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1. Introduction  

Internet-based communications, multimedia systems, telemedicine or military 

communications, need high-speed data encryption. Thus, in various fields, high-speed 

cryptosystems are necessary for the large data size transfers and real-time constraints. A 

secret key stream cipher is suitable for these high-speed encryption systems. 

The stream cipher generates long unpredictable key sequences.  These pseudo-random key 

bits, or Cipher Keys, are then bitwise XORed with the data to encrypt/decrypt. Since many 

processes in the nature include the randomness in themselves, the main idea of this study is 

to use this natural randomness to generate Cipher Keys. 

Physical systems containing randomness appear to follow no definite rules, and to be 

governed merely by probabilities. Moreover, there are systems that can also generate apparent 

randomness internally, without an external random input. For instance, a cellular automaton 

(Bagnoli & Francescato, 1990; Sarkar, 2000; Vichniac, 1984; Wolfram, 1983) evolving from a 

simple initial state can produce a pattern so complicated that many features of it seem random.  

The physical system considered in this chapter is a ferromagnetic material. As the temperature 

increases, thermal oscillation, or entropy, competes with the ferromagnetic tendency for dipoles 

to align. At high temperature the magnetization is destroyed and the dipoles are disordered.  

In order to simulate this system at high temperature to obtain these predicted disordered 

dipoles features, we used the well-known two-dimensional Ising model (Ising, 1925; 

Onsager, 1944) where a spin (encoded on one bit) represents a dipole. Space and time are 

discrete in this model. The evolution law of the spin lattice (or bit array) is defined by local 

rules between neighbour spins.  

A mapping between the spin lattice and a cellular automaton cell array seems obvious. 

What are the more suitable local rules for a fast and few resources consuming secret key 

cryptosystem? We shall try to answer this question. In the framework of secret key 

cryptography (Chen & Lai, 2007; Sathyanarayana et al., 2011; Seredynski et al., 2004), we 

shall propose an Ising Spin Machine (ISM) as a feasibility model for data stream encryption. 
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ISM is synchronous and needs an initialization phase through a parameter set. Then, at each 
time step, ISM generates a pseudo-random array of bits, shifts the data flow to encrypt from 
south towards north, and combines (logic XOR operation) the data with the random bits. 
The decryption process is identical to the encryption one. 

ISM can be used to secure communication over an unsecure channel. If Alice wants to send 
to Bob a secret data flow which may be trapped by an adversary, she can encrypt this data 
flow using an ISM. Alice initializes her ISM and communicates the initialization parameter 
set to Bob (through a secure channel). This set of parameters builds the secret key. Then Bob 
initializes his own ISM and waits. Alice introduces the data flow to encrypt into her ISM 
which generates the encrypted flow that is sent to Bob. When Bob receives the first 
encrypted word, he enables his ISM for a real-time data flow decryption process. The 
estimated throughput of this enc/decryption process is 2 Gbps. 

The rest of this chapter is organized as follows: Section 2 presents the Ising model. Then two 
algorithms to simulate the 2D-Ising model are described in Section 3. Next, section 4 
proposes a parallel implementation of the Reservoir algorithm to generate Cipher Keys. 
Section 5 is dedicated to the architecture and performances of the Ising Spin Machine, and 
an image encryption/decryption application example is proposed. Finally, section 6 
concludes the chapter. 

2. A model for nature randomness 

An example of randomness in the nature can be found in an iron bar. Consider this iron bar 

in a strong magnetic field, H, parallel to its axis. In these conditions the bar is almost 

completely magnetized. Its magnetization is M1. Now decrease H to zero: the magnetization 

will decrease but not to zero. Rather, at zero field a spontaneous magnetization M0 will 

remain. Now suppose that the temperature T is increased slightly. It is found that M0 

decreases. Finally, if T is increased to a critical value TC (the Curie point), M0 vanishes. The 

spontaneous magnetization curve M0(T) is given in Figure 1.  

Spins models were invented as simple statistical physics models of ferromagnetism. In most 

cases they exhibit the cooperative behaviour found in phase transitions. The well known 

Ising model describes the phase transition occurring at the temperature TC, between a low 

temperature phase (called ferromagnetic phase) with a spontaneous magnetization M0 and a 

high temperature phase (called paramagnetic phase) where the magnetization M0 vanishes. 

The Ising model is the most famous model in Statistical Physics (Onsager, 1944). The aim of 

statistical physics is to predict the relations between the observable macroscopic properties 

of the system, given only the knowledge of the microscopic forces between its components. 

In the Ising model the magnet is made up of molecules that are constrained to lie on the sites 

of a regular lattice. Suppose that there are N such sites and molecules, labeled i = 1, 2, …, N. 

Let us consider a molecule as a microscopic magnet which either points along some 
preferred axis, or points in exactly the opposite direction. So molecule i has two possible 
states, which can be described by a spin variable Si with a value “up” when it is parallel to 
the axis, and “down” when it is anti-parallel to the axis. Thus there are 2N configurations of 
the lattice, called “spin configurations” or “micro-states” of the system. The spin-spin 
interaction is described by the coupling constant J. Figure 1 gives two spin configurations: 
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one at the transition temperature TC (a), and the other one above TC (b). Spins are organized 
in clusters at TC and begin to be disordered at 1.28 TC. More details can be found in (Perez et 
al, 1995). 

 

Fig. 1. Reduced magnetization versus temperature. Two spin configurations are shown: (a) 
clusters of spins at TC, (b) disordered spins at 1.28 TC. (Blue pixel = spin down, green pixel = 
spin up). 

Once the spin model is established, it is simulated and the macroscopic properties of the 
statistic system are extracted from simulation results. For instance, the magnetization is 
extracted from the simulation results of the Ising model and we can see in Figure 1 that it 
vanishes when the system temperature reaches TC. Physicists are interested in calculating 
the critical exponent of the magnetization at the phase transition.  

In this study, we focus on the high temperature phase where the magnetization is equal to 
zero because fifty percent of the spins are “up”. Moreover, the spins are entirely disordered 
at these temperatures. The time evolution of the disordered spin configurations can generate 
series of pseudo-random array of bits (since one spin can be coded on one bit). This feature 
makes this Pseudo-Random Number Generator (PRNG) usable in a symmetric crypto-
system. 

After adopting the Ising model, we have to choose the corresponding simulation algorithm. 
In addition, we want an algorithm suitable for an optimized hardware implementation of 
the PRNG and the associated crypto-system. 

www.intechopen.com



 
Applied Cryptography and Network Security 

 

324 

3. An algorithm suitable for hardware implementation 

3.1 Introduction 

Except some spin models solved analytically (Baxter, 1982), statistical models are more 

generally solved by numerical techniques. The most popular technique is the Monte Carlo 

computer simulation (Baillie, 1990; Metropolis & Ulam, 1949). The goal of computer 

simulations is to generate spin configurations typical of statistical equilibrium, in order to 

obtain the physical observable value of the macroscopic system. 

Starting from any spin configuration, the algorithms used to simulate the Ising model aim to 

generate a series of spin configurations appearing with a probability in accordance with the 

statistical thermodynamics, i.e. proportional to e-(E/kT) where E is the internal energy of the 

configuration, T the system temperature and k the Boltzmann constant. 

The trajectory through the configuration space is induced by local microscopic rules that can 

be probabilistic or determinist. In this chapter, we are only interested in the algorithms 

based on local microscopic rules completely determinist in order to design a machine 

dedicated to a symmetric crypto-system. In this case, the machines used for encryption and 

for decryption process must be identical. 

First, we describe the standard and most common example of Ising simulation algorithm: the 

Metropolis algorithm (Metropolis et al., 1953). Then we focus on the “Reservoir algorithm” 

particularly suitable for the hardware implementation of our enc/decryption machine. We 

will not describe the huge number of algorithms proposed in the literature for the 2D-Ising 

model, because most of them are intended to improve the so called “critical slowing down” 

(Selke, 1993) appearing at the phase transition. Since we want to study the physical system at 

high temperature, far from the transition, we do not need so sophisticated algorithms. 

3.2 Metropolis algorithm  

We focus on the 2D-Ising model. Let us consider a square lattice of N sites with one spin S at 
each site. Each site interacts with its four nearest neighbours. The spins may be “up” or 
“down”. A spin “up” is coded “1”. A spin “down” is coded “0”. The energy of a link 
between two neighbour spins pointing towards the same direction (parallel spins) is 0. This 
link energy is equal to 1 if the two spins are anti-parallel. The total energy of this system is 
the sum of the energies of the 2N links. 

The main idea of the Metropolis algorithm (Metropolis et al.,1953) is to slightly modify a 
spin configuration and to accept or not this modification versus a probabilistic rule related 
to the Boltzmann weight. The Metropolis algorithm generates a Markow chain of spin 
configurations. Starting from any initial spin configuration, the successive configurations 
lead to the macroscopic equilibrium. The algorithm itself is described thereafter: 

Metropolis algorithm 

a. Choose an initial spin configuration 
b. Select one spin Si (represented by the red arrow in Figure 2) to be updated and try to 

flip its spin. Nevertheless flipping a spin has a cost in terms of magnetic energy. Indeed, 
if the spin Si of site i flips, the magnetic energy varies as: 
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 ΔMi  =  -2 [Σj(Si xor Sj) – 2] (1) 

where j refers to the four neighbours of the site i. 

For instance, if we focus on the first configuration presented in Figure 2, the four 

neighbours spins are parallel to the central spin, so the magnetic energy (sum of the link 

energies) is equal to 0. Now, if we flip the central spin, the four links become twisted 

and the magnetic energy becomes equal to 4. So, flipping the central spin costs ΔMi  =  4. 

Notice that ΔMi is always even. 

c. Will the central spin flip or not? If ΔMi lowers the system energy or let it unchanged 

(ΔMi ≤ 0) then the spin flips. Otherwise the spin flips only with the probability  

p = e - ΔMi /kT. Notice that, at constant ΔMi, this probability increases with T. In practice, 

a random number r ( 0 ≤ r ≤ 1) is generated and, if r ≤ e - ΔMi /kT, the spin Si can flip. 

Otherwise, it remains unchanged. 

d. Return to step (b) until all the spins are updated. 

The description of this algorithm leads to two important remarks: during step (c) the 

Metropolis algorithm needs a real number r randomly chosen (this is not suitable for an 

optimized hardware implementation of the Metropolis algorithm) and the control 

parameter is the temperature T. 

∆M i = 4      ∆ M i= 2        ∆ M i= 0       ∆ M i= -2      ∆ M i= -4∆M i = 4      ∆ M i= 2        ∆ M i= 0       ∆ M i= -2      ∆ M i= -4

 

Fig. 2. Magnetic energy cost ∆Mi to flip the red spin of the central site i 

3.3 Microcanonical Reservoir algorithm 

First, notice that the Reservoir algorithm (Ottavi & Parodi, 1989; Perez & all, 1995) and the 

Creutz microcanonical algorithm (with fixed demons) (Creutz, 1986) are very similar. 

However the Reservoir algorithm offers solutions for some low temperature simulation 

problems. These improvements are not considered in the present work since we are only 

interested in simulating the high temperature phase of the Ising model. 

The statistical system to simulate is the same as the previous one except that each site i has 

one spin Si and also a reservoir containing an energy Eri. So, two kinds of energies are 

involved in this model. The first one is the magnetic energy, sum of all the link energies of 

the system. The second kind of energy is called “reservoir” energy, sum of all the private 

site reservoir energies Eri of the system. 
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The algorithm itself is described thereafter: 

Reservoir algorithm 

a. Choose an initial spin configuration and an initial reservoir energy configuration. 

b. Select one spin Si (represented by the red arrow in Figure 2) to be updated and try to 

flip its spin. Nevertheless flipping a spin has a cost in terms of magnetic energy. Indeed 

if the spin Si of site i flips, the magnetic energy varies as: 

 ΔMi  =  -2 [Σj(Si xor Sj) – 2] (1) 

where j refers to the four neighbours of the site i. 

c. Will the central spin flip or not? The local rule is: if ΔMi is smaller than or equal to Eri, 

the spin Si flips. Otherwise, Si does not change. In other words, if the site has enough 

reservoir energy to pay the flip then the spin can flip effectively. 

d. Return to step (b) until all the spins are updated. 

Some important comments can be made: 

1. The total energy E of the system is the sum of the magnetic energy and of the reservoir 

energy. E remains constant since the Reservoir algorithm is a microcanonical algorithm. 

This energy conservation is a very useful tool to test a hardware (or software) 

implementation of this algorithm. 

2. The control parameter is the total energy E and no more the temperature T as is the case 

in Metropolis algorithm. Nevertheless, we shall see later that we can establish a relation 

between E and T (Equ. 3). 

3. Another important point is that no random number r ( 0 ≤ r ≤ 1) is needed as input. 

Moreover, the reservoir energy can be encoded on few bits. 

We can conclude that the Reservoir algorithm is more suitable for hardware implementation 

than the Metropolis algorithm. Next sections will describe the parallelization of the selected 

algorithm in a Cellular Automata (CA) fashion, and its hardware implementation in a 

symmetric cryptosystem.  

4. Parallel implementation of Reservoir algorithm 

4.1 Mapping a cellular automaton? 

The qualities of simplicity, parallelism, and locality of the CA are very appreciated for 

hardware implementations. Moreover, a uniform two-dimensional CA with the von 

Newman neighbourhood is quite similar to a two-dimensional Ising spin lattice. 

We already described (Charbouillot & all, 2008) the software implementation of Reservoir 

algorithm rules in a multi-purpose hardware cellular automaton named Programmable 

Hardware Cellular Automata (PHCA). Here, we present a hardware parallel structure 

dedicated to the Reservoir algorithm. The design of this fine-grained structure was inspired 

by the mapping between the 2D-Ising model and a 2D-Cellular Automaton. 

Cellular Automata are dynamical systems where space, time, and variables are discrete.  
They are traditionally implemented as an array of cells with a specific rule. The rule can be 
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seen as a function whose arguments are the states at time t of the neighbouring cells (and 
possibly the state of the considered cell itself) and whose value is the state of the considered 
cell at time t+1. If all the cells obey to the same rule, the CA is uniform. 

Let us focus on two-dimensional CAs. Two kinds of neighbourhoods are usually 

considered: five cells, consisting of the considered cell and its four nearest neighbours 

respectively situated at East, South, West and North. This is the von Newman 

neighbourhood. The second kind of neighbourhood is obtained by also including the cells 

situated at East-South, South-West, West-North and North-East. This is the Moore 

neighbourhood implying eight surrounding cells. 

To implement the 2D-Ising model, we choose the von Newman neighbourhood, so the next 

state of cell(i;j) is defined by Equ. 2: 

 xi,j(t+1) = f [xi,j(t), xi-1,j(t), xi+1,j(t), xi,j-1(t), xi,j+1(t)] (2) 

 

Fixed or null boundary conditions can be added at the boundary of the external cells of the 

array. More often, to avoid finite-size array effects, cyclic boundary conditions are applied. 

In this last case, the two-dimensional array becomes a torus. 

Starting from the 2D-Ising model, replace “lattice” by “array”, “sites” by “cells” and 

“iteration step” by “time step” and you have a cellular automaton. However, a problem 

appears when we want to simultaneously update all the spins at each time step. The so-

called “feedback catastrophe”(Vichniac, 1984)  illustrates this problem as follows. 

Start the simulation with an aligned configuration (all the spin are parallel) below the Curie 

temperature (say, 0.8 TC). During the first time steps, some spins flip and flip back like in a 

standard Monte Carlo calculation, but as soon as two spins (or cells) with contiguous 

corners flip during the same time step, a spurious chessboard pattern starts to grow. This 

can lead to two antiferromagnet spin configurations (one corresponds to the last scheme of 

Figure 2, and the other one corresponds to the complementary situation). These two 

configurations alternate because each spin “up”, surrounded by four spin “down”, will flip 

in order to align itself with its neighbours, which themselves will also flip, doing “the same 

reasoning”. 

This problem can be solved if we distinguish two kinds of sites: the black ones and the white 

ones, distributed in a chessboard fashion in the 2D-lattice. With this process, all the white 

sites can be updated simultaneously. Then, at the next time step, all the black sites will be 

updated simultaneously. So, two time steps are necessary for an entire lattice update and 

the parallel array of cells is no more exactly a CA. When the state of a white site has to be 

updated, its four nearest neighbours are black and cannot be updated, and the “feedback 

catastrophe” is avoided. 

In conclusion, the Reservoir algorithm was easily amenable to true parallel processing. The 

variables assigned to each site are: a reservoir energy coded on few bits (the number of bits 

depends on the number of sites in the lattice, and on the global reservoir energy), a spin 

encoded on one bit, and a colour encoded on one bit. However an “iteration step” is equal to 

two “time steps”. 
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4.2 Initialization phase and result extraction 

At the beginning of the simulation, an initial spin configuration must be established and the 
total reservoir energy must be shared among the lattice sites. Then, we have to choose an 
initial spin configuration, for instance uniform: all the spins are down. Notice that, in this 
particular case, the total energy E of the lattice is only constituted by the reservoir energy 
since the initial magnetic energy is equal to zero. 

At the beginning, the system is not in its statistical equilibrium and physical quantities 
(magnetization, energies) fluctuate considerably. Even though, in this study, we do not want 
to use these quantities but only the spin configurations of the disordered phase, we need to 
know the temperature of the system. 

Starting from any initial reservoir energy distribution, it is interesting to see that after a 
transient regime, the reservoir contents obey to the Boltzmann statistical law. At this step, 
Equ. 3 allows to compute the system temperature T. 

 
2.

. [(2 / ) 1]

J
T

k Ln j Er


  
 (3) 

where Er   is the mean value of the reservoir energy.  

Simulating the Ising model using either the Metropolis algorithm or the Reservoir 
algorithm, leads to the same statistical results. Indeed, the same M(T) curve is obtain by both 
algorithms and the same precision is reached for its critical exponent. Figure 1 presents the 
M(T) curve and some corresponding spin configurations. We are interested in the rightmost 
one, which corresponds to apparent disorder. 

At each iteration step, the spin configurations evolved, from a simple initial state and under 
simple rules without external random input, towards more and more complicated patterns. 
Once the statistical equilibrium is reached, these patterns appear to be random. These 
successive bit array configurations could be the long unpredictable key sequences (or 
Cipher Keys) necessary for en/decrypting a data flow. However, it is necessary to test the 
quality of the generated randomness. 

4.3 Test of randomness 

Randomness is one of the crucial points of a key stream for secure stream ciphers. Various 

types of statistical tests for randomness have been proposed (Kim & Umeno, 2006, 

Tomassini et al., 2000). We will focus on the Diehard random number generator testing suite 

proposed in (Marsaglia, 1998). The list of the Diehard tests is given in Table 1. Generators 

that pass these tests are considered “good”. 

Most of the Diehard tests need a 12 Mbytes input file, but three of them need a 270 Mbytes 

input file. Most of these tests return “p-values”, which should be uniform on [0,1] if input 

files contain truly random bits. If the PRNG is bad, most of the p-values will be 0 or 1. 

We applied the Diehard tests to successive spin configurations generated by the simulation 

of the 2D-Ising model at high temperature paramagnetic phase. We have tested the Ising 

system for different initial reservoir energies. 
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1. Birthday Spacings  

2. GCD  

3. Gorilla  

4. Overlapping Permutations  

5. Ranks of 31x31 and 32x32 Matrices  

6. Ranks of 6x8 Matrices  

7. Bitstream  

8. OPSO   Overlapping-Pairs-Sparse-Occupancy  

9. OQSO Overlapping-Quadruples Sparse-Occupancy  

10. DNA  

11. Count the 1's in a Stream of Bytes  

12. Count the 1's in Specific Bytes  

13. Parking Lot  

14. Minimum Distance  

15. 3D Spheres  

16. Sqeeze Test  

17. Overlapping Sums  

18. Runs Up and Down  

19. Craps  

Table 1. List of Diehard tests 

The tests were carried on under the following conditions: 

- During the initialization phase, all sites have the same reservoir energy except some 
sites (called “hot points”) which have a higher one. 

- Then, lattice iterations are performed till the successive patterns of the spin 
configurations seem disordered as presented in Figure 1 or in Figure 7. 

The input file for the Diehard test program is a binary file resulting from the concatenation 

of the random keys Ci generated by the Ising spin configuration. These keys are built as 

follows. Let Ki(t) be the concatenation of all the spin values of lattice row i at time t, the first 

encryption key of the random sequence is: 

 C(tm) =  K0(0) xor K1(1) xor … xor Km(tm) (4) 

where t is the iteration step (equal to two time steps). 

The curve in Figure 3 gives an example of test results. It is obtained by applying the Diehard 

tests to a sequence of 70M keys C(tm), C(tm +1), …, C(tm + a) extracted from a 128x128 2D-

Ising lattice (Figure 7). Figure 3 gives the proportion of pass tests versus R (where R = ER/2). 

These results come from interpretation of p-values. If all the p-values within a test are 

greater than 0.01 and less than 0.99, the test is considered as “pass”. 

These results show that, in this example, R must be chosen between 1000 and 3000 to obtain 

high-quality randomness. The test fails for low reservoir energies because the system is not 

in the paramagnetic phase. It also fails for too higher energies because all spins flip 

simultaneously.  
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Fig. 3. Example of Diehard test results 

5. Ising spin machine 

We designed an Ising Spin Machine (ISM) dedicated to simulate the 2D-Ising Model with 
the Reservoir algorithm and to enc/decrypt a data flow.  

5.1 ISM architecture 

ISM is a parallel machine, entirely synchronous and autonomous, containing a finite state 
machine which controls a 2D-array of cells. This array contains n x m identical cells (Figure 
4). Each cell is linked to its North, East, West, and South nearest neighbours (NEWS array). 
We implemented the NEWS array with cyclic boundary conditions: the North border is 
linked to the South border, and the West border is linked to the East one. All these local 
links are bidirectional. 

The array has n parallel 1-bit data-in inputs, n parallel 1-bit data-out outputs, some control 
inputs and some state outputs. We add n global connection lines, with South to North 
direction (represented by grey arrows in Figure 4), to ensure data shifts. 

The structure of a cell is detailed in Figure 5. Each cell is designed to manage a site of the 
Ising lattice under the established rule. So, a cell contains a combinational logic block ΔM’, 
an adder, registers and multiplexors. ΔM’ computes (-ΔMi/2) where ΔMi is the cost of the 
spin flip (Figure 2).  ΔMi is divided by 2 since we noticed that this quantity is always even; 
in return the user has to distribute twice lower initial reservoir energy. The adder computes 
the reservoir energy which remains if the spin flips. If this energy is positive, this energy 
and the flip of the spin are registered.  
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Fig. 4. Cell array architecture 
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The data-in input is used during the initialization phase (encrypt = 0) to introduce the 
reservoir energy, and during the encryption phase (encrypt = 1) to “XOR” each bit of data 
with the registered spin bit. 

5.2 Data encryption with ISM 

At time t = 0, at the beginning of the encryption process illustrated in Figure 6, the first row 
R0 of clear data is introduced through the south input of the PE array and “XORed” with 
K0(0). Then, at time t = 1 (time is here the iteration step), the result D0(0) is shifted to the 
north and “XORed” with K1(1) and so on. 

At time t = tm, the first encrypted data row D0(tm) available at the north of the PE array, is 
given by : 

 D0(tm) = R0 xor C(tm)  (5) 

where C(tm) =  K0(0) xor K1(1) xor … xor Km(tm) is the first encryption key.  

The second encrypted data row D1(tm+1)is 

 D1(tm+1) = R1 xor C(tm+1)  (6) 

where C(tm+1) =  K0(1) xor K1(2) xor … xor Km(tm+1) is the second encryption key and so on. 

PE

D1(1)= R1 xor K0(1)

R2

D0(1)= R0 xor K0(0) xor K1(1)

R3

PE

D1(1)= R1 xor K0(1)

R2

D0(1)= R0 xor K0(0) xor K1(1)

R3
 

Fig. 6. South-North shift of the data to encrypt 

5.3 ISM-based image encryption/decryption system 

An application example of a 128x128 cell array ISM, is the colour image enc/decryption 
system shown in Figure 7. The clear original image given in Figure 8 is a colour image of 
size 640x853 pixels. Each pixel is coded on 3 bytes (Red, Green, Blue) so each line of this 
image can be divided into 120 128-bit words to fit in the cell array horizontal size. This 
resizing operation is not presented in Figure 7. 
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Fig. 7. Image encryption/decryption system. A disordered spin configuration generated by 
the Ising Spin Machine is shown at the left side. 

In order to ensure a secure data exchange, both the Sender and the Receiver need an ISM. 
The operations to encrypt and decrypt the data are detailed thereafter: 

 The Sender imposes the initial spin values S and distributes the total reservoir energy R. 
Then, the U initial spin lattice configuration updates are performed. The spin 
configuration shown in Figure 7 was obtained after 2000 iterations, starting with all the 
spins “down” (S = 0) and with a reservoir energy of 2 for each cell except for 3 cells 
(called “hot points”) which received an energy of 4. Hot points coordinates constitute 
the information H. The concatenation of S, H and U builds the secret key Sk that must be 
transmitted to the Receiver through a secure channel, before the encrypted image is 
sent. 

 After a resizing operation, the clear image is introduced through the South data-in of 
the Sender’s ISM, one 128-bit word at a time. These data shift to the North and are 
encrypted at each iteration step. The resulting encrypted image is shown in Figure 8 
(after inverse resizing). One can notice that the initial picture is completely scrambled at 
this step. 

 Before receiving the encrypted image, the receiver gets the secret key Sk through a 
secure channel. He initializes its ISM with S and H, and controls U spin lattice 
configuration updates.  

 Then, the encrypted image is introduced into the Receiver’s ISM for the decryption 
process. After an inverse resizing operation, the decrypted image is exactly identical to 
the original clear image. 

Two types of keys are involved in this process: the long sequence of the Ck Cipher Keys 
generated by ISM and the secret key Sk (Seredynski et al., 2004). 
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In order to test the feasibility of the Ising Spin Machine we have implemented an ISM 
version with a 32 x 32 cell array into a XC3S5000-5 Xilinx FPGA. As expected, the hardware 
implementation was easy since the architecture is simple, regular, and involves integer 
arithmetic and logic operations. This ISM provides good performances since the throughput 
is 2.02 Gbps (a 32-bit data is encoded every 2 time steps). However, ISM is resource 
consuming compared to other simple stream ciphers (Chen & Lai, 2007; Machhout et al., 
2009). This is due essentially to its fully parallel structure: 5123 Flip-Flops are needed (five 
per cell, and three for the Finite State Machine). 

An important point is related to the microcanonical quality of the Reservoir algorithm. The 
fact that the total energy is kept constant is a powerful tool to test the Ising Spin Machine. 
One erroneous bit either in the reservoir energy or in the spin has irreversible consequences 
when simulations are in progress. The fault is immediately detected. 

 

Fig. 8. Clear image and encrypted image.  

6. Conclusion 

This work starts with a Physicist point of view on some algorithms invented for Statistical 
Physics, and moves towards a Cryptosystem Designer point of view. This approach is not 
new since the Ising model invented for a physical system was very useful in a large 
spectrum of domains. Our contribution consists in taking a “determinist Monte Carlo” 
method to simulate the Ising model for finally generating pseudo-random bit streams. This 
method, called “Reservoir algorithm”, involves only integer arithmetic and logic operations 
and can be easily implemented either in hardware or in software. 

We designed the Ising Spin Machine by adding data flow encrypting capabilities to the 
hardware implementation of the Reservoir algorithm. ISM has a fine-grained parallel 
structure and is based on Statistical Physics. In the Metropolis algorithm, the Boltzmann 
law, basis of the Statistical Physics, is introduced through the local rule to flip a spin. In the 
Reservoir algorithm no such a law is introduced. However, it is very interesting to see that 
the system itself, more exactly its reservoir energies, finally obey to this law. So, the 
reservoirs of the Ising Spin Machine intrinsically obey to the Boltzmann law and, under this 
energy condition, its spin configurations can generate the Cipher Keys to encrypt/decrypt 
data streams. 
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A FPGA implementation of a 32x32 cell array version of ISM is used in a symmetric stream 
cipher crypto-system for an image enc/decryption process. It performs 2 Gbps and could be 
used for real-time video applications. Moreover, ISM throughput could be improved. We 
saw that the chessboard trick is a solution to avoid the “feedback catastrophe” that could 
occur when all the sites are updated concurrently. The consequence of this solution is that 
two time steps are necessary to update the whole array of cells. Instead of the chessboard 
trick, a solution could be to endow each cell with four states in order to accommodate for 
two spins. This last solution could multiply the ISM throughput by a factor 2. 

A same approach consisting in modeling the nature with fine-grained fully parallel systems 
can be adopted in other investigation domains. Adding high degree of redundancy to such 
systems is our inspiring source to design nanotechnology device architectures. 
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