that the solution was 

not altered by the increasing number of background cells.  

 

 

Fig. 7. The multiscale PIC enrichment similar to the idea of h-refinement in FEM 

With the aid of background cell enrichment, an important feature of the multiscale PIC 

method is also visualised in Figure  7. This feature is demonstrated in the capability of the 

multiscale PIC method to represent two or three (or even more) material properties within 

a single background cell; for example in Figure  7a, the lower left hand side cell contains 

three different material points. Such representation in FE method needs at least three 

elements with three different material properties. This advantage of PIC method was 

carried over into the refined models as shown in Figure 7(b,c). In these cases, the phase 

interfaces and background cell boundaries never disturbed each other and are 

independent. 

The simplified unit cell configuration was used in microscale analyses of DP and TRIP 

steels, as shown in Figure 8. In addition to simplified unit cell representation, it is possible 

to use realistic microstructure of these steels in the simulations. For further details on 
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strength to realistic microstructure see Asgari et al. (Asgari et al. 2009). The two phases in 

the DP microscale models and the three phases in the TRIP microscale models obeyed the 

J2 theory of deformation. For these constituent phases being isotropic elastoplastic, only 

two elastic constants were necessary to describe the elastic behavior, and Swift hardening 

was assumed  

௣௟ሻߝሺߪ  = ௒଴ሺͳߪ +  ௣௟ሻ௡ (47)ߝܪ

Where ߝ௣௟ 	is the accumulated plastic strain. ߪ௒଴ was considered to be 500, 780 and 2550 MPa 

for ferrite, austenite and martensite, respectively. The hardening factor and hardening 

exponent ሺܪ, ݊ሻ were taken to be (93 MPa, 0.21) for ferrite, (50 MPa, 0.22) for austenite and 

(800 MPa, 0.2) for martensite. These material properties can be obtained by a combination of 

neutron diffraction, nano-indentation and microstructural imaging described by Jacques et 

al. (Jacques et al. 2007).  
 

 

Fig. 8. Geometrical representation of the simplified unit cells for a) DP steel with 76.76% 

ferrite (grey) and 23.24% martensite (black) and b) TRIP steel with 77.12% ferrite (Gray), 

14.75% austenite (black) and 8.13% martensite (white); and the von Mises stress distribution 

for c) DP steel and d) TRIP steel  

The PIC method was quantitatively stiffer than FEM at the peak stress, although in some 

local regions around corners of the microscale unit cell boundary, FEM occasionally showed 

more stiffness than PIC. The effective plastic stress and strain predicted from the simplified 

unit cells were calculated using the volume averaging homogenization technique. These are 
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plotted in Figures 9(a,b) for the DP and TRIP steel, respectively. The effective stress 

predicted from simplified regular unit cells showed up to 10% error using the FE method 

and up to 6% error using the Multiscale PIC method, which does not prove to be 

significantly more accurate than FE method.  

An interesting observation made from the macroscale effective stress of simplified unit cells 

was the prediction of the yield point using FE and multiscale PIC method. In the case of the 

DP steel, both methods were able to predict the yield stress quite accurately.  

However, in the case of the TRIP steel, the multiscale PIC method produced more error 

compared to the FE results. The increased error occurs because in multiscale PIC method the 

location of integration points are not at the optimal locations as the FE integration points 

are. Therefore, there might be some loss of accuracy due to integrations performed in this 

method. This loss of accuracy balances out with the improved accuracy obtained from the 

smoother interpolation of the field variables (especially on and around the phase interfaces) 

after a certain strain values. Therefore, the error in the FE method continued increasing 

while that of the multiscale PIC method reached a plateau, and might have even decreased 

if deformed towards much larger strains.  

 

 

Fig. 9. The effective plastic macro stress from simplified regular unit cell models of a) DP 

steel and b) TRIP steel, showing comparison between FE method (FEM), multiscale PIC 

(MPIC) and experimental stress strain data. 
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6. Conclusion 

The examples of large strain deformation of viscoelastic-plastic material and tectonic plates 

shows that PIC method is very suitable for solid mechanics problems where large 

deformations are encountered. However, the last example showed that the multiscale PIC 

method does not have any significant advantage over FE method in small strains for solid 

mechanic formulation. In such cases, the maturity of the FE method dominates the minimal 

accuracy benefits that could be obtained by using material particles instead of integration 

points. 
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