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1. Introduction 

Recent studies have resulted in a variety of therapeutic options for cancer. However, tumor 

patients, even a same patient at different disease stages, respond(s) to a treatment protocol 

with different efficacy. A concept of personalized medicine has been developed to deliver 

individually tailored treatment upon the unique responsiveness of each patient. Currently, it 

is still challenging to predict treatment outcomes due to the genetic complexity and 

heterogeneity of cancers, which underlies the varied responses to treatment. To efficiently 

design treatment strategies and monitor the outcomes of therapies for individual patient, 

tumor responsiveness to a specific treatment regimen needs to be assesses in a time- and 

cost-efficient manner.  

Non-invasive imaging technologies have demonstrated great potentials in diagnosis and 

treatment management by monitoring individual patient’s disease condition and 

progression. Currently, anatomic and functional imaging modalities have been generally 

applied to detect, stage, and monitor tumors. Compared to the anatomic imaging that 

measures tumor size, functional or molecular imaging provides more information on tumor 

metabolism, biomarker expression, cell death or proliferation and thus is more relevant to 

the imaging assessment of tumor responsiveness to a treatment regimen, especially when 

the treatment affects tumors through blocking the tumor progression instead of shrinking 

the tumor size. Discovery of novel probes that specifically binds to tumor-limited targets 

with sound biological relevance is a limiting factor to develop such functional imaging 

modality.  

Compared to antibody (~150 kD), peptide is in a much smaller size (1-2 kD) that enables an 

improved tissue penetration, faster clearance from circulation system, and less 

immunogenic property that are expected for a imaging probe, especially in the repeated 

assessment of treatment responsiveness in solid tumors. Advances in phage display-related 

technologies have facilitated the discovery and development of peptide derivatives as 

imaging probes for a variety of tumors. By using one example of HVGGSSV peptide that has 
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been discovered and tested for non-invasive imaging assessment of tumor response to 

ionizing radiation (IR) and receptor tyrosine kinase (RTK) inhibitors in multiple tumor 

types, this review demonstrates that phage-displayed peptides hold potentials in 

personalized medicine by facilitating molecular imaging, discovery of diagnostic biomarker 

or therapeutic target, and tumor-targeted drug delivery. 

2. Advancement in radiation therapy of cancer  

Cancer is the leading cause of death worldwide, deaths from cancer worldwide are 
projected to continue rising, with an estimated 12 million deaths in 2030 (World Health 
Organization). Currently, radiotherapy is one of the most important modalities for the 
treatment of cancers. Over 60% of cancer patients received radiotherapy as part of their 
treatments. 

2.1 Radiotherapy 

Radiotherapy is the medical use of ionizing radiation as part of cancer treatment to control 

malignant cells. Radiation therapy may be used to treat localized solid tumors, such as 

cancers of the skin, tongue, larynx, brain, breast, lung, prostate or uterine cervix. It can also 

be used to treat leukemia and lymphoma. It works by damaging the DNA of cancerous cells 

through the use of one of two types of high energy radiation, photon or charged particle. 

This damage is either direct or indirect ionizing the atoms which make up the DNA chain. 

Indirect damage happens as a result of the ionization of water by high energy radiations, 

such as X-ray or gamma ray, forming free radicals, notably hydroxyl radicals, which then 

damage the DNA and form single- or double-stranded DNA breaks. Direct damage to DNA 

occurs through charged particles such as proton, boron, carbon or neon ions. Due to their 

relatively large mass, charged particles directly strike DNA and transfer high energy to 

DNA molecules and usually cause double-stranded DNA breaks. The accumulating 

damages to cancer cells’ DNA cause them to die or proliferate more slowly. To minimize the 

damage to normal cells, the total dose of radiation therapy is usually fractionated into 

several smaller doses to allow normal cells time to recover. In clinics, to spare normal tissues 

from the treatment, shaped radiation beams are aimed from several angles of exposure to 

intersect at the tumor, providing a much larger absorbed dose in the tumors than in the 

surrounding tissues. Brachytherapy, in which a radiation source is placed inside or next to 

the cancer area, is another technique to minimize exposure to healthy tissues during 

treatment of cancers in the breast, prostate and other organs. It is also common to combine 

radiotherapy with surgery, chemotherapy, hormone therapy or immunotherapy to 

maximize treatment efficiency. 

2.2 Radiosensitizer 

Besides the rapid advances in radiotherapy technologies, the increased understanding of 
cancer biology and signaling networks behind radiotherapy has led to the development of 
newer chemotherapy agents that help to increase radiation treatment efficiency. Pathways 
targeted for radiosensitization include DNA damage repair, cell cycle progression, cell 
survival and death, angiogenesis, or modulation of tumor microenvironment. For example, 
hypoxia is one general characteristic associated with fast-growing solid tumors. It stimulates 
tumor malignant progression and induces HIF-1a. A few studies have found that low 

www.intechopen.com



Phage-Displayed Recombinant Peptides for Non-Invasive Imaging  
Assessment of Tumor Responsiveness to Ionizing Radiation and Tyrosine Kinase Inhibitors 497 

oxygen levels in tumors are associated with a poor response to radiotherapy (Overgaard, 
2007). Well-oxygenated cells show an approximately 2-3 fold increases in radiosensitivity 
compared to hypoxic cells (Dasu and Denekamp, 1998). This discovery results in the 
development of a family of drugs – oxygen radiosensitizers. From initial attempts to 
increase oxygen delivery to the tumor by using hyperbaric oxygen in radiotherapy (Mayer 
et al., 2005), to later use oxygen mimetics/Electron-affinity agents, such as nitroimidazoles 
(Brown, 1975), or transition metal complexes, such as cisplatin (Liu et al., 1997), oxygen 
radiosensitizers significantly increase the radiotherapy efficiency. Currently, attention has 
been given to hypoxic cytotoxins, a group of drugs that selectively or preferably destroys 
cells in a hypoxic environment. These classes of compounds, such as mitomycin (De Ridder 
et al., 2008; Moore, 1977), are different from classic radiosensitizer in that they can be 
converted to cytotoxic agents under low oxygenation states, and they provide valuable 
adjuncts to radiotherapy. Recently, a wide variety of drugs that influence the DNA damage 
and repair pathways are being evaluated in conjunction with radiation. It includes 
topoisomerase inhibitors (e.g. camptothecin, topotecan), the hypoxia-activated 
anthraquinone AQ4N, and alkylating agents such as temozolomide. Proteins involved in 
tumor malignant progresses are also drawn attention as attractive targets of radiosensitizers, 
such as HIF-1a (Palayoor et al., 2008), survivin (Miyazaki et al.), Ras (Cengel and McKenna, 
2005), epidermal growth factor receptors and related kinases (Sartor, 2004; Williams et al., 
2004). Inhibitors for receptor tyrosine kinases such as vascular endothelial growth factor 
have been extensively studied and applied to improve the therapeutic efficacy of 
radiotherapy (Vallerga et al., 2004).  

3. Assessment of tumor responses to radiotherapy  

Different types of cancers possessed different mutations. Even the same type of cancers, 

they show different growth characteristics at different locations and in different patients. 

The heterogeneity of cancers underlies the different responses of cancers to the same 

treatment. Currently, cancer response is measured by imaging assessment of tumor 

volumes or by repeated biopsy. The whole processes are time consuming and inefficient. 

The recent advancement in imaging technologies has revolutionized medical diagnosis 

and prognosis. From the macroscopic anatomical sites down to a functional assessment of 

processes within tumors, imaging provide us a method to evaluate tumor response to 

irradiation treatment in a non-invasive, reliable and repeatable way (Lowery et al., 2011). 

So far, a few biomarkers have been explored for imaging to predict patients’ outcomes 

after radiation treatment. 

3.1 Cell metabolism 

Cell metabolism is the earliest biomarker being studied after radiation treatment. Positron 

emission tomography (PET) has been used to evaluate tumor metabolism. 18F-

fuorodeoxyglucose (FDG) is the most common PET tracer for metabolism study. FDG, a 

glucose analog, is taken up by high-glucose-consuming cells, such as cancer cells. But FDG 

cannot be further metabolized during glycolysis and it becomes trapped and rapidly 

accumulates within the cell. As a result, the distribution of 18F-FDG is a good reflection of 

the location of cancer cells. It is routinely used for the staging of cancer and for the 

monitoring of therapy (Allal et al., 2004). 
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3.2 Cell proliferation 

The development of proliferation probes for PET imaging has enabled the in vivo evaluation 

of cell proliferation (Shields et al., 1998). Among those probes, nucleoside-based imaging 

probes (3’deoxy-3’-18F-fluorothymidine, FLT) or amino acids based imaging probes are 

gaining popularity. 18F-FLT is a pyrimidine analog that, after uptake into the cell, is 

phosphorylated by thymidine kinase 1. The phosphorylated 18F-FLT can not leave the cell 

and result in the intracellular accumulation of radioactivity. Thymidine kinase 1 is a 

principal enzyme in the salvage pathway of DNA synthesis and exhibits increased activity 

during the S phase of the cell cycle. 18F-FLT uptake, therefore, reflects cellular proliferation. 

Amino acid metabolism is increased in fast proliferating tumor cells. Among the 20 essential 

amino acids, l-[11C]MET, [18F]fluorotyrosine, l-[11C]leucine, and [18F]fluoro-α-methyl 

tyrosine have been widely used in the detection of tumors (Laverman et al., 2002). Changes 

in l-[11C]MET uptake have already been shown to reflect response to radiotherapy treatment 

in patients suffering from a wide variety of tumors (Team, 2005b). 

3.3 Tumor vasculature and hypoxia 

Although being characterized as vasculature-rich structures, tumors often develop regions 

of hypoxia due to the leaky and disorganized tumor blood vessels. Low oxygen 

environment will promote tumor angiogenesis, metastasis and render tumors resistant to 

radiation treatment (Tatum et al., 2006). Therefore, the tumor vasculature structure and 

oxygen level are valuable biomarkers for prognosis after treatment. 18F-fluoromisonidazole 

is the most widely used PET tracer for detecting tumor hypoxia. After uptake in cell, it is 

reduced and binds selectively to macromolecules under hypoxic conditions (Team, 2005a). 

One recent study indicates that 18F-fluoromisonidazole uptake is correlated with radiation 

treatment outcome in Head and neck cancer (Thorwarth et al., 2005). As to the tumor 

vasculature, several studies have been proposed using two different techniques - quantified 

power Doppler sonography or Dynamic contrast-enhanced MRI (DCE-MRI). And both 

showed promising results (Hormigo et al., 2007; Kim et al., 2006; Mangla et al., 2010). 

3.4 Apoptosis 

Since its recognition as one of the major forms of cell death after radiation, apoptosis is 

being increasingly studied as a biomarker of cellular radiosensitivity and a prognosis 

marker for radiotherapy outcome. During the apoptosis process, phosphatidylserine (PS) 

flips from the inner leaflet of the cell membrane to the exterior of the cells. Annexin V, a 

cellular protein of the Annexin family, binds to the exposed PS. To date, Annexin V has been 

fluorinated for PET and radioiodinated for SPECT. Annexin V labeled with 99mTc has 

demonstrated significant uptake in patients suffering form myocardial infarction (Narula et 

al., 2001). Studies assessing quantitative 99mTc-Annexin V uptake in human tumors and their 

relationship to radiotherapy outcome are underway. 

4. Phage-displayed peptides as novel imaging probes for assessing tumor 
response to treatment 

Recently, advances in phage display-related technologies facilitate the use of small peptide 
derivatives as probe molecules for recognition and targeting tumors. Phage display enables 
discovery and optimization of affinity probes for the known tumor-specific biomarkers. 
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Furthermore, this technology makes it possible to de novo discover novel imaging probes, 
and eventually identify novel diagnostic markers or therapeutic targets of cancer. In vivo 
screening against heterogeneous tumor targets have generated a diverse group of peptides 
for cancer-targeted delivery of imaging or therapeutic agents.  

4.1 Principle of phage display  

A phage is a type of viruses that infect bacteria. Typically, phages consist of a protein capsid 
enclosing genetic materials. Due to its simple structure, phages have been developed into a 
powerful tool in biological studies. Phage display was originally invented by George P. 
Smith in 1985 when he demonstrated the display of exogenous peptides on the surface of 
filamentous phage by fusing the DNA of the peptide on to the capsid gene of filamentous 
phages (Smith, 1985) (Fig. 1). This technology was further developed and improved to 
display large proteins such as enzymes and antibodies (Fernandez-Gacio et al., 2003; Han et 
al., 2004). The connection between genotype and phenotype enables large libraries of 
peptides or proteins to be screened in a relative fast and economic way. The most common 
phages used in phage display are M13 filamentous phage and T7 phage (Krumpe et al., 
2006; Smith and Petrenko, 1997). The functional moiety on the phage surface can be short 
peptides, recombinant proteins, engineered antibody fragments or scaffold proteins. 
Screening can be conducted on the purified organic or inorganic materials, cells, or tissues.  
 

 

Fig. 1. Schematic illustration of phage display. Foreign gene sequences encoding short 
peptides, recombinant proteins or large antibody fragments can be fused with capsid 
protein genes with recombinant DNA technologies. As a result, the recombinant phages 
express the foreign peptides or proteins on the phage surface for affinity-based selection. 
The affinity-selected phages can be replicated in bacterial host for further rounds of selection 
or DNA-sequencing to identify the affinity peptides or proteins expressed on the phage 
surface.  

4.2 Applications of phage display 
4.2.1 General applications 

The application of phage display technology include determination of binding partners of 
organic (proteins, polysaccharides, or DNAs) (Gommans et al., 2005) or inorganic materials 
(Hattori et al., 2010; Whaley et al., 2000). The technique is also used to study enzyme evolution 
in vitro for engineering biocatalysts (Pedersen et al., 1998). Phage display has been widely 
applied in drug discovery. It can be used for finding new ligands, such as enzyme inhibitors, 
receptor agonists and antagonists, to target proteins (Hariri et al., 2008; Pasqualini et al., 1995; 
Perea et al., 2004; Ruoslahti, 1996; Uchino et al., 2005). Invention of antibody phage display 
revolutionized the drug discovery (Han et al., 2004). Millions of different single chain 
antibodies on phages are used for isolating highly specific therapeutic antibody leads. One of 
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the most successful examples was adalimumab (Abbott Laboratories), the first fully human 
antibody targeted to TNF alpha (Spector and Lorenzo, 1975).  

4.2.2 In vivo phage display and its application in clinical oncology 

Because isolating or producing recombinant membrane proteins for use as target molecules 
in phage library screening is often facing insurmountable obstacles, innovative selection 
strategies such as panning against whole cells or tissues were devised (Jaboin et al., 2009; 
Molek et al., 2011; Pasqualini and Ruoslahti, 1996). Due to cells inside the body may express 
different surface markers and possess different characteristics from cell lines in culture, in 
vivo phage bio-panning was developed to identify more physiologically relevant biomarkers 
(Fig. 2) (Pasqualini and Ruoslahti, 1996). Since its invention, in vivo phage display has been 
used extensively to screen for novel targets for tumor therapy. Majority of those studies 
focused on analyzing the structure and molecular diversity of tumor vasculature and 
selecting tumor stage- and type-specific markers on tumor blood vessels (Arap et al., 2002; 
Rajotte and Ruoslahti, 1999; Sugahara et al., 2010; Valadon et al., 2006). Recently, the use of 
this technique was expanded to the field of discovering new biomarkers for evaluation of 
cancer treatment efficacy. (Han et al., 2008; Passarella et al., 2009). 
 

 

Fig. 2. In vivo phage display for screening peptides specifically target to radiation- or drug-
treated tumors. 
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4.3 Peptides as probes for tumor targeted imaging 
4.3.1 Advantages of peptide vs. antibody for tumor targeting 

Antibodies, especially monoclonal antibodies, have been successfully utilized as cancer-

targeting therapeutics and diagnostics due to their high target specificity and affinity. 

However, due to antibody large size (150 kDa) and limited tissue permeability, non-specific 

uptake into the reticuloendothelial system, and immunogenicity, most antibody-based 

therapeutics are of limited efficacy (Lin et al., 2005; Stern and Herrmann, 2005). In contrast to 

antibodies, peptides are much smaller molecules (1-2 kDa). Peptides have favorable 

biodistribution profiles compared to antibody, characterized by high uptake in the tumor 

tissue and rapid clearance from the blood. In addition, peptides have increased capillary 

permeability, allowing more efficient penetration into tumor tissues. Also peptides are easy to 

make and safe to use, they will not elicit an immune response (Ladner et al., 2004). With all 

these advantages, peptides have been increasingly considered as a good tumor targeted 

imaging probe (Aloj and Morelli, 2004; Okarvi, 2004; Reubi and Maecke, 2008).  

4.3.2 Peptide as imaging probe 

To date, a large number of peptides derived from natural proteins have already been 

successfully identified and characterized for tumor targeting and tumor imaging, such as 

integrin (RGD), somatostatin, gastrin-releasing peptide, cholecystokinin, glucagon-like 

peptides-1 and neuropeptide-Y (Cai et al., 2008; Hallahan et al., 2003; Korner et al., 2007; 

Miao and Quinn, 2007; Reubi, 2003; Reubi, 2007). A list of a few tumor homing peptides 

isolated using phage display technique is shown in Table 1. 

 

Tumor Types Tumor- targeting peptides 

Prostate carcinoma 
IAGLATPGWSHWLAL (Newton et al., 2006) 
ANTPCGPYTHDCPVKR (Deutscher et al., 2009) 
R/KXXR/K (Sugahara et al., 2009) 

Colon carcinoma CPIEDRPMC (Kelly et al., 2004) 

Breast carcinoma EGEVGLG (Passarella et al., 2009) 

Hepatocellular 
carcinoma 

AWYPLPP (Jia et al., 2007) 
AGKGTAALETTP (Du et al., 2010) 

Pancreatic carcinoma KTLLPTP (Kelly et al., 2008)  

Head and Neck Cancer SPRGDLAVLGHKY (Nothelfer et al., 2009) 

Osteosarcoma ASGALSPSRLDT (Sun et al., 2010) 

Fibrosarcoma SATTHYRLQAAN (Hadjipanayis et al., 2010) 

Esophageal Cancer YSXNXW and PXNXXN (Zhivotosky and Orrenius, 2001) 

Bladder Cancer CSNRDARRC (Ginestier et al., 2007) 

Table 1. Phage display-derived tumor-targeting peptides 

For use as in vivo imaging probes, peptides can be directly or indirectly labeled with a wide 
range of imaging moieties according to the imaging modality. For instance, near-infrared 
(NIR) fluorescent dyes or quantum dots have been labeled for optical imaging (Fig. 3), 
several radionuclides have been employed for positron emission tomography (PET) or 
single-photon emission computed tomography (SPECT), and paramagnetic agents have 
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been used for magnetic resonance imaging (MRI) (Frangioni, 2003; Reubi and Maecke, 2008). 
Peptides can also be conjugated to other tumor targeted polymers or nanoparticles and 
dramatically increase their tumor targeted selectivity and efficiency (Hariri et al., 2010; 
Lowery et al., 2010; Passarella et al., 2009). 
 

 

Fig. 3. HVGGSSV peptide labeled with near-infrared (NIR) fluorescent dyes specifically 
located to radiation-treated tumors. a) brain tumor (D54 human glioblastoma cell), b) lung 
tumor (H460 cell), c) colon cancer liver metastasis (HT22 cell), d) prostate cancer 
subcutaneous model (PC-3 cell), and e) breast cancer subcutaneous model (MDA-MB-231 
cell). (Adapted from Han et al., 2008).  

5. HVGGSSV peptide as one imaging probes to detect tumor response to 
radiation and tyrosine kinase inhibitor (TKI) in vivo 

5.1 Discovery of HVGGSSV peptide 

In our recent studies, we employed in vivo phage display technique and intended to identify 

peptides that will specifically home to radiation or drug treatment responsive tumors (Han 

et al., 2008; Passarella et al., 2009). During the studies, we first treated tumors in mice with 

radiation and tyrosine kinase inhibitors. Then a peptide phage library was injected from the 

tail vein of tumor bearing mice for tumor binding screening. After several rounds of in vivo 

screening and enrichment of phages isolated from the treated tumors (Fig. 2), one phage 

clone, encoding HVGGSSV peptides, was identified preferentially target to treatment 

responsive tumors. The binding preference of those phages were confirmed by fluorescence 

labeled phage or peptide imaging (Han et al., 2008; Passarella et al., 2009). 

5.2 HVGGSSV peptide as imaging/targeting probe for radiation responsive tumors 

To explore HVGGSSV peptide’s clinical application in noninvasive imaging of tumor 

response to treatment, fluorescent labeled HVGGSSV peptide were used to target human 

tumors in several mouse models. Optical imaging studies indicated that the signal 

intensities of peptide binding within tumors correlate to the overall efficacy of treatment 

regimens on tumor growth control in multiple tumor models that had been treated with a 

variety of RTK inhibitors with or without combination of radiation (Han et al., 2008). 

SPECT/CT provides high spatial resolution and sensitivity in functional imaging. We  
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Fig. 4. SPECT/CT imaging of the HVGGSSV peptide within LLC tumors after treatment. 
The biotinylated HVGGSSV peptide was complexed with iodine-125-labeled streptavidin. 
The implanted tumor was treated once with radiation (5 Gy) alone (A), or combination of 
Sunitinib (40 mg/Kg) and radiation (5 Gy) (B) before intravenous administration of the 
imaging probe. Shown are 3D virtual rendering (3D-VR) images (far left) and hybrid 
SPECT/CT fusion images in the coronal, sagittal, and transaxial planes (the second to the 
fouth from the left, respectively) acquired 4 hours after the imaging probe administration. 
The LLC tumors was pointed with arrows, high resolution images enable spatially localizing 
the radiation-responding cells within the peripheral and central regions of the tumors.  

www.intechopen.com



 
Current Topics in Ionizing Radiation Research 504 

employed this imaging modality to detect tumor response to radiation by using the 

HVGGSSV peptide. The mice were treated with radiation alone or combination of radiation 

and one TKI - Sunitinib (40 mg/Kg,). After the treatment, the HVGGSSV peptide complexed 

with 125I-labeled streptavidin was selectively targeted to the tumors treated with radiation or 

radiation combined with Sunitinib. High resolution SPECT/CT images (Fig. 4) also showed 

that majority of the imaging probes were located in the peripheral area of the tumors that 

were treated with radiation alone. However, treatment with radiation and Sunitinib 

extended the imaging probe binding to both the peripheral and central parts of the 

subcutaneous tumors. This data might reflect the radiosensitization effect of Sunitinib. 

The tumor targeting potential of HVGGSSV peptide has been further explored in several 
drug delivery studies. In these studies, HVGGSSV peptide has been conjugated to different 
nanoparticles, such as liposome, FePt, and nanoparticle albumin bound (nab) (Hariri et al., 
2011; Hariri et al., 2010; Lowery et al., 2011), and selectively targeted those nanoparticles to 
irradiated tumors. One study also showed >5-fold increase in paclitaxel levels within 
irradiated tumors in HVGGSSV-nab-paclitaxel-treated groups and significantly increase 
tumor growth delay as compared with controls (Hariri et al., 2010). 

5.3 The biological basis of the HVGGSSV peptide imaging 
5.3.1 Peptide receptor identification 

To understand the physiology underlines peptides binding, we need to identify the 
molecular targets of peptides. However, peptides are usually unstable. Their surface charges 
and structures will change dramatically in different environment. And peptides usually 
interact with their targets with low binding affinity due to their small sizes. Therefore, 
traditional affinity purification methods are of little use because of high background of non-
specific binding. To date, there are very few identified receptors for peptides in contrast to 
the great number of discovered cancer targeting peptides (Sugahara et al., 2009). New 
strategies are needed for identifying peptide’s receptors.  

5.3.2 TIP-1 as a molecular target of HVGGSSV peptide 

In our recent studies of one peptide (HVGGSSV), we utilized a phage cDNA library 
screening to search for peptide’s receptors. Because several rounds of phage display 
screening can significantly enrich the low-affinity or low-abundance proteins, we 
successfully identified a PDZ protein - TIP-1 as the target of HVGGSSV peptide (Wang et al., 
2010). Through the PDZ domain, TIP-1 binds to the classic C-terminal PDZ motif within the 
HVGGSSV peptide. One TIP-1-specific antibody that inhibited the in vitro interaction 
between TIP-1 and the HVGGSSV peptide attenuated the peptide’s accumulation within 
irradiated tumors. Imaging with TIP-1-specific antibody recapitulated the pattern of peptide 
imaging in tumor-bearing mice. Mutation in the classic PDZ binding motif of the HVGGSSV 
peptide destroyed the specific binding within irradiated tumors. These results also 
demonstrated the potentials of screening phage-displayed cDNA library in discovery of 
molecular targets of the peptides with a simple structure and low affinity. 

5.3.3 The biological relevance of TIP-1 relocation onto tumor cell surface to the 
radiation response of tumor cells 

With a TIP-1 specific antibody, it was further identified that radiation induced translocation 
of the basically intracellular TIP-1 protein onto the cell surface in a dose-dependent manner. 
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The treatment-induced TIP-1 expression on the cell surface is detectable in the first few 
hours after the treatment and before the onset of treatment associated apoptosis or cell 
death. Majority of the cells expressing TIP-1 on the cell surface are the live albeit such cells 
are less potent in proliferation and more susceptible to subsequent radiation treatment 
(Wang et al., 2010). The increased susceptibility to the subsequent irradiation might explain 
why the peptide binding is predictive in assessing tumor overall responsiveness in the early 
stage of treatment course. The treatment-inducible TIP-1 translocation before the onset of 
cell apoptosis or death further suggests potentials of the HVGGSSV peptide in non-invasive 
imaging assessment of tumor response to radiation and tyrosine kinase inhibitors.  

6. Perspectives 

The development of imaging technologies revolutionizes medial diagnosis and clinical 
management. Functional molecular imaging becomes one critical part of personalized 
medicine. Peptide, with its small sizes and versatile structures, is increasingly recognized as 
a promising imaging probe to predict the outcomes of radiotherapy and other medical 
treatments. Although some disadvantages associated with peptides, such as its degradation 
inside human body and its low affinity with its targets, with chemical modification to 
improve its stability and association with nanoparticles to increase its binding affinity, 
peptides will play a major role in the future molecular imaging. 
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