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1. Introduction

Cognitive radio (Mitola III, 2000) also known as opportunistic spectrum access (OSA) has
emerged as a promising solution to increase the spectrum efficiency Haykin (2005). In OSA,
the SU finds spectrum holes (white space) by sensing the radio frequency spectrum. The
presence of spectrum holes in the PU channels are highlighted in Fig. 1. These spectrum holes
are used by the SU for its transmission. This scheme is often referred to as opportunistic
spectrum access (OSA). No concurrent transmission of the PU and the SU is allowed. The SU
must vacate the channel as soon as the PU reappears, which leads to the forced termination of
the SU connection. Since the SU has no control over the resource availability, the transmission
of the SU is blocked when the channel is occupied by the PU. The forced termination and
blocking of a SU connection is shown in Fig. 2. The forced termination probability and
blocking probability are the key parameters which determine the throughput of the SU, and
thus its viable existence. The forced termination depends on the traffic behaviour of the PUs
and the SUs (e.g. arrival rates, service time etc.). In the case of multiple SU groups with
different traffic statistics, the forced termination and blocking probabilities lead to unfairness
among the SU groups. The QoS provisioning task becomes difficult.

2. Related work and contributions

In the existing literature, several authors Weiss & Jondral (2004)-Ahmed et al. (2010) have
studied the forced termination and blocking probabilities for one and two groups of SUs.
In these papers, spectrum pooling Weiss & Jondral (2004) is used as a base system model.
Spectrum pooling refers to an OSA paradigm which enables the PU network to rent out
its idle spectrum bands to the SU group. It is assumed that the SU group will be able
to perform wideband sensing and during their transmissions will introduce spectral nulls
in the frequency bands where they find the PU active. It is suggested that in order to
accommodate simultaneous SU connections, a wideband PU channel can be divided into
multiple narrowband subchannels for SU access. The Continuous Time Markov Chain
(CTMC) Mehdi (1991) is extensively used in modelling spectrum sharing scenarios based on
interweave access. To simplify mathematical analysis it is commonly assumed that the traffic
behaviour of the PU and the SU groups obey a Markov (memoryless) property i.e. the arrival
rates follow a Poisson distribution and the service rates follow an exponential distribution. In
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Fig. 2. Illustration of forced termination and blocking

addition, the SU connections are coordinated through a central entity (centralised secondary
network) which ensures no collision between the SU connections i.e, no concurrent SU
connections on the same frequency band or subchannel. The SU connections have negligible
access, switching delays and perfect sensing information is available to them at all times. In
a CTMC model, the number of connections from the user groups are represented by states
(written as n − tuple), such as (x1,x2), where x1 and x2 may represent the number of PU and
SU connections. The transition of one state to another is based on the Markov propertyMehdi
(1991) which assumes memoryless arrival and departure. Under stationarity assumptions,
the rate of transition from and to a state is equal. This fundamental fact is used to calculate
the state probabilities under the constraint that the sum of all state probabilities is equal to 1.
These state probabilities are further used to calculate the parameters of interest. The papers
dealing with QoS analysis can be divided into two scenarios: without forced termination; with
forced termination, described in the following.
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2.1 Without forced termination

The main aim in this type of system model is to understand the blocking probability tradeoff
between two users with different bandwidth requirements. In Raspopovic et al. (2005) while
investigating the blocking probability tradeoff between equal priority users, the authors
concluded that the blocking probability of the wideband user is lower bounded by the
blocking probability of the narrowband user. The best probability tradeoff can only be
achieved by changing the arrival rates of both the wideband and the narrowband user
Raspopovic & Thompson (2007). This fact is used in Xing et al. (2007) where it is shown
that the optimal arrival rates which achieve airtime fairness can be derived using the
Homo-Egualis model. Furthermore, the blocking probability in the network can be reduced
when the narrowband users pack the channels (Xing et al., 2007, Fig. 6) by employing
spectrum handoff1. The authors in Chou et al. (2007) developed an upper bound on the
throughput that can be achieved using spectrum agility with a listen before talk rule2. It
was found that a fixed channel assignment strategy yields better results than spectrum
agility under heavy load conditions. Although, the above mentioned schemes provide a fair
understanding of the blocking probability and airtime behaviour in a CRN, these analyses are
only applicable to users in open unlicensed networks (e.g. ISM bands in 900MHz, 2.4 GHz
and 5GHz), when the SU group utilizes the unlicensed channels for coordination or backup
(in case the PU channels are fully occupied Xing et al. (2007)).

2.2 With forced termination

Initial investigation carried out in Capar et al. (2002), focused on the advantages of primary
assisted SU spectrum sharing; termed controlled spectrum sharing. In controlled spectrum
sharing, the PU network assigns channels to its users (PUs) so as to avoid termination of
SU connections. It is concluded that this approach increases bandwidth utilization without
causing any significant increase in the blocking probability of the SU connections. No
analytical expressions were derived for the forced termination probability and the throughput.
In another controlled spectrum sharing scenario Tang et al. (2006); Tang & Chew (2010), a
number of channels are allocated for SU connections by the PU network. Under saturated
condition an incoming PU connection can also occupy the secondary allocated channels.
Although this scheme decreases the forced termination probability, it comes with a cost of
an increased SU blocking probability. To counter the effect of the forced termination the
authors in Huang et al. (2008) have proposed and analyzed random access schemes employing
different sensing and backoff mechanisms. However, the analysis is limited to a single channel
and saturated SU traffic conditions.

To avoid this foreseeable termination, spectrum handoff techniques have also been
investigated from the forced termination and blocking probability perspective. Generally,
spectrum handoff techniques can be categorised as either reactive or proactive. In the
reactive approach, the SU moves to another vacant channel only when the current channel is
reoccupied by a PU, whereas in the proactive approach the SU avoids collision and switches

1 Spectrum handoff allows the SU connection to move to another vacant frequency channel during its
transmission.

2 Spectrum agility refers to the ability of a user to access multiple channels. Please note that spectrum
agility is a stepping stone for spectrum handoff.
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to another vacant channel before a PU reappears. The channel switching is performed
based on the observed statistics of the PU channels3. To further ensure the continuity of SU
transmission, inband channel reservation (number of channels are reserved exclusively for
handoff calls within the primary channels ) and out-of-band channel reservation have also
been suggested Zhu et al. (2007), Al-Mahdi et al. (2009).

2.2.1 Reactive spectrum handoff

In Zhu et al. (2007), authors investigated the impact of spectrum handoff and channel
reservation on the forced termination and blocking probabilities. However, the paper
presented an incomplete CTMC analysis. In addition the expressions are derived based on
a false assumption of completion probability from each Markov state. The corrections on this
work is provided in Ahmed et al. (2009); Zhang et al. (2008); Bauset et al. (2009). The work
in Ahmed et al. (2009) forms part of this chapter and discussed in chapter 3. Although, the
authors in Zhang et al. (2008) included the queuing of SU connections, the analysis is limited
to only handoff scenario. The investigations in Zhang et al. (2008); Bauset et al. (2009) do not
address the incomplete Markov analysis and throughput. The approach presented in Ahmed
et al. (2009) can be scaled to address the inaccurate probability analysis in Al-Mahdi et al.
(2009). It has been shown in Tzeng (2009) that an adaptive channel reservation scheme gives
better performance than the fixed reservation policy. This adaption is based on traffic statistics
of the PU. A relatively similar conclusion has been drawn in Bauset et al. (2010). Extending
the work in Zhu et al. (2007)-Tzeng (2009), the authors in Kannappa & Saquib (2010) showed
that the forced termination probability can be reduced by assigning multiple subchannels to
each SU connection (reducing their transmission time). The forced termination probability
expression derived in this paper is the termination probability seen by an incoming SU (an
incoming SU call may be blocked) rather than the termination probability on the channel.
The throughput in Bauset et al. (2009)-Kannappa & Saquib (2010) is defined as the average
completion rate of SU connections which does not include the average duration of completed
SU connections. In order to address this problem, the duration of completed SU connections
is calculated in Heo (2008), however, the analytical results derived are not very accurate. A
more compact and accurate expression of throughput is derived in Ahmed et al. (2009). The
authors in Xue et al. (2009) consider a PU network which has three different user classes. The
users are admitted into the network based on a Guarded Threshold channel reservation Policy
Ramjee et al. (1996). One of the classes is treated as a SU group, while the remaining two have
PU status. The results indicate that such a scheme is only useful when the collision probability
between the SU class and the two PU classes is high.

Based on a simplified system model, the link maintenance probability and the forced
termination probability of delay sensitive SU connections are discussed in Zhang
(2009)-Willkomm et al. (2005). Including imperfect sensing, the probability derivations have
been carried out in Tang & Mark (2009), where authors derive the collision probability rather
than the forced termination probability4. In Wang & Anderson (2008); Willkomm et al. (2005)

3 This chapter only considers reactive spectrum handoff techniques. Some interesting proactive spectrum
handoff strategies are provided in Yuan (2010)-Yoon& Ekici (2010).

4 Without spectrum handoff the collision probability and forced termination probability is the same.
However in the case of spectrum handoff, the SU connection can collide with the PU multiple times
without being terminated. In essence collision probability calculation is performed on the basis of a
single PU arrival, whereas the forced termination calculation are performed on the basis of multiple PU
arrivals in the SU connection’s life time Ahmed et al. (2009)Zhang et al. (2008)

192 Foundation of Cognitive Radio Systems

www.intechopen.com



Opportunistic Spectrum Access in Cognitive Radio Network 5

it has been found that reactive spectrum handoff based on dynamic channel selection is a
better strategy than the static strategy, however, it results in an increased sensing overhead.
To decrease this overhead, a handoff reduction policy is proposed in Khalil et al. (2010) using
connection success rate as a key metric Lin et al. (2009). Based on our findings Ahmed et
al. (2009), the authors in Chung et al. (2010) proposed a channel allocation technique which
yields almost similar performance to a spectrum handoff system.

From the perspective that CRN will be able to support multiple SU services, call admission
control is investigated in Wang et al. (2009)-Tumuluru et al. (2011). The authors in Wang et
al. (2009) derived optimal access probabilities to achieve proportional fairness among two
SU groups. These results are derived based on a loose definition of throughput without
considering the forced termination. A channel packing scheme which provides 10%- 15%
gain over random channel access has been presented in Luo & Roy (2009). The optimal access
rates are derived only for a single wideband channel and three different type of users: one
wideband PU: one wideband SU group; and one narrowband SU group. Although overall
forced termination probability is also shown, it is strictly numerical and does not provide
any insight into the individual forced termination probabilities of the two SU groups. A fair
opportunistic spectrum access scheme with emphasis on two SU groups has been presented
in Ma et al. (2008). Although the effect of collision probability is included, the results are
only valid when the SU groups have the same connection length. The prioritisation among
SU traffic from a physical layer and network integration perspective have been studied in
Wiggins et al. (2008); Gosh et al. (2009). Moreover, as identified in Tumuluru et al. (2011), these
works do not include the effect of spectrum handoff. The probability aspects of prioritisation
between two SU groups have been recently analyzed in Tumuluru et al. (2011). Subchannel
reservation policies were investigated to achieve the QoS of the prioritised SU group. The
probability derivations were very similar to those previously presented by us in Ahmed et al.
(2010); Ahmed et al. (2009) and now described in this Chapter. Specifically, in this chapter

• A complete and exact CTMC analyses is presented (compared to Zhu et al. (2007); Zhang
et al. (2008); Bauset et al. (2009)). The QoS parameter are obtained for spectrally agile
single SU group operating in multichannel PU network. These derivations also include SU
spectrum handoff and channel reservation scenarios.

• Spectrum sharing between two SU groups is investigated in terms of probability tradeoff
gains and airtime fairness. It is shown that compared to non-termination scenarios
Raspopovic et al. (2005)-Chou et al. (2007); Wang et al. (2009) the access rates have very
little impact on airtime fairness. A channel partitioning approach is developed to achieve
airtime fairness.

The remainder of the chapter is organised as follows. Section 3 presents the system model and
key assumptions. Section 4 extends the discussion to include multiple PU channels and two
SU groups. A single SU group is treated as a special case. The airtime fairness among the two
SU groups is analyzed in Section 5. Section 6 concludes the chapter.

3. System model

In this chapter, a widely acceptable spectrum pooling model (Weiss & Jondral, 2004, Fig. (3))
is adopted, in which a vacant wideband PU channel is divided into multiple narrowband
subchannels. These narrowband subchannels are used by SU groups for their opportunistic
transmissions. Fig. 3 shows the system model, in which there are K available PU channels

193Opportunistic Spectrum Access in Cognitive Radio Network
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Fig. 3. Channel arrangements of PU and SU channels.

Symbol Parameter

k Number of PU connections

i Number of SU connections of S1 and SA

j Number of SU connections of SB

l Number of terminated SU connections S1 and SA

m Number of terminated SU connections SB

Table 1. List of Symbols for CTMC

k ∈ {1, 2.., K}. Each of the PU channels has a fixed bandwidth Wp, which is subdivided into

N subchannels of bandwidth, Ws = Wp/N. The service duration 1
µp

of the PU connections

are assumed to be exponentially distributed. The arrival rate λp of new connections from the
PU group follow an independent Poisson process. It is assumed that the PU network is an
M/M/m/m loss network, where channel occupancy only depends on the mean service rate
of PU group Mehdi (1991). The exponentially distributed mean service duration of S1, SA and
SB are denoted by 1

µ1
se

, 1
µA

se
and 1

µB
se

respectively. Similarly, the Poisson arrival rates are λ1
s , λA

s ,

and λB
s .

4. Multiple PU channels (K ≥ 1, N ≥ 1) and two SU groups

In this section, we first investigate the impact of spectrum sharing between two SU groups in
a CRN with spectrum agility. We refer to this as the “basic system”. In a basic system, the
SU connection can access one of the available PU channels, however, no spectrum handoff is
allowed (Fig. 4). Each of the two SU groups has different traffic statistics. Second, we also
investigate the impact of horizontal handoff and channel reservation. The single SU group

is treated as a special case, by letting θse = λs
µse

tend to 0 for one of the SU groups. Such a

spectrum sharing scenario has partially been considered in Wang et al. (2009), where the effect
of forced termination was neglected. This section includes the forced termination aspect, and
therefore gives a more realistic result. For mathematical convenience it is assumed that the SU
header length is 0.
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SBSBSA PU connection SASA

Incoming PU connection

PU connection SASAPU connection

SBSBSA

l=1 connection of SA and m=2 connections of SB 

are terminated

Fig. 4. Illustration of the Basic system.

4.1 Basic system

Fig. 5 shows the state transition diagram of a basic system. The states in the model are given
by the number of active connections in the system, i.e., (i, j, k), whereas i, j are the number of
active SU connections of SA and SB overlaying k active PU connections. The transition rate
from state to state is given by the labels on the arrows. An example of a forced termination is
the corner state (i− l, j−m, k+ 1) from state (i, j, k) (shown as a dashed arrow in Fig. 5), where
l and m represent the number of terminated active connections from SA and SB respectively.
Following (Zhu et al., 2007, Eq. (1)), the termination of q = l + m out of x = i + j SU
connections follows a hypergeometric distribution, and can be written as

P
(i+j,k)
((i+j)−(l+m),k+1)

=

(

N

l + m

)(

(K − k − 1)N

(i + j)− (l + m)

)

(

(K − k)N

i + j

) . (1)

Given i and j, the probability of exactly l and m can be written as

P
(i,j)
(i−l,j−m)

=

(

i

l

)(

j

m

)

(

i + j

l + m

) . (2)

195Opportunistic Spectrum Access in Cognitive Radio Network
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Fig. 5. CTMC for the basic system.

Combining (1) and (2) gives the probability of having exactly l and m SU connections
terminated from the state (i, j, k), and can be calculated from

P
(i,j,k)
(i−l,j−m,k+1)

= P
(i,j)
(i−l,j−m)

P
(i+j,k)
((i+j)−(l+m),k+1)

(3)

The termination of l and m SU connections occurs at the arrival of each PU connection.
Therefore, given the arrival rate of a PU connection λP, the state transition rate γ

(i,j,k)
(i−l,j−m,k+1)

can be written as

γ
(i,j,k)
(i−l,j−m,k+1)

= P
(i,j,k)
(i−l,j−m,k+1)

λp (4)

By substituting (1) - (3) in (4), the state transition rate from (i, j, k) to (i− l, j−m, k+ 1) is given
as

γ
(i,j,k)
(i−l,j−m,k+1)

=

(

i

l

)(

j

m

)

(

i + j

l + m

)

(

N

l + m

)(

(K − k − 1)N

i + j − l − m

)

(

(K − k)N

i + j

) λp, (5)

for 0 ≤ l + m ≤ N. Setting j and m to zero, (5) is the same as (Zhu et al., 2007, Eq. (1)). From
Fig. 5, a set of balance equations of the CTMC model for all 0 ≤ i, j ≤ KN and 0 ≤ k ≤ K can
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be written as

λA
s Pφ(i − 1, j, k) + (i + 1)µA

sePφ(i + 1, j, k) + λB
s Pφ(i, j − 1, k) + (j + 1)µB

sePφ(i, j + 1, k)

+(k + 1)µpPφ(i, j, k + 1) +
N

∑
l=0

N

∑
m=0

γ
(i+l,j+m,k−1)
(i,j,k)

Pφ(i + l, j + m, k − 1)δ(l + m ≤ N)

=

(

λA
s + iµA

se + λB
s + jµB

se + kµP +
N

∑
l=0

N

∑
m=0

γ
(i,j,k)
(i−l,j−m,k+1)

δ(l + m ≤ N)

)

Pφ(i, j, k), (6)

where, Pφ(i, j, k) = P(i, j, k)φ(i, j, k), φ(i, j, k) is one for all valid states and zero for all non-valid
states. Mathematically,

φ(i, j, k) =

{

1 i + j ≤ (K − k)N,
0 otherwise,

(7)

and P(i, j, k) denotes the probability that the system is in the state (i, j, k). The state probability
must satisfy the following constraint

NK

∑
i=0

NK

∑
j=0

K

∑
k=0

Pφ(i, j, k) = 1. (8)

The set of equations expressed by (6) can be written as a multiplication of state transition
matrix Q and state probability vector P

QP = 0. (9)

Replacing the last row of Q, with the constraint in (8), the state probabilities can be solved by

P = Q−1ǫ, (10)

where, ǫT = [0 , 0 , .. , 1] and (·)T is the transpose operator. For the basic system, the blocking
of a new SU connection occurs when all PU channels are fully occupied. The state (i, j, k) is
a blocking state if i + j + Nk = NK. The probabilities of all blocking states are summed to
calculate the blocking probability which is given by

PAB
Be =

NK

∑
i=0

NK

∑
j=0

K

∑
k=0

δ(i + j + Nk − NK)Pφ(i, j, k). (11)

From its definition and using the fact that the total termination rate (sum of forced and
unforced termination rates) equals the connection rate in Fig. 5, the forced termination
probability can be written as

Forced Termination Probability =
Total SU forced termination rate

Total SU connection rate
(12)

For the given state (i, j, k), γ
(i,j,k)
(i−l,j−m,k+1)

Pφ(i, j, k) is the termination rate of l and m SU

connections. From the state (i, j, k), the total termination rate F(i, j, k) can be written as

F(i, j, k) =
NK

∑
l=0

NK

∑
m=0

(l + m)γ
(i,j,k)
(i−l,j−m,k+1)

Pφ(i, j, k)δ f , (13)
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where δ f is given as

δ f =

{

1 0 ≤ l + m ≤ N
0 otherwise,

(14)

The total connection rate is given by (1 − PAB
Be )(λA

s + λB
s ). Using (12) and (13) the combined

forced termination probability PAB
Fe of a SU connection can be written as

PAB
Fe =

NK
∑

i=0

NK
∑

j=0

K
∑

k=0

N
∑

l=0

N
∑

m=0
(l + m)γ

(i,j,k)
(i−l,j−m,k+1)

Pφ(i, j, k)δ f

(1 − PAB
Be )(λA

s + λB
s )

. (15)

Similarly, the individual forced termination probabilities for user groups SA and SB can be
respectively calculated as

PA
Fe =

NK
∑

i=0

NK
∑

j=0

K
∑

k=0

N
∑

l=0

N
∑

m=0
lγ

(i,j,k)
(i−l,j−m,k+1)

Pφ(i, j, k)δ f

(1 − PAB
Be )λA

s
, (16)

and

PB
Fe =

NK
∑

i=0

NK
∑

j=0

K
∑

k=0

N
∑

l=0

N
∑

m=0
mγ

(i,j,k)
(i−l,j−m,k+1)

Pφ(i, j, k)δ f

(1 − PAB
Be )λB

s
. (17)

From (15),(16) and (17), it can be shown that

PAB
Fe =

λA
s

λA
s + λB

s
PA

Fe +
λB

s

λA
s + λB

s
PB

Fe. (18)

Note that PAB
Fe is not the average of PA

Fe and PB
Fe except for the special case where λA

s = λB
s .

4.1.1 Special case-single SU group

In this section, the forced termination and blocking probabilities for a single SU group are
treated as a special case of two SU groups. Let P1

Fe and P1
Be be the forced termination and

blocking probabilities of a single SU group respectively. Setting j = 0, m = 0, λB
s = 0,

µB
se = 0 in (5) and (6), we get the same equations as in (Zhu et al., 2007, Eqs. (1-2)) i.e.,

γ
(i,0,k)
(i−l,0,k+1)

= γ
(i,k)
(i−l,k+1)

and Pφ(i, 0, k) = Pφ(i, k). Under this condition, the expression in (11)

for the blocking probability is identical to that of the single SU group.

Similarly, it can be shown that the forced termination probability in (15) can be simplified to

P1
Fe =

NK
∑

i=0

K
∑

k=0

N
∑

l=1
lγ

(i,k)
(i−l,k+1)

Pφ(i, k)

(1 − P1
Be)λ

1
s

. (19)

The term
NK
∑

l=1
lγ

(i,k)
(i−l,k+1)

Pφ(i, k) in (19) is the termination rate of the SU connections from the

state (i, k). By summing over all valid states φ(i, 0, k), we get the total number of terminated
connections per unit time. Note that the forced termination probability P1

Fe from (Zhu et al.,
2007, Eq. (4)) differs from the above, because it describes a rate rather than a probability.
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4.2 Basic system with spectrum handoff and channel reservation

In this section, we extend the results derived in the previous section to system with spectrum
handoff and channel reservation. As described previously, spectrum handoff allows an active
SU connection to move to another vacant subchannel, rather being terminated by an incoming
PU connection. This phenomena is illustrated in Fig. 6. To further ensure the continuity of
existing SU connections, a small number of subchannels (marked R) are reserved exclusively
for spectrum handoff purpose. These subchannels improve the forced termination probability
at the expense of increased blocking probability.

In order to quantify the performance using spectrum handoff and channel reservation, the
following measures are defined:

GF(r) =
PAB

Fe (Basic System)− PAB
Fe (r)

PAB
Fe (Basic System)

, r = 0 . . . N, (20)

and

GB(r) =
PAB

Be (r)− PAB
Be (Basic System)

PAB
Be (Basic System)

, r = 0 . . . N, (21)

where, GF(r) expresses the improvement (fractional reduction) in forced termination
probability of the basic system when r reserved channels are used, and GB(r) describes the
degradation (fractional increase) in blocking probability with r reserved channels. Since N
is the maximum number of terminations per PU connection, we only consider r ≤ N. If
r > N the complexity of the CTMC increases significantly as it has to cater for multiple PU
arrivals rather than a single arrival. We define a measure, tradeoff gain L(r), which relates
improvement in forced termination probability to the degradation in terms of the blocking
probability as

L(r) =
GF(r)

GB(r)
. (22)

The condition L(r) >> 1 indicates that the SU network has a greater improvement in forced
termination probability compared to its increase in blocking probability.

Fig. 7 shows the state transitions of the CTMC with r reserved channels 0 ≤ r < N. The state
diagram for r = N requires slight modification. In Fig. 7(a), spectrum handoff ensures no
termination when a new PU connection is made. Fig. 7(b)-(e) depicts the condition when the
total number of vacant sub-channels is less than N. On the arrival of a new PU connection,
we have i + j + (k + 1)N > KN, therefore forced termination occurs. Fig. 7(b) allows new SU
connections because the number of free subchannels is greater than r. Contrary to Fig. 7(b),
Figs. 7(c)-(e) will allow no new SU connections since the number of free channels are less than
or equal to r. Note that there is a number of states which have a single arrow to/from state
(i, j, k) . These states include the cases where either forced termination occurs, or a new SU
connection is blocked because there is no vacant subchannel except the reserved subchannels.
The condition Figs. 7(d)-(e) also signifies that the SUs are utilising the reserved channels. The
state (i, j, k) in Fig. 7(e) can also result from other states (i+ l, j−m, k− 1). In these transitions,
forced termination occurs.

With spectrum handoff and channel reservation, the forced termination will only occur
when i + j + Nk > (K − 1)N. The arrival of a new PU connection will cause the existing
SU connections to pack themselves in (K − (k + 1))N subchannels, i.e., the transition of
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SASBSBSA PU connection RSARSA

Incoming PU connection

PU connection SASASBSAPU connection

Incoming SA connection Incoming SB connection

Blocked

Spectrum Handoff
l=1 connection of SA 

and m=1 connection 

of SB are terminated

SASB

Fig. 6. Illustration of the system with spectrum handoff and channel reservation. The
number of reserved channels r = 2.

current state (i, j, k) to state (i − l, j − m, k + 1) with the packing condition (i − l) + (j − m) =
(K − k − 1)N. The rate of this transition is expressed as

γ
(i,j,k)
(i−l,j−m,k+1)

=

(

i

l

)(

j

m

)

(

i + j

l + m

) λp. (23)

The condition of a valid state φr(i, j, k) for all i, j = {0, . . . , KN − r} and k = {0, . . . K} is given
as

φr(i, j, k) =

{

1 i + j ≤ (K − k)N and i + j ≤ KN − r
0 otherwise.

(24)

Similar to the basic system in the previous section, the set of balance equations for the
CTMC are written. Together with the constraint (8), the state probabilities Pφr (i, j, k) =
P(i, j, k)φr(i, j, k) can be solved using (9) and (10). With spectrum handoff and channel
reservation, the blocking of a new SU connection occurs when the number of vacant
subchannels is less than or equal to r. Mathematically,

PAB
Be (r) =

NK−r

∑
i=0

NK−r

∑
j=0

K

∑
k=0

δ(i + j + Nk ≥ KN − r)Pφr (i, j, k). (25)

Using (12), the combined forced termination probability with r reserved subchannels can be
calculated from,

PAB
Fe (r) =

1

(1 − PAB
Be (r))

NK−r

∑
i=0

NK−r

∑
j=0

K

∑
k=0

N

∑
l=0

N

∑
m=0

(l + m)

(λA
s + λB

s )
γ
(i,j,k)
(i−l,j−m,k+1)

Pφr (i, j, k)δ f r. (26)
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Fig. 7. A CTMC for the system with spectrum handoff and channel reservation r < N. The
states (i − l, j − m, k + 1) satisfy packing condition i.e., (i − l) + (j − m) = (K − k − 1)N for
0 < l + m ≤ N.

The individual forced termination probabilities for user groups SA and SB are

PA
Fe(r) =

1

(1 − PAB
Be (r))

NK−r

∑
i=0

NK−r

∑
j=0

K

∑
k=0

N

∑
l=0

N

∑
m=0

l

λA
s

γ
(i,j,k)
(i−l,j−m,k+1)

Pφr (i, j, k)δ f r, (27)

and

PB
Fe(r) =

1

(1 − PAB
Be (r))

NK−r

∑
i=0

NK−r

∑
j=0

K

∑
k=0

N

∑
l=0

N

∑
m=0

m

λB
s

γ
(i,j,k)
(i−l,j−m,k+1)

Pφr (i, j, k)δ f r, (28)

where, δ f r is defined as

δ f r = δ((i − l) + (j − m)− (K − k − 1)N) δ(i + j + Nk > (K − 1)N) δ(0 < l + m ≤ N). (29)

Note that δ f r consists of three conditions, i.e., the packing, termination and a valid number of
dropped SU connections.
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4.2.1 Special case-single SU group

In the case of a single SU group, we set the respective parameters for SB in Figs. 7(a)-(e) to 0.
Note that the resulting state transition diagrams are different from (Zhu et al., 2007, Fig. 4).
The latter did not include the proper state transitions for the reserved channels, which gave
over optimistic result. In Figs. 7(a)-(e) all five state transition scenarios are included which
gives a complete CTMC analysis.

The state probabilities Pφr (i, k) are calculated by following the basic system’s approach(). For
a single SU group, the blocking probability with r reserved subchannels can be written as

P1
Be(r) =

NK−r

∑
i=0

K

∑
k=0

δ(i + Nk ≥ KN − r)Pφr (i, k). (30)

The above expression states that the blocking of a new SU connection can only occur when
the number of vacant subchannels are less than or equal to r. For a single SU group, the forced
termination probability is given by

P1
Fe(r) =

NK−r
∑

i=0

K
∑

k=0

N
∑

l=1
γ
(i,k)
(i−l,k+1)

Pφr (i, k)δ1
f (r)

(1 − PB(r)1)λ1
s

, (31)

where, δ1
f (r) = δ(i + Nk > (K − 1)N) δ(i − (K − k − 1)N − l). Note that δ1

f (r) refers to two

conditions. Firstly, the forced termination occurs only when (i + Nk) > (K − 1)N. Under

this condition γ
(i,k)
(i−l,k+1)

= λP. Secondly, (i − l) SU connections are packed into (K − k − 1)N

available subchannels and the remaining l connections are terminated.

4.3 Network throughput

The network throughput is defined as the products of the connection completion rate, the
average service duration per connection and the data rate. For unit data rate, the theoretical
throughput can be expressed as

ρx0
se = (1 − Px0

Be)(1 − Px0

Fe )
2θx0

se (32)

where θx0
se = (λx0

s /µx0
se ) is called traffic intensity Mehdi (1991) and x0 ∈ {1, A, B} for single or

two user groups (SA and SB), respectively.

For a fixed θx0
se , the throughput ρx

se reaches a maximum when the SU service rate (µx
se)

approaches infinity, i.e., ρx0∗
se = lim

µ
x0
se →∞

ρx0
se . A simple proof is given as follows. When

µx0
se → ∞, we have Px0

Fe → 0. The blocking probability in (32) consists of two parts i.e.,
Px0

Be = Px0

Be(pri) + Px0

Be(sec), where PB(pri) is the blocking probability due to the situation in

which PUs occupy all the subchannels, and Px0
Be (sec) is the blocking probability which can

be computed from the probability for a given number of vacant subchannels. It is known
that Px0

Be(sec) is constant for a fixed θx0
se Mehdi (1991). Therefore, the maximum achievable

throughput ρx
se can be written as

ρx0∗
se = lim

µ
x0
se →∞

(1 − Px0

Be)(1 − Px0

Fe )θ
x0
se = (1 − Px

Be(∞))θx0
se , (33)

where, Px0
Be (∞) is the blocking probability when Px0

Fe = 0.
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Fig. 8. Single SU group, Left: Blocking probability, and Right: Forced termination probability
versus PU traffic intensity given θ1

se = 8 and µ̂1
se = 1. Simulation results are shown with “+”.

4.4 Numerical results

In this section we give some numerical examples of Px0

Fe , Px0

Be , and the throughput ρx0
se for SUs.

In all of the following simulations, we set K = 3, N = 6 and Px0

Fe , Px0

Be , ρx0
se are plotted against

PU (SU) traffic intensity θp(θ
x0
se ). In addition, service rates of the SU groups are normalised

with respect to the PUs rate i.e., µ̂x0
se = (µx0

se /µp), where x0 ∈ {1, A, B}. In addition, r = 0
indicates the spectrum handoff only condition without channel reservation.

4.4.1 Single SU group

In Fig. 8, P1
Fe and P1

Be are plotted against θp ∈ [0.5, 1.5], for given θ1
se = 8 and µ̂1

se = 1. It
can be calculated that the range of θp corresponds to the PU channel occupancy from 16.43%
to 43.28%. Compared to systems with spectrum handoff and channel reservation, the basic
system has the lowest blocking and the highest forced termination probability. Spectrum
handoff results in a significant drop in P1

Fe for a moderate increase in P1
Be. The introduction of

reserved channels are not particularly effective in this instance.

Fig. 9 shows the impact of θ1
se on P1

Fe and P1
Be, for a given θp = 1 and µ̂1

se = 1. The behaviour of

P1
Be is similar to that in Fig. 8. For the basic system, P1

Fe decreases slightly as θ1
se increases. This

is counter intuitive. At high θ1
se, due to fixed N, the forced termination rate

NK
∑

i=0

K
∑

k=0
F(i, 0, k)

will saturate faster than the connection rate (1− P1
Be)λ

1
s , implying an increased SU occupancy.
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Fig. 9. Single SU group, Left: Blocking probability, and Right: Forced termination probability
versus SU traffic intensity given θp = 1 and µ̂1

se = 1. Simulation results are shown with “+”.

Note that PF is the probability of termination per occupied channel. With spectrum handoff
and channel reservation P1

Fe initially decreases slightly, before increasing with θ1
se. This can be

explained as follows. At very low θ1
se values, the existing SU connections readily find vacant

subchannels. As θ1
se increases the number of occupied channels increases, but there is still

enough vacant subchannels to handle the arrival of a new PU connection and the probability
of forced termination (for an existing connection) decreases. Eventually, at high θ1

se there are
fewer vacant subchannels to accomodate the displaced subchannels and forced termination
probability increases.

The throughput ρ1
se and the probability tradeoff gain L(r) are shown in Fig. 10 for a given

θp = 1 and µ̂1
se = 1. At low values of θ1

se, the network throughput with spectrum handoff
and channel reservation is higher than the basic system. However, the same cannot be said
for high values of θ1

se. The curves of tradeoff gain L(r) show that more reserved channel give
less gain in probability tradeoff. Also, for the same r, the effectiveness of the tradeoff reduces
as θ1

se increases.

4.4.2 Two SU groups

In Fig. 11, we compare the throughput and probability tradeoff gain L(r) of two user groups
with a single SU group having the same traffic intensity i.e., θ1

se = θA
se + θB

se. In this example
the abscissa is the SU service rate µB

se(µ
1
se) and we assume that θp = 1, θA

se = θB
se = 6, θ1

se = 12,
r = 0.
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Fig. 10. Single SU group, Left: Aggregate throughput, and Right: Probability tradeoff gain
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se = 1.

The throughput ρAB
se = ρA

se + ρB
se and ρ1

se are monotonically increasing functions of both µ̂A
se,

µ̂B
se and µ1

se respectively. When µ̂1
se = µ̂A

se = µ̂B
se the curves ρAB

se intersect with single user
throughput ρ1

se. This is expected, since at the intersection points SUs from both SA and SB

are arriving at the same rate which is half of that of single user group S1. The maximum
achievable throughputs for both single and two user groups are identical i.e., ρmax = ρAB∗

se =
ρ1∗

max. The aggregate throughput ρAB and ρ1 approach maximum, when both single and two
groups operate at much higher service rates than the PU arrival rate i.e.,

{

µ1
se, µA

se, µB
se

}

>> λp.

For probability tradeoff gain L(0), all the curves exhibit a U-shaped behaviour. This can
be explained as follows. For relatively low service rates (long service duration), blocking
probability increases at a higher rate than the rate of reduction in forced termination
probability, whereas the opposite happens at high service rates (short service duration).
This example demonstrates that the SU service duration relative to the PU counterpart has
significant impact on the tradeoff, and the tradeoff is much more effective when the SU service
rates µx

se is much larger or smaller than the PUs.

5. Airtime fairness

This section investigates the throughput fairness among two SU groups. For brevity, we limit
our discussion to the spectrum handoff case only i.e., r = 0.
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Fairness:We define a fairness scheme in which the fractional throughput loss of both SU groups (with
respect to their offered traffic θz

se) is equal, where z ∈ {A, B}

GA
ρ =

θA
se − ρA

se

θA
se

GB
ρ =

θB
se − ρB

se

θB
se

(34)

Based on the above equations, the fair metric is

̥ =
GA

ρ

GB
ρ

(35)

The scheme is optimally fair when ̥
∗ = 1. In Fig. 12(a), the no constraint sharing gives an

ideal fairness ̥
∗ = 1, only for µA

se = µB
se. It applies to any values of λA

s and λB
s (Fig. 12 has

λA
s = 12, λB

s = 20). When µA
se = µB

se, the two SU groups act as a single SU group due to the
superposition of Poisson arrivals. Mathematically, PA

Fe = PB
Fe, and PAB

Be is constant for both SA

and SB. As the difference in the service rates between the SU groups increases, the fairness ̥
deviates from its ideal value.

In Fig. 12(b), we investigate the fairness ̥ and throughput ρ for a given µA
se = 0.8 and

µB
se = 2. The fairness curves at low to medium values of arrival rate λA

s (λ
B
s ) show that
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spectrum sharing results in an unfair distribution of channel resources among the two SU
groups. The percentage loss in throughput of SA(large connection length) is significantly
higher. The arrival rate has less effect on fairness.

5.1 Fairness through channel partitioning

In the previous section, the results show that dissimilar SU groups can lead to unfairness.
In the following we investigate the potential of a channel partitioning policy to address
unfairness. In essence, we restrict the maximum number of allowable active connections to
NA and NB for SA and SB respectively, where 0 ≤ NA ≤ NK and 0 ≤ NB ≤ NK. The
variation of NA and NB gives rise to the following 3 conditions. The first condition NA =
NK − NB represents a channel partitioning scenario, the second condition NA + NB > NK
is a weaker channel partitioning scenario, whereas the condition NA = NB = NK is the no
constraint scenario described in the previous subsection. Here, we only consider the channel
partitioning scenario because it does not require the calculation of state probabilities in which
the transmission of the SU groups overlap. A channel partitioning scenario is shown in Fig.
13, in which an incoming SB connection is allowed to access the channel, while an incoming
SA connection is blocked even though there is a vacant subchannel. In the channel partitioning
scenario, the objective is to find a feasible number of channels {NA, NB} such that the access
scheme is optimally fair i.e., ̥∗ ≈ 1. Due to integer values of {NA, NB} the optimally fair
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SASBSBSA PU connection SASA

Incoming SA connection

Incoming SB connection

Blocked

SASBSBSA PU connection SBSASA

Fig. 13. Illustration of Channel partitioning scenario, K = 3, N = 4, NA = 4, NB = 8.

value of 1 may not always be possible. From (35) it is also obvious that the calculation
of {NA, NB} requires the knowledge of termination and blocking probabilities for both SU
groups. In the following, we model this channel partitioning scenario as a simple extension of
the CTMC in Section 3.3.3.

The maximum number of allowable connections of SA and SB are NA and NB i.e., i =
{0, . . . , NA}, j = {0, . . . , NB} and the state probabilities can be solved under the fundamental
probability constraint (similar to the section 3.3). The blocking probabilities and forced
termination probabilities are given as follows.

PA
Be =

NA−1

∑
i=0

NB

∑
j=0

K

∑
k=0

δ(i + j + Nk − NK)Pφ0 (i, j, k) +
NB

∑
j=0

K

∑
k=0

Pφ0 (NA, j, k), (36)

PB
Be =

NA

∑
i=0

NB−1

∑
j=0

K

∑
k=0

δ(i + j + Nk − NK)Pφ0 (i, j, k) +
NA

∑
j=0

K

∑
k=0

Pφ0 (i, NB, k). (37)

The combined blocking probability of SU groups PAB
B seen by PU network is given as

PAB
Be =

λA
s

λA
s + λB

s
PA

Be +
λB

s

λA
s + λB

s
PB

Be, (38)
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PA
Fe =

1

(1 − PA
Be)
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Fe =

1
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NA

∑
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NB
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min{NA ,N}

∑
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∑
m=0

m

λB
s
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Pφ0 (i, j, k)δ f 0. (40)

5.2 Scenario 1 θA
se �= θB

se, µA
se �= µB

se and λA
s �= λB

s

In Fig. 14 and Fig. 15, the fairness ̥ and throughput ρ are plotted against µA
se respectively,

for given µB
se = µA

se + 0.3, θA
se = 4 and θB

se = 7. In this condition, PA
Fe �= PB

Fe, and PA
Be �= PB

Be.

The fairness curves at low to medium values of service rate µA
s show that the no constraint

scenario results in an unfair distribution of channels among two SU groups. The percentage
loss in throughput of SA is significantly higher (due to large PA

Fe). At large values of service rate

µA
se the fairness improves and throughput saturates due to the lower termination probability

of both SU groups. On the other hand, the channel partitioning achieves fairness at a cost of
the decrease in aggregate and individual throughput i.e., by assigning more subchannels to
SA than SB. At higher values of µA

se(µ
B
se) there is almost no difference between the fairness and

throughput in both strategies. The fluctuation in fairness occurs due to the integer number of
subchannels.
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5.3 Scenario 2 θA
se = θB

se, µA
se �= µB

se and λA
s �= λB

s

Fig. 16 shows the fairness ̥ curves plotted against SU service rate µA
se, given µB

se = µA
se + 0.3,

θA
se = 6 and θB

se = 6. The arrival rate of SA is higher than SB because of the offered traffic is
constant for both SU groups. The curves are fairly similar to the previous figure and indicate
that the smaller durations achieve better fairness.

6. Summary

In this Chapter, using a CTMC we have presented the exact solutions to determine the forced
termination and blocking probabilities, and aggregate throughput of a SU group as well as
two SU groups. Specifically,

• For multiple PU channels (with more than one subchannel) and two SU groups, three
types of systems with were considered; without spectrum handoff (basic system): with
spectrum handoff and channel reservation. For all these systems the single SU group
was treated as a special case. In the former case, the results show that the blocking and
forced termination probabilities increase with PU traffic intensity, as expected. However,
SU traffic intensity has a different impact on the forced termination probability. The forced
termination probability decreases slightly as SU traffic intensity increases for the basic
system. For the systems with spectrum handoff, forced termination probability is always
less than the basic system. However, there exists an optimal arrival rate that minimizes
the forced termination probability. Spectrum handoff (r = 0) is more effective than
channel reservation r > 0 in reducing forced termination probability for a given increase in
blocking probability (tradeoff gain). The tradeoff is much more beneficial when the service
rate is either very high or very low compared with the PU service rate.

• For two SU groups, we found that spectrum sharing can result in unfair channel
occupancy. The problem is most prevalent when the difference between the two service
rates is large. Channel partitioning (where a limit is placed on the maximum number of
active connections of each SA and SB group) forces fairness but the throughput penalty
might not be worth it.
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