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1. Introduction 

The outcome of a bone fracture partly depends upon the mechanical environment 

experienced by the fracture callus (reparative tissue) during the healing. Therefore 

biomechanics of bone fracture healing has been examined in many clinical or biological, 

mathematical or finite element studies (Cheal et al. 1991, DiGioia et al. 1986, Claes et al. 

1999, Doblaré et al. 2004 and Oh et al. 2010). Most of the studies model the components of 

bone fractures as monophasic, homogenous materials, which may not be appropriate 

considering the large inter fragmentary displacements and high porosity of the reparative 

tissue. Therefore, this study describes an idealised mathematical model of a healing bone 

fracture with biphasic approach when the callus bone is modelled as mixture of solids and 

fluids.  

Markel et al. (1990) reported that the porosity of the callus in a healing canine osteotomy 

decreased from 99.6% at 2 weeks to 38% at 12 weeks. Therefore, the biphasic, poroelastic 

model for fracture callus and bone has been suggested in the literature (Carter et al. 1998, 

Simon et al. 1992, Prendergast et al1997, Spilker et al. 1990). Biphasic poroelastic models for 

soft tissues (Mow et al. 1980, Simon et al. 1985, Van Driel et al. 1998, Prendergast et al. 1997, 

Spilker et al. 1990) have been developed and applied to model cartilage (Mow et al. 1980) 

and intervertebral discs (Simon et al. 1985). Van Driel et al. (1998) and Prendergast et al. 

(1997) modelled tissue adjacent to prostheses using poroelastic material properties to 

investigate tissue differentiation. In the field of fracture healing however, only monophasic 

material properties of callus have been simulated (Carter 1988, Carter 1998, Blenman 1989, 

Cheal 1991, DiGioia 1986, Claes 1999, Gardner 1998 and 2000). This is probably because of 

the paucity of data in the literature on the values of parameters required to define the 

biphasic material properties of fracture callus. Simulation of a biphasic, compressible, 

anisotropic, linear poroelastic material model requires forty material constants (Simon 1992). 

Even the very simplified simulation of an isotropic material requires a minimum of five 

material constants. However, the number of material constants required to simulate a 

biphasic, poroelastic medium can be further reduced to three if the solid and fluid media are 

assumed to be incompressible (Simon 1992). These three independent material parameters 

are Lame's material stiffness parameters (λ and µ) and hydraulic permeability (k). 

Alternatively, Zienkiewicz and Taylor (1994b) suggested a method to model poroelastic 

behaviour under `undrained' condition using the modulus of elasticity, Poisson's ratio, the 

www.intechopen.com



 
Advanced Methods for Practical Applications in Fluid Mechanics 

 

124 

porosity of the matrix, and the bulk modulus of the fluid phase. In the present study, a finite 

element model (FEM) based on the poroelastic behaviour of the `undrained' callus at four 

temporal stages of healing is developed by modifying the theory proposed by Zienkiewicz 

and Taylor (1994). This model was developed to examine the influence of fluid pressure on 

the pattern of healing and to compare the distribution of stresses in the callus with the 

monophasic solutions developed for the same subject at the same temporal points reported 

earlier by Gardner et al. (2000).  

2. Materials and methods 

2D, monophasic, plane stress, FEM's of a mid-diaphyseal tibial fracture were developed at 

four stages during healing (4, 8, 12, and 16 weeks post operation) by Gardner et al. (2000). 

The geometry and the regionalisation of the callus are shown in Figure 1. The geometry, 

finite element meshing, boundary conditions (Figure 2) and applied displacements (Table 1) 

used in the study of Gardner et al. (2000) are adopted in the biphasic poroelastic models of 

the present study. The tissue histology and calculated elastic moduli of regions of callus at 

four stages of healing are shown in Table 2.  

 

Week x(mm)   y(mm)  Z(radians) 

4 .283      -.377      -.00329 

8 -.015     -.159       .00201 

12 -.092     -.260       .00169 

16 -.129     -.111      -.00215 

Table 1. Interfragmentary displacements measured during walking corresponding to peak 

longitudinal displacements. y (longitudinal), x (transverse), Z (rotational in x-y plane) 

adopted  from the study of Gardner et al.  (2000). 

 

Stage CENTRAL ADJACENT PERIPHERAL 

weeks tissue type Modulus
(MPa) 

tissue type Modulus 
(MPa) 

tissue type Modulus 
(MPa) 

4 Haematoma, 
granulated 
tissue 

    0.9 Soft connective 
tissue with invading 
vasculature 

     3.8 Soft 
fibrocartilage 
tissue 

     76 

8 Fibrous 
perichondrial 
tissue 

      28 Woven bone,   25% 
maturation 

    700 Dense fibrous 
tissue, 45% 
maturation 

   2800 

12 Fibrous 
perichondrial 
tissue 

     30.6 Woven bone, 25% 
maturation 

    765 Dense fibrous 
tissue, 45% 
maturation 

  3060 

16 Fibrous 
cartilage tissue, 
10% maturation

      75 Woven bone, 60% 
maturation 

   5000 Bone, 100% 
maturation 

  20000 

Table 2. Tissue histology and calculated Young’s moduli of the three regions of fracture 

callus, at 4, 8, 12 and 16 weeks post fracture adopted from the study of Gardner et al. (2000).  
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Fig. 1. (i) Regions of cortical bone and callus in the 2D finite element models a- adjacent 
(green), c- central (yellow), p- peripheral (red), (ii) Schematic diagram showing the bone 
fracture, external fixation device and callus region (adopted from Gardner et al. (2000 ). 
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Fig. 2. Boundary condition of the finite element model, showing the fixed lower boundary 

and the displacement of the upper bone fragment applied at the fracture centre adopted 

from the Gardner et al. (2000 ). 

However, the callus tissue in the present study was idealised as a homogenous, fully 

saturated, linear poroelastic medium consisting of a matrix of solid and incompressible 

fluid, as opposed to the monophasic material properties in the study of Gardner et al. 

(2000). The following section describes the theory employed for calculating equivalent 

poroelastic material properties of the callus from the modulus of elasticity, Poisson's ratio, 

porosity and bulk modulus of the fluid of the callus tissue. Unlike a monophasic medium, 

the normal stress acting across a plane within a biphasic poroelastic mass will have two 

components, an inter-granular pressure known as effective pressure or effective stress, 

and a fluid pressure called the pore pressure. The sum of these two will constitute the 

total normal stress. The volume change characteristics and the strength of poroelastic 

mediums are controlled by the effective stress not by the total stress. Thus the only 

difference between the present study and the previous study of Gardner et al. (2000) is 

that the constitutive equation of the callus is changed from monophasic medium to a 

biphasic poroelastic medium.  

3. Mathematical description of the model 

For 2D plane stress analysis, the constitutive equation for a monophasic material 

(Zienkiewicz and Taylor (1994a)) is 

 
x x

y y

xy xy

σ ε

σ ε

τ γ

   
      

= =   
   
      

σ D                                                   (1)    

Where σ is total stress. σx , σy are normal stresses in the x and y directions, τxy is shear stress 

in the x-y plane, εx , εy are normal strains in the x and y directions and γxy is the shear strain in 

the x-y plane. For plane stress analysis the constitutive matrix D (Zienkiewicz and Taylor 

1994a) is defined as 
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Where E and ν are the Young’s Modulus and the Poisson’s ratio of the material. 
A plane stress, linear elastic finite element program can be used to analyses the linear elastic 
plane strain problem (Zienkiewicz and Taylor (1994a)) by substituting  
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Where subscript ‘s’ denotes plane stress parameters and ‘n’ denotes plane strain parameters. 
Substituting equation (3a) and (3b) into equation (2), we have  
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Thus a linear elastic plane strain D-matrix is obtained. 
The equation for static equilibrium in 2D (Dawe 1984) is: 

  (∂σx/∂x ) + (∂τxy /∂y ) + Rx = 0 (5a) 

 (∂σy /∂y ) + (∂τxy /∂x ) + Ry = 0 (5b) 

Using the definition of effective stress (Zienkiewicz and Taylor (1994b)) 

 σX  = σ’X – p (6a) 

 σY  = σ’Y – p (6b) 

 τXY = τ’XY (6c) 

where σX ,σY, τXY are total stresses; Rx , Ry are body forces; σ’X , σ’Y , τ’XY are effective stresses 
(positive value for tensile stresses and negative for compressive stresses), p is pore pressure 
of the fluid, which is conventionally described as positive for compressive pressure and 
negative for tensile pressure. 
The combined seepage and conservation of fluid equation described by Zienkiewicz and 
Taylor (1994b) is:  

 0X Y

p p p
k k

x x y y Q
ε ε

 ∂ ∂∂ ∂ 
− − + + + =  ∂ ∂ ∂ ∂   

                             (7) 

Where k is the permeability of the fluid, Q is the ratio of the bulk modulus of fluid to the 

porosity of the media and εX, εY represent the volumetric strain rates of the solid skeleton. 
The superscript ‘dot’ denotes differentiation with respect to time. Since the gait cycle 
frequency of this clinical fracture was approximately 1 Hz, it is reasonable to assume that 
little or no seepage from the callus occurs during loading (Carter 1998, Gardner 1998). 
Therefore, because the time scale is short, if the local `undrained' condition of the callus is 
assumed, permeability ‘k’ can also be assumed to be effectively zero. Under these 
conditions, Equation 7 becomes: 

 0X Y

p

Q
ε ε+ + =

    (8) 

Or 

 (p Q= − )ε εΧ Υ+                                         (9) 

Integrating with respect to time and assuming homogenous initial conditions (p = 0, 

 εX = εY = 0 at t = 0): 

 p = −Q( εX + εY) (10) 

Substituting this value in equation (6a) and (6b) gives: 

 σxx  = σ’xx + Q ( εX + εY ) (11) 

 σyy  = σ’yy + Q ( εX + εY ) (12) 
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Expanding for two-dimensional plane strain analysis (σz ≠ 0) gives: 
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 (13) 

Noting that the material behaviour is controlled by the effective stress in a poroelastic 
medium, then 

 ′ =σ Dε  (14) 

Combining equation (13) and (14): 
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If the modified stress-strain relationship is defined as: 

 =σ D'ε   (16) 

then 
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D  (17) 

and  

 Q = Kf / n, (18) 

where Kf is the bulk modulus of the fluid phase and n is the porosity of the porous media. 

Thus the D'  matrix (Equation 17) for a poroelastic medium can be calculated by 

substituting Q values in the D matrix of corresponding plane strain analysis (Equation 4C). 

The D matrix can be expanded to calculate the new set of material properties, E and ν, 

corresponding to the poroelastic material behaviour under undrained condition. 

4. Development of the poroelastic FEM from the monophasic FEM  

Using the above theory, a new set of material properties (E and ν) were calculated from the 

refined values of E and ν of the monophasic model of Gardner et al. (2000) and the values of 

Q described in this section. At first, the proportion of calcified tissue in the callus was 

extrapolated from data (at E = 800 MPa 20% calcification; at E = 2000 MPa 40% calcification; 
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at E = 8000 MPa 70% calcification and at E = 18000 MPa 100% calcification occurs ) taken 

from Davy and Connoly (1982) for the new bone at intermediate densities corresponding to 

the elastic moduli of the callus adopted from the study of Gardner et al. (2000 ). The 

calculated calcification of the different regions of callus at 4, 8, 12 and 16 weeks is shown in 

Table 3. The porosity of the callus tissue was then assumed to be inversely related to the 

proportion of the calcified tissue present in the callus (Carter 1977), and therefore was found 

to vary from 0.9 for soft callus (<5% calcification) to 0.3 for woven bone (100% calcification). 

As the porosity of 0.8 was used by Van Driel et al. (1998) for soft fibrous, cartilage and bone 

tissues, by comparison 0.9 appeared valid for the softer tissues of the present model. The 

porosity of 0.3 was suggested for woven bone (Carter 1977) which seems to be valid for the 

harder tissues of the present model. All intermediate values of porosities were linearly 

extrapolated from these two values at corresponding values of calcification shown in Table 

3. The interstitial fluid in the callus was assumed to have the bulk modulus (Kf) of salt water 

(2.3 GPa) (Cowin 1999). 
 

Time 

weeks 

Callus Em 

(MPa)

νm Calcification 

% 

n Q 

(Kf/n) 

Ep 

(MPa) 

νp 

4 central 0.9 0.39 <5 0.9 2555 0.2 0.499 

adjacent 3.8 0.39 <5 0.9 2555 4.38 0.499 

Peripheral 76 0.39 8.8 0.88 2643 81 0.494 

8 central 28 0.39 5 0.89 2613 30 0.498 

adjacent 700 0.30 24 0.78 2948 786 0.46 

Peripheral 2800 0.30 44 0.64 3593 3023 0.43 

12 central 30.6 0.39 5 0.89 2613 33 0.497 

adjacent 765 0.30 25 0.78 2948 858 0.457 

Peripheral 3060 0.30 46 0.64 3593 3291 0.398 

16 central 75 0.30 8.8 0.88 2643 86 0.494 

adjacent 5000 0.30 57 0.57 4035 5283 0.373 

Peripheral 20000 0.30 100 0.3 7666 20381 0.324 

Table 3. Calculation of the equivalent poroelastic material properties of the callus from the 

monophasic material properties.Note: subscript ‘m’ denotes the monophasic model and ‘p’ 

denotes the biphasic poroelastic model. Kf = 2.3 GPa (Cowin 1999). 

5. Results 

Figures 3 and 4 show the contour diagrams of the fluid pressure, effective stress and total 

stress in the callus at 4, 8, 12 and 16 weeks post fracture. Additional figures of effective 

stresses showing only one region of the callus were also drawn for clarity and the results are 

shown in Table 4. At Week 4 (Figure 3a) the peak compressive fluid pressures ( ≥ 400 MPa) 

were present in the cortical gap region, intermediate pressures (≥ 150 MPa) were present in 

the other regions of the interfragmentary gap and the periosteal regions close to the 

interfragmentary gap, and low pressures ( ≤ 50 MPa) were present in the regions of the 

callus remote to the interfragmentary gap. Tensile pressures of up to 100 MPa were present 
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in localised regions of the endosteal callus. At Week 8 [Figure 3(d)] fluid pressures in all 

regions of the callus were reduced (< ± 5 MPa) but elevated pressures (>70 MPa) were 

present in the cortical gap regions. At Week 12 [Figure 4(a)], fluid pressures of greater than 

100 MPa are seen medially and less than 25 MPa laterally in the cortical gap region. All 

other regions indicated low pressures (<10 MPa); however, tensile pressures of about 30 

MPa are indicated in the subperiosteal region on the lateral side. At Week 16 [Figure 4 (d)], 

fluid pressures are further reduced in all regions of the callus, although in the medial inter-

cortical gap they remained elevated (15 < P < 25 MPa). Inter cortical fluid pressures are 

reduced laterally almost to the level of the periosteal callus (0 < P < 1 MPa). 

 

 

Fig. 3. Fluid pressure (p), effective stress (EFF_STR) and total stress (Sigma_Y) in the callus 

at 4 weeks [(a), (b) and (c)] and at 8 weeks [(d), (e) and (f)]. 

Effective stress diagrams are similar in magnitude and distribution to the fluid pressure 

diagrams. As expected, the total stresses (σY) were very low as compared to the 

corresponding fluid pressures (p) because during undrained loading condition, most of the 

load is taken by fluid medium. Also, in the regions of low fluid pressures the effective stress 

magnitudes (Table 4) are approximately equal to the total stresses. The total pressure 

diagrams [Figures 3 and 4 (c) (f)] are similar to the corresponding longitudinal stress 

diagrams of the monophasic model reported earlier by Gardner et al. (2000 ). 
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Fig. 4. Fluid pressure (p), effective stress (EFF_STR) and total stress (Sigma_Y) in the callus 

at 12 weeks [(a), (b) and (c)] and at 16 weeks [(d), (e) and (f)]. 

 

Time in 
Weeks 

Callus region Monophasic model 
Longitudinal stress  

(MPa) 

Biphasic model  
Effective stress  

(MPa) 

4 Central 
Adjacent 

Peripheral 

-1.5 to 0.5 
-1.5 to 0.5 
-1.5 to 0.5 

100 to 1000 
100 to 500 
25 to 500 

8 Central 
Adjacent 

Peripheral 

-1 to 2 
-5 to 2 

-15 to -1 

25 to 150 
-1 to 1 
-1 to 1 

12 Central 
Adjacent 

Peripheral 

-3 to 1 
-8 to 1 

-3 to -15 

100 to 500 
25 to 50 
0 to 12 

16 Central 
Adjacent 

Peripheral 

0 to 4 
-3 to 0 

-3 to -11 

100 to 150 
-1 to 1 
-1 to -5 

Table 4. Longitudinal stress ranges in the monophasic model of Gardner et al. (2000) and 

effective stress ranges in the biphasic poroelastic model. 
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6. Discussion and conclusions 

The magnitudes of fluid pressure and effective stress are very high and therefore appear 
unrealistic. In particular, the high tensile stress would produce cavitation or may lead to gas 
in the pore fluid, and the callus matrix may be ruptured. These conditions are typical of the 
undrained simulation behaviour under large deformations. In reality, no matter how small 
the permeability of the poroelastic medium or how rapid is the loading, fluid flow will occur 
under such high-pressure gradient. Therefore the absolute value of pressure and the 
presence of high tensile pressure in the callus are more an artifact of the modelling 
technique than are the patterns of the distribution of pressure and their trend in variation. 
Thus, for this technique of modelling the presence of spatial or temporal pressure gradients 
within the callus may be a valid indicator of the flow of fluid in the form of blood, nutrients 
or waste products. For example, the tensile fluid pressure regions of the present models at 
peak loading during walking are likely to show reduced magnitudes of tensile pressure or 
compressive pressure during unload phases. The hydraulic gradient will be reversed and 
the fluid flow will be in the opposite direction. This alternate inflow and outflow of fluid 
may be related to the transport mechanism of inflow of nutrients and oxygen, and outflow 
of waste products and carbon dioxide from the callus. Such inflow and outflow may 
enhance the growth of capillary blood vessels, thus accelerating the healing process. 
It can be envisaged from the above that if the movement is too small, the change in fluid 
pressure will be small and the beneficial effect will also be small. Therefore the results of the 
present study corroborate those of other studies (Kenwright 1998, Sarmiento and Latta 1995, 
Goodship and Kenwright 1985, Kenwright and Goodship 1989) suggesting that fracture site 
movement is necessary for efficient secondary healing. However, if the movement is too 
large the fabric of the callus matrix could be damaged because of the cyclical expansion and 
compression, and this damage could hinder healing. 
Furthermore, if the frequency of the movement were too high, the time interval between 
pressure gradient reversals would be too small for the fluid to flow. On the other hand, if 
the frequency is too low, fluid will penetrate the tissues before any substantial hydraulic 
gradient can be developed. Since the present study was limited to a single temporal point 
during the gait cycle it is not possible to define the optimum magnitude and frequency of 
movement beneficial for healing. Models that simulate the different temporal points of the 
gait cycle may provide more information about the optimum movements for fracture 
patients. 
At Week 4 (Figure 3a), there are high compressive fluid pressures in the inter fragmentary 
gap regions because the undrained model is under large compressive displacement and 
fluid is unable to flow out side the system boundary. In this condition the loads is 
predominantly taken by an incompressible fluid that controls the motion of the bone 
fragments and provides support for intact tissues. It does this by increasing the stiffness of 
the limb and it also protects the fracture from further damage (Sarmiento and Latta 1995). 
Since fluid pressure is a function of movement, the cortical gap locations are expected to 
undergo higher pressures than locations further away from the gap, as shown in Figure 3a. 
It is worth noting that at this stage the callus is comprised of more than 90% fluid, therefore 
the incompressible fluid will resist high pore pressure.  
At Week 8, reduction in the porosity (Table 3) and compressive interfragmentary displacement 
(Table 1) of the callus reduce fluid pressure. However, at Week 12, the porosity remains almost 
constant (Table 3) compared to Week 8 but the applied compressive interfragmentary 
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displacement increases (Table 1), resulting in elevated fluid pressures in the adjacent callus. At 
Week 16, both the applied compressive interfragmentary displacement and the fluid pressure 
in the callus reduce. Therefore fluid pressures appear to be more sensitive to longitudinal 
interfragmentary displacements than to the callus-porosity in the present study.  
Fluid pressure distribution patterns correlate with the general pattern of ossification, as 
reported by others (Blenman 1989,Carter 1988, Sarmiento 1995, Yamagishi 1955). Blenman 
and Carter (1989) suggested that ossification progresses through the stages of `bone tuft', 
`bone wedge' and `bone bridge' and poroelastic models appear to corroborate this if it is 
believed that ossification may not take place in the regions of high fluid pressures. At Week 
4, high pore pressure regions of the interfragmentary gap divide the proximal and distal 
callus. Therefore it appears that ossification is possible only in the low-pressure regions of 
the periosteal callus away from the interfragmentary gap, forming the `wedge' shaped 
ossified callus. At Weeks 8 and 12, fluid pressure in the callus is reduced almost to zero at 
the level of the gap, thus allowing the formation of a `bridge' of ossified callus between the 
`wedges'. Since the present study started at 4 weeks post operation, a pattern similar to that 
of the `tufts' theory may have also been present before this stage.  
The similarity between the magnitude and pattern of total stress diagrams of the biphasic 
poroelastic model and the corresponding longitudinal stress diagrams of the monophasic 
model of Gardner et al. (2000) are expected. This is because total stress is a function of the 
total force and total cross section area (Wood 1990) of the callus, which remain similar in 
both the models.  
The greatest disparities between the monophasic and biphasic solutions occur in initial 
healing at Week 4. This disparity exists because the soft callus has a high porosity initially 
and is subjected to high tensile stresses during the large applied initial displacements. As 
the callus calcifies, its porosity and the fluid pressures decrease so that total stress is closer 
to the effective stress. This effect of porosity is evident from Table 4, where the maximum 
difference between stresses from the two models is in the high-porosity central callus and 
the minimum difference is in the low-porosity peripheral callus. The patterns of effective 
stress in the biphasic models also differ from the corresponding monophasic models. In the 
biphasic models, substantial variations of stress are evident at the cortical gap, sub 
periosteal and endosteal callus. Whereas in general, the monophasic models reported by 
Gardner et al. (2000) predicts similar stress regimes throughout the central and adjacent 
callus. Therefore, if the differentiation and maturation of the callus are believed to be 
influenced by the preceding stress environments, then the biphasic models appear to predict 
more realistic patterns of tissue differentiation and maturation. 

7. Limitations of the study 

The results of the present study should be evaluated under modelling limitations. Firstly, 
solutions are valid only for the `undrained' condition that assumes that no fluid moves out of 
the system boundary during loading, but in reality a small amount of fluid may drain through 
the pores of the callus. However this drainage may not have invalidated the results of the 
present study as the gait cycle frequency is approximately 1 Hz, and physiological loading 
periods during the stance phase of gait are around 0.3 to 0.5 seconds, which is probably too 
rapid for significant drainage of fluid to take place (Gardner et al. 1998, 2000 ). Secondly, the 
callus has been idealised as a linear, elastic, fully-saturated porous medium throughout 
healing. These idealised conditions may also be responsible for the high magnitudes of fluid 
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pressure, whereas actual pressures are believed to be lower than predicted by the present 
model. However, the pattern and trend of temporal variations in fluid pressures during 
progressive ossification are unlikely to change significantly as a result of applying slightly 
different poroelastic material properties and constitutive equations. 
Despite the limitations of the present model, these results indicate that the biphasic material 
properties of the callus are more appropriate to the initial soft callus stage of healing and 
support the suggestion of Sarmiento and Latta (1995) “The incompressible fluid effect, or 
hydraulics is most important in early post injury period. We feel that hydraulics is 
responsible for the control of motion of fragments before callus has developed and that it 
provides the significant degree of stiffness observed in loaded limbs with fresh fractures fit 
with fracture braces.”   
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