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1. Introduction  

It is well documented in literature a wide range of behavioral and physiological effects arising 
from ethanol intake (Spinetta et al., 2008; Soares et al., 2009; Brust, 2010). Because it is a 
substance that affects differently and simultaneously several neurotransmitter systems, 
covering different brain areas (Dahchour & De Witte, 2000; Vasconcelos et al., 2008; Vengeliene 
et al., 2008), it becomes complex to reveal the mechanism of action that governs its effects, 
being still a challenge for researchers. In addition, ethanol has a biphasic behavioral presenting 
an excitatory feature in the early stages and a depressant feature in its chronic use. 

Among the wide range of pathways in central nervous system that are modified by ethanol, 

it is important to highlight those that explain ethanol diverse effects, like the ones releasing 

gamma-amynobutiric acid (GABA), glutamate, dopamine and norepinephrine (Kaneyuki et 

al., 1991; Vasconcelos et al., 2004). Moreover, another pathway that is rising on researches 

about ethanol effects is the adenosinergic system (Prediger et al., 2006; Thorsell et al., 2007). 

Adenosine was described as a potent depressor of neuronal activity (Dunwiddie & Haas, 
1985), and acts mainly via A1 receptor, which is a presynaptic inhibitor of the release of 
neurotransmitters such as dopamine, GABA, glutamate, acetylcholine and norepinephrine 
(Fredholm et al., 2001; Dunwiddie & Masino, 2001). Moreover, adenosine is involved in 
behavioral processes like motor function, anxiety, depression, reward and drug addiction, and 
human disorders such as Parkinson disease and schizophrenia (Moreau and Huber, 1999). 

In addition, there is strong evidence of an involvement of the adenosinergic system on 

ethanol effects, including the extracellular increase of adenosine after acute exposure to 

ethanol (Krauss et al., 1993; Nagy et al., 1990), the accentuation or blockade of ethanol-

induced motor incoordination provided by adenosine receptor agonists or antagonists, 

respectively (Dar, 2001; Soares et al., 2009), and the reduction of anxiogenic-like behavior in 

acute ethanol withdrawal (Prediger et al., 2006). Adenosine antagonists, like caffeine, are 

implicated in alcohol tolerance (Fillmore, 2003), and retrograde memory impairment caused 

by ethanol (Spinetta et al., 2008). Thus, adenosine receptors seem to modulate some of the 
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pharmacological properties of ethanol, interacting with it by blocking or accentuating its 

properties. 

2. Ethanol and adenosine relation in different neurotransmission systems 

It’s known in literature that ethanol alone interferes in different neurotransmitter systems, 

as GABAergic, glutamatergic, dopaminergic, serotonergic, noradrenergic, cholinergic and 

others, including adenosinic; however, its action on this last system has currently  deserved 

more attention, due to its neuromodulator/neuroprotector action. Thus, in the present topic 

updates will be discussed on the relationship between ethanol and adenosine and its 

consequent interference in some systems above. 

To better understand the association of ethanol and adenosine on different neurotransmitter 

systems, it is necessary to explore the likely hypotheses that explain how ethanol interferes 

with the adenosine system. Carmichael et al. (1991) suggested that a probable mechanism 

could occur via metabolism of ethanol by acetate, where this would be incorporated into 

acetyl-coenzyme A with subsequent formation of AMP, thereby directing the synthesis of 

adenosine. 

Another possible mechanism of interaction between these two substances can be related to 

the fact that ethanol inhibits facilitated diffusion transporters, being the ENT1 (Equilibrative 

Nucleoside Transporter) an example, increasing the availability of extracellular adenosine 

(Diamond et al., 1991; Krauss et al., 1993). Finally, ethanol may facilitate the activation of 

receptors that have adenylate cyclase (AC) as intracellular signaling system (Rabin; 

Molinoff, 1981; Hoffman; Tabakoff, 1990), which is displayed by adenosine receptors. 

Therefore, there are different points of possible interference of the increased concentration of 

extracellular adenosine induced by ethanol on other neurotransmitter systems. 

The GABAergic system in the striatum may be modulated by adenosine with regard to the 

effects of ethanol on motor coordination and sleep, involving cAMP (Meng; Dar, 1995; Meng 

et al., 1997). It was found that the use of adenosine agonists accentuate the reduction in the 

motor coordination induced by ethanol, whereas Ro15-4513, a weak partial inverse agonist 

of the benzodiazepine class of drugs, attenuated by blocking the effect of the first when used 

in combination (Meng; Dar, 1994, 1995), suggesting a participation via GABAA by an 

alteration in the conductance of chloride ions (Meng et al., 1997, Mohler et al., 1984). A 

mechanism suggested by Londos et al. (1980) and Van Calk et al. (1970) relates ethanol to 

alterations in the production of cAMP via AC through the A1 receptor, ie, increased 

availability of adenosine induced by ethanol leads to greater signs of adenosine on your 

receptor that has a higher affinity, which is related with inhibitory G protein, reducing 

cAMP production and concomitant modulation of the GABAergic system that increases 

chloride conductance. 

This ratio adenosine/ethanol with the GABAergic system can still be related to opioid 

system, where ethanol induces the increased availability of ǃ-endorphin which activates 

μtype receptors, altering the release of GABA in dopaminergic neurons in the ventral 

tegmental area, an area involved to reward behavior and abuse of ethanol (Mendez et al, 

2003; Marinelli et al, 2004; Lam et al, 2008; Jarjour et al, 2009). 
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Indirectly, this relationship can also occur through ionotropic ATP receptors, that has the 
function of specific subtypes (P2X4R and P2X2R) inhibited by ethanol (Davies et al., 2002, 
2005), altering the modulation of release of different substances such as GABA, glycine and 
glutamate (Mori et al., 2001; Papp et al., 2004). 

Concerning the glutamatergic system, this one demonstrates relationship with the two 
subtypes of adenosine receptors A1 and A2A, once these receptors appear hetero-dimerized 
in glutamatergic nerve terminals in the striatum, modulating the concentration of glutamate 
in accordance with the availability of adenosine, where a lower concentration activates A1R   
inhibiting glutamate release, and a higher concentration activates A2AR, stimulating the 
release of glutamate and greater activation of the NMDA receptor. This regulates the release 
of dopamine in the nucleus accumbens stimulating higher consumption of ethanol (Ciruela 
et al., 2006; Quarta et al., 2004). 

Another finding that reinforces the relationship ethanol/adenosine/glutamate is the 
synergic interaction that occurs between A2A and mGluR5 receptors (which is related to the 
consumption of ethanol in the nucleus accumbens) in the striatum, that is, the co-activation 
of these receptors increases the phosphorylation of proteins regulated by dopamine and 
cAMP, increased ethanol consumption (Nishi et al., 2003). In addition, NMDA and A1 
receptors present a cross modulation on the negative effects of ethanol, like a reduction on 
motor coordination in the cerebellum, striatum and motor cortex (Mitchell; Neafsey; Collins, 
2009). This relationship could be involved with the altered activity of Protein Kinase C 
(PKC) (Othman et al., 2002). This enzyme has a modulating function against the 
concentration of glycine, GABA internalization, externalization of NMDA expression of 5-
HT3 (Chapell et al., 1998; Lan et al., 2001; Zhang et al., 1995; Sun et al., 2003). 

Regarding the dopaminergic system, A2A and D2 receptors (as well as A1 and D1) exhibit 
dimerization between them, relating to the reward system in the striatum probably by 
modulation of AC activity by ethanol, leading to an increase in the concentration of cAMP 
and the activity of PKA, desensitizing D2, and thus leading to an increased consumption of 
ethanol (Ferre et al., 2008; Mailliard & Diamond, 2004; Yao et al., 2002; 2003). A possible 
mechanism of the final response of the dimerized activation of these receptors is that 
ethanol desensitizes receptors linked to the stimulatory G protein (ǂ subunit), modulating 
the coupling of D2 with the AC pathway, which may be related to PKA (Yao et al., 2001; 
Batista et al., 2005). Inoue et al. (2007) found that co-activation of A2A and D2 mediates the 
transient interaction between nicotine and ethanol, showing an indirect relationship with 
the cholinergic system, where the use of antagonists of  this co-activation can prevent, 
mitigate or even reverse the use of smoke and ethanol. 

Indirectly, the adenosine system also maintains relation to the dopaminergic system via 
receptors P2XR which were identified in mesolimbic dopaminergic neurons, modulating 
their activity and, equivalently, the consumption of ethanol (Heine et al., 2007; Xiao et al., 
2008). 

Adenosine and serotonin systems are related in regard to ethanol via P2X receptors (P2XR). 
That is, 5-HT3 and P2XR are functionally coupled and both have their actions modulated by 
ethanol (inhibits P2X2 and P2X4 and stimulates 5-HT3), besides being involved with other 
neurotransmitter systems such as glycine, GABA, glutamate (mentioned above) and 
dopamine in the nucleus accumbens and ventral tegmental area (Davies et al., 2006). 
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Other neurotransmitters still present a few studies involving ethanol and the adenosine 
system, such as glycine, where ethanol inhibits their specific receptors probably via PKC 
(Tao & Ye, 2002), and taurine, which normalizes the activity of ATPases in tissues pretreated 
with ethanol (Pushpakiran et al., 2005), showing some indirect relationship with the system 
in focus. 

3. Adenosine agonists and antagonists in the responses induced by ethanol 

As widely described, ethanol affects several mechanisms of transmission on the central 
nervous system, bringing a wide range of behavioral and neurochemical responses. To 
reduce the risks and to prevent the damages arising from ethanol intake, many researches 
are engaged in finding other substances that could inhibit or reduce the responses of ethanol 
in the organism. An alternative for this proposition is to study the relationship of the 
mechanism of action of ethanol effects and substances that may interfere in these pathways. 
Adenosine system, as already mentioned, interacts with many effects induced by ethanol, 
affecting their responses as being influenced by them. This system has gained remarkable 
interest in research because of its neuromodulator/neuroprotective action (Halbach & 
Dermietzel, 2006; Wardas, 2002), and may bring about a new target for developing drugs 
that can interfere with the effects caused by ethanol. 

Among the wide range of adenosine receptor agonists and antagonists used in experiments 
involving ethanol treatment, we will focus on the most common substances, like adenosine, 
N6-[2-(3,5-dimethoxyphenyl)-2-(2-methylphenyl)ethyl]adenosine g(DPMA), 2-chloro-N6-
cyclopentyladenosine (CCPA), R(−)-N6-phenylisopropyladenosine (R-PIA) as agonists, and 
caffeine, theophylline, 1,3-dipropyl-8-cyclopentylxanthine (DPCPX), 3,7-Dimethyl-1-
propargylxanthine (DMPX) as antagonists, these last being well described and characterized 
in a review performed by Muller & Jacobson (2011). 

A moderate alcohol intake may not be harmful and has even beneficial effects in prevention 
of cardiovascular diseases, for example (Di Castelnuovo et al., 2010), but heavy alcohol 
consumption could be associated with some risks to the body, like reduced brain mass, 
neuronal loss, neuropathological changes, and impairment of cognitive functions, amnesia, 
dementia and even a significant increase in mortality. Furthermore, the consumption of 
significant quantities of ethanol during pregnancy is responsible for the Fetal Alcohol 
Syndrome (FAS), and prenatal alcohol exposure in humans, as well as in rodents, leads to an 
impaired cognitive and behavioral function, resulting from damage to the central nervous 
system (Chen et al., 2003; Riley et al., 2004; Hamilton et al., 2003). Thus, taking into account 
the substantial importance of this system, studies looking for the lessening of these various 
damages caused by ethanol intake are strictly necessary. 

High amount of experimental studies, involving ethanol administration, use a chronic 
treatment as methodology protocol; but subchronic and acute treatments are also well used 
(Soares et al., 2009; Prediger et al., 2006). While acute treatment simulates hangover, chronic 
treatment usually refers to the withdrawal symptoms and body's adaptive responses to 
prolonged consumption of ethanol. 

Although many studies have consistently demonstrated increases in anxiety-like behavior 

during the withdrawal period after chronic exposure to ethanol in rodents (Lal et al., 1991; 

Knapp et al., 1993; Gatch & Lal, 2001), there are limited experimental findings regarding this 
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symptom after a single ethanol challenge dose. Prediger et al. (2006) designed an 

experimental study of acute ethanol withdrawal (hangover) in mice, in which a time-

dependent development of anxiety-like behavior after an intraperitoneal administration of a 

single dose of ethanol (4 g/kg) in mice was assessed, and the potential of adenosine A1 and 

A2A receptor agonists in reducing this behavior was evaluated. They presented evidence that 

acute administration of ‘nonanxiolytic’ doses of adenosine (5–10 mg/kg, i.p.) or the selective 

adenosine A1 receptor agonist CCPA (0.05–0.125 mg/kg, i.p.), but not the adenosine A2A 

receptor agonist DPMA (0.1–5.0 mg/kg, i.p.), which reduces the anxiety-like behavior 

during ethanol hangover in mice, as indicated by a significant increase in the exploration of 

the open arms of the elevated plus maze. In addition, the effect of CCPA (0.05 mg/kg, i.p.) 

was prevented by the pretreatment with the selective adenosine A1 receptor antagonist 

DPCPX (3.0 mg/kg, i.p.), demonstrating that the activation of adenosine A1 receptors, but 

not adenosine A2A receptors, reduces the anxiogenic-like behaviour observed during acute 

ethanol withdrawal in mice. 

In general, sensitivity to the adverse effects of ethanol is inversely correlated with alcohol 
consumption. In a study with mice lacking the A2A receptor, Naassila et al. (2002) showed 
that these animals are less sensitive to the acute effects of ethanol as hypothermia and 
sedation, and consume more ethanol in a two-bottle choice paradigm compared with wild-
type littermate control mice, demonstrating that the A2AR is involved in the sensitivity to the 
hypothermic and sedative effects of ethanol playing a role in alcohol-drinking behavior.  

Furthermore, caffeine presents an ability to decrease sensitivity to the stumbling and 
tiredness associated with drinking large quantities of ethanol. Thus, adenosine receptors 
antagonists also appear to mediate some of the reinforcement effects of ethanol. This 
reinforcement is in part mediated via A2AR activation and probably associated with 
intracellular A2 activation of cAMP/PKA signalling cascades in the nucleus accumbens 
(Thorsell, et al., 2007; Adams et al., 2008), but the exact mechanism of action remains 
unclear. Studies in humans examining methylxanthine and ethanol interactions have mostly 
focused on the influence that caffeine exerts on ethanol intoxication, and have yielded mixed 
results (Liguori and Robinson 2001; Drake et al. 2003); but a point that needs further 
attention is the fact that these studies converge upon the point that caffeine consumed in 
association with ethanol, rather than improving ethanol-induced impairments, would 
reduce the self-perception of ethanol intoxication (Morelli & Simola, 2011), since human 
data also show that caffeine enhances tolerance to ethanol (Fillmore, 2003). 

In addition to reinforcing effects, adenosine also appears to be related to locomotive effects 

of ethanol at high dose (6 g/kg) in subchronic treatment during 5 days, as shown in the 

experimental study of Soares et al. (2009), in which the administration of Aminophylline, a 

non-selective adenosine receptor antagonist, at low doses (5 and 10 mg/kg) produced some 

degree of locomotion stimulation, and was able to reverse the depressive effects produced 

by ethanol on the number of falls and time spent in the bar, in the Rota rod test, suggesting a 

partial blockage of the action of ethanol. The selective A1R agonist N6-cyclohexyladenosine 

(CHA) has also been found to potentiate, and the antagonist DPCPX attenuates ethanol-

induced motor incoordination in mice (Meng et al., 1997). 

Chronic ethanol intake leads to several changes in the balance of neurotransmitter pathways 
and its receptors, being studied oftentimes focusing withdrawal symptoms. Accordingly 
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Concas et al. (1994), the adenosine receptor agonist CCPA produces inhibition of these 
symptoms, such as tremors and audiogenically induced seizures in rats treated repeatedly 
with ethanol (12–18 g/kg daily for 6 days), an effect prevented by DPCPX. Similar results 
about the specificity of the adenosine receptor in the responses of ethanol effects have been 
reported by Kaplan et al (1999) in mice receiving a 14-day liquid diet containing ethanol and 
treated with the adenosine A1 receptor agonist R-PIA during the withdrawal period, 
indicating the adenosine A1R modulate anxiety-like responses in mice, not only in acute, but 
also in chronic treatment with ethanol. 

Thus, adenosine receptor activation seems to be strongly linked with sensitivity and 
reinforcement properties of ethanol either in A1, or in A2AR, with an opposite relation of 
activation, whereas the adenosine A1R agonists reduce sensitivity, A2AR antagonists 
demonstrate to play this role. Despite A2A knockout mice showed reduced conditioned place 
preference for ethanol. Houchi et al. (2008) showed that the increased propensity to drink 
ethanol in A2A knockout mice was associated with an increase in sensitivity to the motor 
stimulant and anxiolytic effects of ethanol. Contrasting with these findings, the 
administration of A2A antagonist DMPX reduced ethanol reward and consumption, in a 
study performed by Thorsell et al. (2007), in which a decreased lever-pressing for ethanol in 
an operant chamber was observed. 

Caffeine and selective adenosine receptor antagonists may also reduce the duration of 
ethanol-induced loss of the righting reflex (El Yacoubi et al., 2003), reverse deficits in motor 
coordination induced by ethanol (Barwick & Dar, 1998; Connole et al., 2004) and reverse 
retrograde memory impairment caused by a high dose of ethanol (3 g/kg) (Spinetta et al., 
2008). Indeed, the combination of caffeine and ethanol produces a beneficial effect after 
experimental traumatism brain injury (Dash et al., 2004), projecting its effect on stroke 
(Aronowski et al., 2003; Belayev et al., 2004) and indicating the importance of the interaction 
between caffeine and ethanol.  

Beyond neurotransmission/neuromodulation, it is important to give attention to other 
factors that contribute to the relationship between adenosine system and ethanol effects, as 
indicated in a review performed by Ruby et al. (2011) about adenosine signalling in anxiety, 
which underlies the importance of the adenosine transporter ENT1. Many aspects of 
ethanol-related behaviors and anxiety appear to be involved in genetic factors as 
polymorphism and in the gene encoding ENT1 could be associated with alcoholism and 
depression in women (Gass et al., 2010). Further, acute ethanol inhibits ENT1, while chronic 
ethanol treatment leads to decreased ENT1 expression (Short et al., 2006; Sharma et al., 
2010). Also, mice lacking this adenosine transporter displayed a decreased A1 adenosine 
tone in the nucleus accumbens and elevated levels of ethanol consumption compared with 
wild-type mice (Choi et al., 2004). In contrast, it has been shown that ethanol operant self-
administration is not altered by an A1R antagonist while it is bimodally affected by an A2AR 
antagonist (Arolfo et al., 2004).  

4. Conclusion and future prospects 

As noted above, there are many different points of adenosine system interference on the 
effects of ethanol administration. This interaction is of fundamental importance because it 
could be a new target for developing drugs that may interfere, reducing the damage caused 
by ethanol. 
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