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1. Introdcution 

Non-melanoma skin cancers, which include basal and squamous cell cancers, are the most 

common human cancers. Because of their relatively low metastatic rate and relatively slow 

growth these are frequently underreported. The high prevalence and the frequent 

occurrence of multiple primary tumours in affected individuals make non-melanoma skin 

cancers an important but underestimated public health problem. 

There has been a dramatic increase in the incidence of non-melanoma skin cancer in the past 

40 to 50 years, despite the awareness of the harmful effects of excessive sun exposure. A 

population-based study from Wales has shown that the crude incidence for non-melanoma 

skin cancer has increased from 173.5 to 265.4 per 100,000 population per annum between 

1988 and 1998 (Holme et al, 2000, Br J Dermatol).  

Although ultraviolet radiation is the most important risk factor in the genesis of both 

squamous cell carcinomas and basal cell carcinomas, there is a proportionately greater effect 

of increasing sun exposure on the risk of developing squamous cell carcinoma (Kricker et al, 

1995, Int J Cancer). The desirability of a tan, increased leisure time and the introduction of 

cheap package holidays have resulted in a marked increase in the levels and change of 

pattern of sun exposure in the last 4 to 5 decades and this is thought to have led to an 

increase in the incidence of NMSC. 

Basal cell carcinomas (BCC) which are the commonest cancer in Caucasians are slow 

growing tumour which, rarely metastasize. Their incidence is increasing by ~10%/year 

worldwide indicating that the prevalence of this tumour will soon equal that of all other 

cancers combined (Karagas et al, 1995, Skin cancer: Mechanisms and human relevance). 

Furthermore, 40-50% of patients will develop at least one more within 5 years.  

UV radiation is the major aetiological agent in the pathogenesis of BCC and an 
understanding of its effects on the skin is clearly critical. However, though exposure to UVR 
is essential, its relationship with risk is unclear and epidemiological studies suggest its 
quantitative effect is modest. For example, a large European case-control study has shown 
only a two-fold increase in risk with increased exposure (Rosso et al, 1996, Br J Can) while 
recent studies suggest that intermittent rather than cumulative exposure is more important 
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(Kricker, 1995, Int J Cancer). The relationship between tumour site and exposure to UVR is 
also unclear. The distribution of lesions does not correlate well with the area of maximum 
exposure to UVR in that BCC are common on the eyelids, at the inner canthus and behind 
the ear, but uncommon on the back of the hand and forearm. Indeed, compared with 
squamous cell cancer (SCC), BCC are relatively more common on less exposed sites such as 
the trunk. Thus, though exposure to UVR is critical, patients develop BCC at sites generally 
believed to suffer relatively less exposure. The basis of the different susceptibility of skin at 
different sites to BCC development is not known, but may be related to the association of 
BCC with intermittent UV exposure. 

Surgery remains the mainstay in the treatment of BCC. However, with a better 

understanding of the aetiopathogenesis and the relatively non- aggressive nature of these 

lesions, newer forms of destructive and non- destructive treatments are a focus of research. 

Induction of apoptosis, modulation of differentiation and immunomodualtion are some of 

the strategies by which some of the current pharmacotherapeutic agents exert their action. 

Unravelling the genetics of BCC will provide a basis for further research on the introduction 

of pharmacogenetics and development of newer agents targeting the specific genes 

implicated in the causation of BCC.  

Chronic irritation, inflammation and injury to the skin can predispose to malignant 
epithelial neoplasms, in particular squamous cell carcinomas (Kaplan, 1987, Adv Derm). 
Examples include complicated scars from frostbite, electrical injury, chronic sinuses or 
fistulas, chronic osteomyelitis, chronic stasis dermatitis, and scars following various 
cutaneous infections. 

The most often reported dermatoses complicated by cancer are discoid lupus 

erythematosus, scarring variants of epidermolysis bullosa, genital lichen sclerosus et 

atrophicus, its variant balanitis xerotica obliterans and lichen planus. 

Lupus vulgaris, a chronic form of cutaneous tuberculosis is complicated by squamous cell 

carcinoma or less commonly basal cell carcinomas in up to 8% of the patients (Betti et al 

2002, Hautarzt, Forstrum et al, 1969, Ann Clin Res ). Squamous cell cancers can also arise 

from lesions of erythema ab igne, a characteristic dermatosis resulting from repeated or 

prolonged exposure to infrared radiation, insufficient to produce a burn (Peterkin,  

1955, BMJ). 

There is strong evidence that Photochemotherapy (PUVA) increases the risk of developing 

squamous cell carcinoma and this correlates with the cumulative dose of ultraviolet A. High 

dose PUVA (more than 200 treatments) is associated with a 14- fold increase in the risk of 

NMSC compared to low dose PUVA (Stern et al, 1998 Arch Dermatol). Arsenic is an 

important chemical carcinogen implicated in the development of non-melanoma skin 

cancer. In the first half of the 20th century, this was caused by the ingestion of medicinal 

arsenic in the form of medications for asthma and psoriasis. Mining and well water which is 

high in arsenic are the main sources today.  

Patients who have received a renal transplant have a 50-250-fold increased risk of 
developing squamous cell carcinoma and a 5 -10 fold increase in the risk of developing basal 
cell carcinoma implicating anti-tumour immunity (McGregor et al, 1995, Lancet, Bouwes 
Bavinck , 1995, Hum Exp Toxicol). Moreover, there is a close association between the 
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development of non-melanoma skin cancer and premalignant lesions such as actinic 
keratoses and the presence of viral warts in these patients (Bouwes Bavinck , 1995, Hum Exp 
Toxicol). Actinic keratoses are hyperkeratotic lesions occurring on chronic light exposed 
adult skin, and carry a low risk of progression to invasive squamous cell carcinoma. Lesions 
are usually multiple and comprise of macules or papules with a rough scaly surface resulting 
from disorganised keratinisation and a variable degree of inflammation. Although the rate of 
progression of individual squamous cell carcinoma has been estimated to be less than 0.1%, 
the presence of actinic keratoses is an important marker of excessive UV exposure and 
increased risk of non-melanoma skin cancer (Salasche, 2000, J Am Acad Dermatol) 

Mucosal lesions such as leukoplakias are also known to be premalignant with 2-5 % 

becoming malignant in 10 years (Crispian, 2004, Rooks textbook of Dermatology, Blackwell 

publishing). Bowen’s disease is a form of intraepidermal squamous cell carcinoma, which 

presents as a persistent, non-elevated, red, scaly or crusted plaque and carries a small 

potential of invasive spread. Most studies suggest a risk of invasive cancer of about 3%. 

There is a significant frequency of multiple lesions and an association of Bowen’s disease 

with other skin cancers, which may reflect predominant solar aetiology or, in some cases 

exposure to arsenic. Genital, especially perianal Bowen’s disease has a higher risk of 

invasive malignancy.  

Various studies indicate that the risk of skin cancer may be related to the overall amount 

of immunosupression (Jensen , 1999, Science, Bouwes Bavinck ,1996, Transplantation, 

Dantal , 1998, Lancet). Skin cancers are the most common malignancies that occur in 

transplant patients and their frequency increases with time after transplantation (Penn, 

1993,Hematol Oncol Clin North Am). The normal SCC/BCC ratio as observed in normal 

population is reversed in transplant recipients, with an excess in SCC development (Ong 

et al, 1999, J Am Acad Dermatol, Barr et al, 1989, Lancet) Moreover, these tumours behave 

more aggressively with a higher risk of metastasis than in general population (Penn , 

1991,Transplant Proc). 

Patients receiving renal transplant from HLA –B antigen mismatched donors, are at a higher 

risk of developing SCC, which is thought to be related to more intense immunosupression 

which these patients receive (Bouwes Bavinck et al 1991,N Engl J Med.). SCC in transplant 

patients develop mostly on sun exposed sites (Bavinck et al 1993,Br J Dermatol.) and are 

more frequent in individuals with fair skin, blue eyes, and blonde and red hair (Bavinck et al 

1993,Br J Dermatol., Euvrard et al 1995, J Am Acad Dermatol, McLelland et al 

1998,Transplantation.); the standard risk factors for development of SCC. Early diagnosis 

and treatment of squamous cell cancers is important to avoid metastasis and tissue 

destruction as these cancers are more invasive and have a higher metastatic spread 

compared to basal cell cancers. 

2. SCC predisposing syndromes 

2.1 Xeroderma pigmentosum 

An autosomal recessive disease characterised by elevated sensitivity to sunlight, multiple 

epidermal skin cancers in childhood as a consequence of increased susceptibility to DNA 

damage and abnormal DNA repair. In vitro, cells from XP patients show a decreased ability 
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to conduct base excision repair in which single strand areas of DNA are excised and 

replaced with a new set of bases after sunlight induced damage. 

2.2 Albinism 

Partial or complete failure to produce melanin in the skin and the eyes. SCC and melanoma 
develop in sun exposed sites of most individuals at an early age. (Lookingbill et al 1995, J 
Am Acad Dermatol.) 

2.3 Muir Torre syndrome 

Germ line mutations in genes involved in DNA mismatch repair and microsatellite 
instability result in this autosomal dominant syndrome characterised by the presence of one 
or more sebaceous neoplasms in association with internal malignancy, most frequently of 
the colon. SCC have also been described in these patients. 

2.4 KID (Keratosis, Icthyosis, Deafness) 

Invasive SCC developing within dysplastic lesions have been reported in several patients 
suffering from this syndrome (Madariaga et al, 1986,Cancer).  

2.5 Dystrophic epidermolysis bullosa 

Recessive dystrophic epidermolysis bullosa (RDEB) is an autosomal recessive mechano-
bullous disorder caused by mutations in the human type VII collagen gene (COL7A1). 
Individuals with DEB lack type VII collagen and anchoring fibrils, structures that attach 
epidermis and dermis. The leading cause of death in RDEB is invasion and metastasis of 
cutaneous SCC. Although the SCC in RDEB are frequently well-differentiated by 
histopathology, they often have a poor prognosis due to multicentricity, rapid invasiveness, 
and development of distant metastases. Mutations in the p53 tumor suppressor gene and loss 
of p16ink4a through hypermethylation have been seen in cutaneous SCC from these patients 
(Arbiser et al, 2004, J Invest Dermatol). This suggests that alterations in both p53 and p16ink4a 
can contribute to SCC in RDEB. Patients with RDEB have also been found to have elevated 
levels of b fibroblast growth factor, which may contribute to increased fibroblast collagenase 
and the development of SCC (Arbiser et al, 1998, Mol Med). Reduced expression of IGFBP-3, as 
seen in SCC associated with RDEB, has been suggested as a likely reason for the aggressive 
behaviour and poor prognosis of these tumors (Mallipeddi et al, 2004, J Invest Dermatol). 

2.6 Fanconi anaemia 

Fanconi anemia is an autosomal recessive disorder characterized by congenital 

malformations, bone marrow failure, and the development of SCC and other cancers. 

Environmental factor such as human papillomavirus (HPV) may be involved in the 

pathogenesis of SCC in Fanconi anemia patients (Kutler et al 2003, J Natl Cancer Inst). HPV 

DNA was isolated in 84% of the SCC specimens from the patients with Fanconi anaemia and 

a large proportion of patients with Fanconi anemia and SCC were homozygous for Arg72, a 

p53 polymorphism that may be associated with increased risk for HPV-associated human 

malignancies (Kutler et al 2003,J Natl Cancer Inst). 
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2.7 Rothmund Thompson syndrome 

Rothmund-Thomson syndrome (RTS) is a rare autosomal recessive genodermatosis 
characterized by early onset of progressive poikiloderma including alopecia, dystrophic 
teeth and nails, juvenile cataracts, short stature, hypogonadism, bone defects and several 
other cutaneous and extracutaneous findings. Most (but apparently not all) cases of RTS are 
caused by null or hypomorphic mutations in the RECQL4 gene, a putative DNA helicase. A 
role for RECQL4 in the repair of DNA double-strand breaks by homologous recombination 
has been suggested (Petkovic et al, 2005 J Cell Sci). Several cases of skin malignancies 
including SCC have been described in RTS patients, indicating a higher incidence of 
cutaneous malignancies (Piquero-Casals et al 2002,Pediatr Dermatol).  

2.8 Werner syndrome 

Werner syndrome is a genetic disorder of early ageing, excess cancer risk, high incidence of 
type II diabetes mellitus, early atherosclerosis, ocular cataracts, and osteoporosis. The 
protein encoded by the defective gene, WRN (WRNp) associates with 3'-5'-exonuclease and 
ATPase activities. Werner syndrome protein (WRN) is a RecQ-type DNA helicase, which 
seems to participate in DNA replication, double-strand break (DSB) repair, and telomere 
maintenance. A deficiency in maintaining DNA integrity is thought to be a consequence of 
the defective DNA helicase. In vivo alterations of oxidative stress parameters in WS patients 
have been demonstrated which may cause oxidative damage to biomolecules, with multiple 
oxidative stress-related alterations, resulting in multi-faceted clinical consequences (Pagano 
et al, 2005, Biogerontology, Pagano et al, 2005, Free Radic Res). 

2.9 Other syndromes 

These include hereditary non-polyposis coli, dyskeratosis congenita, Huriez syndrome and 
chronic mucocutaneous candidiasis. 

3. Candidate susceptibility genes 

The concept of genetic susceptibility to BCC and SCC is complex as genes may influence 
susceptibility as well as tumour numbers, rate of appearance and site. Selection of putative 
susceptibility genes must be in part subjective though the varied effects of UVR suggest that 
candidate genes may be selected from those involved in DNA repair, defence against 
oxidative stress, immune modulation, tanning and other related biochemical activities. 

Although sunlight plays a crucial role in the development of SCC and to a lesser extent BCC, 

there is enough evidence that this is process is multifactorial with contributions from genetic 

and environmental factors. Several genes have been implicated in providing protection 

against and modifying the effects of UV radiation. It is also understood that UV is both 

mutagenic and locally immunosuppressant, thereby implying a huge pathogenic potential. 

3.1 DNA repair  

Signature UV-DNA lesions, cyclobutane dimers and 6-4 photoproducts, are repaired via the 
nucleotide excision repair pathway which may be subdivided into transcription-coupled 
repair and global genome repair. The XPC protein is specific to this latter repair pathway 
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recognizing helix distorting lesions and initiating their repair. Inactivating XPC mutations 
are associated with xeroderma pigmentosa and an extremely high risk of skin cancer. Most 
early research on DNA repair and skin cancer was performed in patients with xeroderma 
pigmentosum (XP), a rare autosomal recessive syndrome in which multiple skin tumours 
are seen. Reduced capacity to repair DNA was observed in XP cells (Cleaver et al, 1969, Proc 
Natl Acad Sci USA). Early in life, homozygote XP patients develop severe photosensitivity 
and a 2,000-fold increased risk of skin cancer.  

A common polymorphism in intron 9 of the XPC gene has been associated with both 
reduced repair of UV-DNA damage and increased risk of squamous cell head and neck 
cancer. It has been reported that PAT+ polymorphism may slightly modify the risk of SCC 
among individuals with a phenotype which results in low UV-DNA adduct burdens 
(Nelson et al, 2005, Cancer Lett). The XPD is another gene involved in the nucleotide 
excision repair pathway removing DNA photoproducts induced by UV radiation.  
Genetic variation in XPD may exert a subtle effect on DNA repair capacity with an  
inverse association between the Lys751Gln and Asp312Asn polymorphisms and the  
risks of melanoma and squamous cell carcinoma (Han et al, 2005, Cancer Epidemiol 
Biomarkers Prev).  

UVA-induced oxidative DNA damage and blocked DNA replication by UVB-induced 
photoproducts can lead to double-strand breaks (DSBs). DSB repair genes XRCC2, XRCC3, 
and LigaseIV were evaluated for their associations with skin cancer risk. (Han et al, 
2004,Cancer Res). XRCC3 18085T (241Met) allele and its associated haplotype were 
significantly inversely associated with the risks of SCC and BCC (Han et al, 2004, Br J 
Cancer) The XRCC1 gene is also involved in the base excision repair pathway.  
The 399Gln allele was inversely associated with SCC risk in those who had five or more 
lifetime sunburns, those with a family history of skin cancer, and those in the highest tertile 
of cumulative sun exposure in a bathing suit (Han et al 2004, Cancer Res.). There was  
also a significant association of the carriage of 194Trp allele with increased SCC risk,  
which was modified by family history of skin cancer (Han et al, 2004, Cancer Epidemiol 
Biomarkers Prev). 

In sporadic BCC, DNA repair capacity below the upper 30th percentile was associated with a 
2.3 fold increase in BCC relative risk. However, some studies have reported increased repair 
in BCC patients and so batch variability and the effects of age, family history of skin cancer 
and current sun exposure may confound results (Hall et al 1994, Int J Cancer). At least two 
types of XP are caused by defects in DNA helicases that are involved in nucleotide excision 
repair and in transcription. Werner and Bloom syndromes are hereditary skin cancer 
disorders that are associated with helicase defects but curiously not with the development of 
BCC’s (Yu Ce et al, 1996, Science, Ellis et al, 1995, Cell). Rothmund-Thomsen syndrome, which 
in some cases is caused by defects in a DNA helicase (Kitao et al, 1999, Nat Genet) does seem 
to predispose to BCC (Wang et al, 2001, Am J Med Genet). This tissue specific effect of 
helicases is poorly understood. Also, other forms of genomic instability disorders including 
the chromosome breakage disorders like ataxia telangiectasia and Nijmegen breakage 
syndrome and disorders with p53 gene mutations like Li Fraumeni syndrome (Malkin et al, 
1990, Science) or dyskeratosis congenita, a disorder associated with failure to maintain 
telomeres (Knight et al, 1999, Am J Hum Genet, Vulliamy T, 2001, Nature) are not causally 
associated with BCC. 
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3.2 Chemical detoxication 

While exposure to UVR is accepted as a critical causative factor in the pathogenesis of BCC, 

the magnitude of the risk associated with increased exposure appears to be insufficiently 

large to explain the considerable phenotypic diversity demonstrated by patients in terms of 

tumour numbers, site and patterns of presentation.  

UVA and UVB radiation cause indirect damage to DNA by inducing oxidative stress 

(Griffiths et al, 1998, Crit Rev Clin Lab Sci). Reactive oxygen species thus produced, interact 

with lipids, proteins and DNA to generate intermediates that combine with DNA to form 

adducts (Lear et al, 2000, Br J Dermatol). 

The authors have focused on the extensive clinical diversity following initial presentation, 

demonstrated by patients to identify subgroups that are associated with different risks of 

developing tumours. Two phenotypes are particularly important; firstly, presentation with 

clusters of BCC. These patients, termed multiple presentation phenotypes (MPP), had 2-5 

BCC at one presentation and comprised 15% of our study group of 1200 BCC patients. A 

minority of patients demonstrated multiple clustering events, a phenomenon that appears to 

be strongly associated with a genetic pre-disposition (Ramachandran et al, 1999, Cancer 

Epidemiol Biomarkers Prev; Ramachandran et al, 2000, Cancer).  

The second risk phenotype, characterized by tumours on the trunk, is also associated with 

a pre-disposition. These patients are important as there is evidence that different 

mechanisms mediate development of BCC on this, compared with other sites. For 

example, patients whose first tumour was truncal had more BCC than other patients 

(mean 2.4 vs. 2.0 tumours), were significantly younger at first presentation and developed 

more clusters of BCC than cases who did not develop truncal tumours. First presentation 

with a truncal tumour is associated with significantly more subsequent BCC on this site 

compared with cases with an initial head and neck lesion (Ramachandran et al, 2001, 

Cancer). These data suggest the development of a truncal BCC is not random but rather is 

associated with a pre-disposition. In contrast, the rate of increase of non-truncal 

BCC/year was similar in patients with and without initial truncal lesions suggesting 

different mechanisms determine the development of truncal and non-truncal BCC 

(Ramachandran et al, 2001, Cancer). 

Both the MPP and truncal phenotypes were characterized by a susceptibility to develop 

numerous BCC. All patients with more than 5 BCC had one or both of these phenotypes.  

The GST supergene family offers protection against cytotoxic and mutagenic effects of 
electrophiles generated by UV induced oxidative stress. This is achieved by conjugation of 
glutathione to electrophiles. GSTM1 catalyses the conjugation of 4-hydroxynonenal and 
linoleic acid hydroperoxide, products of lipid peroxidation (Kerb et al, 1997, J Invest 
Dermatol). It also catalyses the conjugation of DNA hydroperoxide (Kerb et al, 1997,J Invest 
Dermatol), a product of DNA oxidation, 5 hydroxymethyluracil , a mutagenic compound 
formed by either oxidative attack on the methyl group of the thymine base of DNA or from 
deamination of products formed by the oxidation of 5-methylcytosine (Boorstein at al 1989, 
Nucleic Acids Res. Lear JT et al 2000,Br J Dermatol). The GSTM1 and GSTT1 have been 
shown to be associated with the development and accrual of basal cell carcinoma (Lear et al 
1996, 1997, Carcinogenesis), raising the possibility of an association with SCC as well. Indeed, 
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GSTM1 gene has been shown to be associated with actinic keratoses, supporting the 
possibility of its implication in SCC (Carless et al, 2002, J Invest Dermatol.). 

The authors have examined the role of polymorphism in genes encoding detoxifying 
enzymes such as glutathione S-transferases (GST) and cytochrome P450s (CYP). The CYP 
supergene family comprise over 30 isoforms, which catalyse the biotransformation of a 
range of xenobiotics, often as the first of a two-phase detoxication. The resultant potentially 
highly reactive intermediate is then a substrate for phase two enzymes including members 
of the GST supergene family. The GSTs can also catalyse the detoxication of the products of 
oxidative stress (e.g. lipid and DNA hydroperoxides). Cytosolic GST activity in mammalian 
tissues is due to the presence of multiple GST isozymes, which can be assigned to 8 classes, 

e.g. ǂ, θ, µ, π σ,, and  (Hayes et al, 1995, Crit Rev Biochem Mol). In human skin, the π class 
of GST is the predominant isozymes and is found predominantly in sebaceous glands (Raza 
et al, 1991, J Invest Dermatol). GST- π has been suggested to be an oncofetal protein that is 
expressed during carcinogenesis (Moscow et al, 1998, Proct Natl Acad Sci USA). Several 
polymorphisms in GST family members exist (Hayes et al, 1995, Crit Rev Biochem Mol Biol; 
Pemble , 1994,Biochem J) and have been associated with impaired detoxification, thus 
influencing the risk for several cancers, including non-melanoma skin cancer (Heagerty et al, 
1994, Lancet; Heagerty , 1996, Br J Cancer). 

A GSTT1 null genotype is associated with high UV sensitivity (Kerb et al, 1997 J Invest 
Dermatol) and we have shown that a GSTM1 null genotype also predisposes for BCC, 
probably due to its role in defence against UV induced oxidative stress (Learet al, 1997, 
Carcinogenesis; Lear, 1996,Carcinogenesis). Polymorphism of GSTM3 was also shown to 
increase the risk for multiple BCC (Yengi, 1996, Cancer Res). Polymorphism in cytochrome 
p450 CYP2D6 has also been associated with susceptibility as well as tumour numbers 
(together with vitamin D receptor and tumour necrosis factor alpha). In the case of multiple 
clustering, associations between the CYP2D6 EM genotype and risk demonstrated 
particularly large odds ratio (OR=15.5) (Ramachandran et al, 1999, Cancer Epidemiol Biomarkers 
Prev; Lear et al, 1996, Carcinogenesis). 

3.3 Immunological effects  

Though the role of UVR in the pathogenesis of skin tumours has been extensively studied, 
several reports have suggested that the resultant tumours are, at least in mice, highly 
immunogenic and regress on transfer to non-exposed hosts. This implies that the immune 
status of the UVR irradiated skin is compromised in those who develop tumours (Granstein, 
1996, Photochem Photobiol). These findings are explained by data showing that exposure to 
UVR results in a cascade of events including a T-lymphocyte-mediated immunosuppression 
(Kripke, 1994, Cancer Res; Streilein 1993, J Invest Dermatol). The extent of the 
immunosuppression appears, to some degree, dose-dependent. Studies on the mechanism 
of this effect have concentrated on two chromophores; DNA and urocanic acid, both of 
which can result in altered expression of several cytokines including tumour necrosis factor 

alpha (TNF-), interleukin (IL-)10, IL-1/, IL-3, IL-6, IL-8, IL-10, granulocyte-macrophage 
colony-stimulating factor (GM-CSF) and nerve growth factor. This results in an alteration 
from a T helper 1 (Th1) to a suppressive T helper 2 (Th2) response (Granstein, 1996, 
Photochem Photobiol; Kripke, 1994, Cancer Res; Streilein 1993, J Invest Dermatol) thereby 
inhibiting the ability of antigen presenting cells to induce anti-tumour immunity. In a pilot 
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study, we found in 133 patients with multiple BCC, the TNF allele haplotype a2b4d5 
significantly influenced BCC number (mean BCC number; 8.1 vs. 3.7 in other allele 
combinations) (Hajeer et al, 2000, Br J Dermatol). Further support for the role of the immune 
system in the pathogenesis of skin cancer came from the finding that HLA-DR4 is associated 
with multiple BCC (Czarnecki et al, 1993, Dermatology) but this has been disputed (Rompel et 
al, 1995, Rec Res Canc Res). Interestingly, there is a possible link between GST and immune 
modulation in non-melanoma skin cancer with studies showing a link between contact 
hypersensitivity to dinitrochlorobenzene (a substrate for GST) and squamous cell carcinoma 
(and non-significantly with BCC) (de Berker , 1995, Lancet). Furthermore, GSTM1 and GSTT1 
genotypes have been shown to influence inflammatory response following UVR exposure, a 
finding possibly reflecting the link between oxidative stress and eicosanoid mobilisation. 

3.4 Immunosuppression 

The critical role of immunomodulation in skin cancer susceptibility is further supported by 

data showing immunosuppressed transplant patients are at considerably higher risk of both 

BCC and SCC than the general population. SCC of the skin is the most common malignancy 

occurring in the setting of solid organ transplantation and immunosuppression, and its 

incidence increases substantially with the extended survival after transplantation (Otley et al, 

2000, Liver Transpl). SCC occurs more frequently in transplant patients (Ondrus et al, 1999, Int 

Urol Nephrol) whereas in the general populations BCC is three to six times more frequent 

than SCC (Barrett et al, 1993, Cancer). It was shown in heart transplant recipients that the 

number of skin cancers is significantly correlated with both age at transplantation and 

duration of follow –up (Ong, 1999, J Am Acad Dermatol). In Europe, 40% of renal transplant 

recipients develop skin cancer within 20 years after grafting, (Hartevelt et al, 1990, 

Transplantation). Heart transplant recipients are at a higher risk than kidney transplant 

recipients, most probably due to the fact that they receive higher doses of 

immunosuppression agents (Euvrard et al, 1995, J Am Acad Dermatol) but it cannot be 

overlooked that the different types of immunosuppressive agents have different effects in 

this respect. Immunosupression as practised after organ transplantation does not increase 

the risk of developing BCC to the same extent as SCC. The incidence of BCC seems not to be 

affected by PUVA treatment. A diminished response to skin application of 

dinitrochlorobenzene was found in people with SCC but not in patients with BCC, again 

supporting the notion that the incidence of BCC is not affected by immune status to the 

same extent as SCC (de Berker et al, 1995, Lancet).  

3.5 Human Immunodeficiency Virus 

People suffering from aquired immunodeficiency syndrome (AIDS) have shown an elevated 
risk for the development of BCC (Franceschi et al, 1998, Br J Cancer; Ragni et al, 1993, Blood). 
Human Immunodeficieny virus (HIV) patients with BCC more frequently show blue eyes, 
blonde hair, family history and extensive prior sun-exposure (Lobo et al, 1992, Arch 
Dermatol). The pigmentation phenotype is probably an independent risk factor that adds to 
the increased risk of BCC conferred by the immunosuppression. There have been some 
reports of BCC’s metastasising in people suffering from AIDS, (Steigleder, 1987, Z Hautkr; 
Sitz, 1987, JAMA) suggesting that immune surveillance is one of the factors determining the 
normally metastatic nature of the BCC. Why immunosuppression by HIV increases the risk 
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of BCC, where as pharmaceutical immunosuppression does not is not clear. The depletion of 
CD4 lymphocytes by HIV may lead to a more pervasive defect in adaptive antitumour 
immunity that does mere functional suppression by commonly used immunosuppressive 
compounds. 

3.6 Human Leukocyte Antigen (HLA) haplotypes 

The major histocompatibility complex (MHC) genes code for membrane protein that play 
important roles in controlling immune responses (Benacerraf, 1981, Science). There are two 
classes of genes, class I (HLA-A, -B, -C) and class II (HLA-DR, -DP and DQ) which play a 
role in host defence against the development and spread of tumours (Dausset et al, 1982, 
Cancer Surv). For example, loss of class 1 antigens is related to tumour progression in 
melanomas (Ruiter, 1984, Cancer Res). Furthermore, abnormalities in cell- mediated 
immunity have been reported in patients with multiple BCC (Myskowsky et al, 1981, J Am 
Acad Dermatol) whereas normal skin shows high levels of class 1 molecules, BCC shows 
either complete absence or heterogeneous expression (Cabrera et al, 1992, Immunobiol). All 
class I –negative tumours were histologically proven to be aggressive, whereas all non-
aggressive BCC’s were class I positive. The low levels or absence of expression of class I 
antigens may result in escape from recognition by cytotoxic T cells, which then facilitates 
tumour growth. (Garcia- Plata, 1991, Inv Met). The presence of HLA – DR7 and decrease of 
HLA-DR4 are significantly associated with BCC (Bouwes Bavinck, 2000, Arch Dermatol). HLA 
–DR4 is decreased in BCC, especially in patients with multiple BCC’s located on the trunk 
(Rompel et al, 1995, Rec Res Canc Res,). HLA-DR1 is weakly associated with the development 
of multiple BCC’s at an early age (Czarnecki et al, 1992, J Am Acad Dermatol). A correlation 
between HLA-A11 expression and skin cancer in immunosuppressed renal transplant 
recipients has been shown (Bavnick, 1990, N Engl J Med; Bouwes Bavnick, 1997, Australia J 
Invest Dermatol). One study showed that HLA –A11 was associated with resistance to skin 
cancer in renal transplant recipients, (Bavnick, 1990, N Engl J Med) while another study 
shows that renal transplant recipients with HLA – A11 had an increased risk for developing 
skin cancer (Bouwes Bavnick, 1997, Australia J Invest Dermatol). The apparent discrepancy may 
be the result of different genetic backgrounds and differential environmental factors. 

3.7 Human Papilloma Virus 

The life cycle of these species-specific DNA tumour viruses is inseparably linked to 
differentiation processes in pluristratified epithelia (Stanley et al, 1994, Ciba Found Symp). 
Mucosal HPV types 16, 18, 31 and 33 are strongly associated with the genesis of anogenital 
and cervical carcinomas (Bosch et al, 2002, J Clin Pathol). Following viral genome integration, 
E6 and E7 oncoproteins are overexpressed, with inhibition of apoptosis via p53 dependent 
and independent mechanisms (Thomas et al, 1999, Oncogene). E6 protein from the cervical 
associated HPC-16 mediates degradation of p53 (Black et al, 2003,Clin Exp Immunol). A 
common p53 polymorphism at position 72 replacing proline with arginine renders p53 more 
susceptible to E6 mediated degradation. The arginine allele was found to be a risk factor in 
the development of cervical cancers and there was also a significant association with 
cutaneous SCC development in renal transplant patients (Storey et al, 1998, Nature). 

Cutaneous HPV types 5 and 8 are associated with warty lesions and SCC in the sun exposed 
sites of patients with the rare inherited condition epidermodysplasia verruciformis. This led 
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to the proposal that these EV types may also be oncogenic. (Majewski et al, 1995, Arch 
Dermatol ). The mechanism by which EV associated HPV might contribute to the 
development of SCC remains unclear. Unlike oncogenic mucosal HPV, EV-HPV DNA 
persist extrachromosomally in cancers and EV associated E6 proteins are unable to abrogate 
apoptosis via the degradation of p53. (Elbel et al, 1997,Virology) Instead, BAK protein, a 
member of the Bcl- 2 family may be abrogated resulting in inhibition of apoptosis (Jackson et 
al 2000, Genes Dev). 

HPV DNA has been identified in over 80% of immunosuppressed and 30% of 

immunocompetent SCC patients and EV-HPV types are consistently overexpressed in 

immunosuppressed patients. (Harwood et al, 2002, Curr Opin Infect Dis, Pfister et al 2003, J 

Natl Cancer Inst Monogr.) The association between prevalence of EV-HPV infection and 

SCC risk has been further strengthened by seroepidemiological studies (Bouwes Bavinck et al 

2000, Br J Dermatol., Feltkamp et al, 2003, Cancer Res. Masini et al 2003,Arch Dermatol.). 

Furthermore, localisation of HPV DNA to malignant keratinocytes in SCC as well as EV-

HPV gene transcription in almost 40% of tumours has been found by in situ hybridisation 

technique, thus providing further evidence of the role of HPV in pathogenesis of SCC 

(Purdie et al 2005, J Invest Dermatol.). The presence of UV induced p53 mutations in 

cutaneous SCC contrasts with tumours induced by high-risk HPV types, which contain wild 

type p53. It is postulated that arginine allele of p53, perhaps in combination with UV 

induced mutation, is more susceptible to interference from particular HPV types and 

subsequent malignant transformation (Black et al, 2003,Clin Exp Immunol). HPV 77 has so 

far been detected in cutaneous lesions of renal transplant patients and contains a p53 DNA 

binding site. Besides inducing p53 mutations, sunlight may also be indirectly involved in the 

pathogenesis of SCC by causing activation of p53 and subsequent stimulation of HPV 77 

promoter activity (Purdie et al, 1999, EMBO J.). Other viruses suggested to increase 

susceptibility to SCC include HPV 20, HPV 27 (Ruhland et al 2001,Int J Cancer.) and human 

herpes virus type 1 (Leite et al 2005, Cancer Lett.).Although HPV has been associated 

strongly with malignant progression of warts to SCC and with epidermodysplasia 

verruciformis, (Galloway et al, 1989, Adv Virus Res) different oncogenic subtypes of the virus 

were found in 60% of BCC’s from immunosuppressed patients in contrast to 36% of BCC’s 

from non-immunosuppressed patients, suggesting that these viruses may be involved in the 

development of BCC (Shamanin et al, 1996, J Natl Cancer Inst). In renal transplant recipients 

with skin cancer, HPV 5 /8 DNA could be detected, (Barr et al, 1989, Lancet) and Weinstock 

et al (Weinstock et al, 1995, Arch Dermatol) suggested immunosuppression to be a factor in 

BCC carcinogenesis by affecting HPV infection. 

3.8 Delayed hypersensitivity 

Patients with large SCC were found to have defective systemic cell-mediated immunity as 
shown by reduced reaction to intradermal antigen, and low rate of sensitization to 
dinitrochlorobenzene (DNCB) (Weimar et al 1980, J Am Acad Dermatol.). Because GST 
metabolises DNCB and polymorphisms of GST are associated with multiple skin tumours, 
variations in GST may underlie these differences (de Berker et al, 1995, Lancet). The T cell 
levels and leukocyte migration test in preoperative patients with SCC were also found to be 
significantly lower than in the noncancer control population. (Avgerinou et al, 1985, 
Dermatologica.) 
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4. Germline and somatic mutations  

Carcinogenesis involves a stepwise progression from a normal to a malignant phenotype 

through an accumulation of genetic alterations to cellular proto-oncogenes, that stimulate 

cell proliferation and tumour suppressor genes (TSG) that inhibit this process. In tumours, 

mutation of proto-oncogenes results in expression of constitutively active proteins, whereas 

mutational inactivation of TSG leads to loss of protein function.  

4.1 p53 

p53 is a TSE that normally functions in cell-cycle arrest, DNA repair and apoptosis. It 

functions as a critical regulator of the cell cycle progression and programmed cell death in 

response to insults that damage DNA, such as UVR exposure (Natraj, 1995, Photochem 

Photobiol.). The p-53 gene encodes a phosphoprotein that is involved in cell-cycle control 

and maintenance of chromosomal stability (Katayama 2004, Nat Genet; Hollstein M, 1991, 

Science). The most common genetic aberrations in human skin cancers are found at the level 

of p53 gene expression (Kastan, 1991, Cancer Res). DNA strand breaks results in expression of 

p-53, which in turn stimulates p21 Cip1 expression, which binds and inhibits cyclin-

dependent kinases 2 and 4 resulting in G1 blockade of cell cycle progression. This inhibition 

of cell cycle progression allows for DNA repair before it is replicated in S phase to prevent 

retention of introduced mutations. In severe DNA damage, p53 induces BAX, which binds 

to BCL-2 and inhibits its antiapoptotic activity, resulting in programmed cell death. Thus, 

mutations would be retained in genomic DNA if p53 gene becomes inactivated, leading to 

clonal expansion and tumourigenesis.  

p53 gets activated in response to cellular stress through phosphorylation (Siliciano et al, 1997, 

Genes Dev, Caspari, 2000, Curr Biol). MDM2 associates with p53 and regulated its level of 

activity depending on the phosphorylation status of p53. Upon dephosphorylation, p53 

binds to MDM2 and is degraded through the ubiquitin-proteasome pathway (Kubbutat et al, 

1997, Nature, Haupt et al, 1997, Nature)  

The response to DNA damage is growth, senescence or apoptosis (Vogt Sionov et al, 1999, 

Oncogene). The relative cellular content of p53 determines the response following DNA 

damage; when the content is low to moderate, cells will go into cell- cycle arrest to allow 

DNA repair, but when p53 levels are high, cells will progress to apoptosis (Ronen et al, 1996, 

Cell Growth Different). In response to DNA damage, p53 is phosphorylated by DNA damage- 

sensing proteins such as ATM and becomes detached from MDM2, resulting in stabilization 

and activation and of target genes regulated by p53 (Unger et al, 1999, EMBO J). In normal 

skin, wild type p53 is not detectable but appears within 2 hours after UV irradiation, with 

peak levels at 24 hours and again undetectable levels at 36 hours (Hall et al, 1993, Oncogene). 

Mutant p53 can accumulate in cells and p53 mutations have been detected in about half of 

all BCCs (Aeupemkiate et al, 2002, Histopathology, Demirkan et al, 2000, Pathol Oncol Res). 

Aggressive BCC are significantly associated with increased p53 expression, probably 

representing the mutated form. Despite the available evidence, the apparent limited 

contribution of DNA damage and chromosomal instability to the BCC phenotype means 

that the relevance of p53 mutations for BCC growth remains to be demonstrated as in the 

absence of genetic damage p53 activation does not occur. Moreover, one of the hallmarks of 
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p53 dysfunction, aberrant mitosis, has never been observed in BCC (Pritchard, 1993, Am J 

Dermatopathol). 

Patients with BCC, who were sunscreen users, had significantly lower level of p53 

mutations in their BCC as compared to non-sunscreen users (Rosenstein el al, 1999,Photochem 

Photobiol) suggesting that p53 mutations in BCC are secondary events. Inactivation of p53 

occurs predominantly by point mutation of one of the allele followed by loss of the 

remaining wild type allele (Knudson et al, 1985, Cancer Res). The p53 gene shows UV 

signature mutation, i.e. predominantly C(C) → T (T) conversions (Ziegler et al, 1993, Proct 

Natl Acad Sci USA, Wikonkal et al, 1999, J Invest Dermatol Symp Proc). In 33% of BCCs found in 

Korean patients, p53 mutations were detected (Kim, 2002, J Dermatol Sci) and up to 50% of 

the BCCs in Caucasian patients showed this mutation (Aeupemkiate et al, 2002, Histopathology, 

Demirkan, 2000, Pathol Oncol Res), suggesting that different ethnic factors play a role in BCC 

carcinogenesis, although differences in sun exposure may account for some of the observed 

differences. 

Thus, while it is known that p53 is involved in genome surveillance through the regulation 

of cell proliferation and death and is frequently inactivated in BCC (Rady et al, 1992 Cancer 

Res, Ziegler et al, 1993, Proct Natl Acad Sci USA), with up to 56% of tumours displaying 

mutation in the conserved region of one p53 allele, it has been suggested that p53 mutation is 

a crucial but late event in BCC progression (Van der Riet et al, 1994, Cancer Res). BCC also 

display a high level of LOH specifically at chromosome 9q22 suggesting the existence of a 

BCC TSG in this region (Quinn et al, 1994, Cancer Res). 

Up to 90% of cutaneous SCC lesions have UV induced signature mutations such as 

formation of thymidine dimers in the p53 gene, resulting in uncontrolled proliferation of 

keratinocytes (Brash et al, 1991, Proc Natl Acad Sci U S A, Ziegler, 1994, Nature). 

Overexpression of p53 co-relates with sun-exposure (Coulter et al 1995, Hum Pathol. Liang , 

1999, Virchows Arch.) and mutant p53 has been observed to accumulate in the cell 

cytoplasm, probably due to increased half-life of the protein (Dowell et al 1994, Cancer Res, 

Soussi , 2000, Ann N Y Acad Sci. ). Indeed, sunlight- induced mutations are found in p53 in 

actinic keratoses, the precancerous lesion of for SCC. In addition, it has been shown that 

mutations at particular p53 codons are present in sun exposed normal human skin and UV 

irradiated mouse skin (Ziegler et al, 1994, Nature. Nakazawa et al, 1994, Natl Acad Sci U SA, 

Jonason et al, 1996, Proc Natl Acad Sci U S A.) 

Sunlight has been shown to be a tumorigenic mutagen and tumour promoter by favouring 

the clonal expansion of p53 mutated cells. The role of UV in carcinogenesis is also supported 

by the observation that most human precancers (Marks et al, 1986, Br J Dermatol.) and UV 

induced clusters of p53 overexpressing cells in mouse skin (Berg et al 1996, Proc Natl Acad 

Sci U S A ) regress in the absence of continued exposure. The dermal-epidermal junction and 

hair follicles are the locations of the presumed stem cells in skin (Lavker et al 1993, Recent 

Results Cancer Res.) and appear to be the source of tumours in experimental animals (Miller 

et al,1993, J Invest Dermatol.). It is therefore thought that normal sun exposed skin carries a 

substantial burden of keratinocyes predisposed to cancer (Jonason et al, 1996, Proc Natl 

Acad Sci U S A.). The ubiquitin proteasome pathway rapidly degrades wild type p53 in 

normal tissue (Maki et al 1996, Cancer Res.). Thus, high level of p53 expression is seen in 
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cutaneous SCC and other tumours in contrast to the low levels found in non-malignant 

tissue.  

Clonal expansion of p53 mutated cell would be favoured if a p53 mutation confers 

resistance to apoptosis resulting from UV exposure (Ziegler A, 1994,Nature). Such 

resistance would allow sunlight to act as tumour promoter by killing normal cells and 

sparing the mutants (Ziegler A, 1994,Nature.). After surviving irradiation, these mutant 

cells could then clonally expand into vacated compartments (Jonason et al, 1996,Proc Natl 

Acad Sci U S A.). 

4.2 p63  

p63 is a p53 homologue that is mapped to chromosome 3q27. This gene encodes six different 

isoforms, which have either transactivating or dominant negative effects on p53-reporter 

genes. p63 is a reliable keratinocyte stem cell marker involved in the maintenance of the 

stem cell population . It is expressed in the nuclei of epidermal basal and suprabasal cells, 

cells of the germinative hair matrix and the external root sheath of hair follicles, basal cells of 

the sebaceous gland and in the myoepithelial /basal cells of the sweat glands. p63 has a 

nucleoplasmic distribution in the basal compartment of stratified epithelia such as skin, 

tonsil, bladder, and certain subpopulations of basal cells in prostate, breast, uterine cervix 

and bronchi (Wang et al, 2001, Hum Pathol; Quade et al, 2001, Gynaecol Onco; Di Como et al, 

2002, Clin Cancer Res). All terminally differentiated cells stain negative for p63. The p63 is 

restricted to cells with high proliferation and absent from cells undergoing terminal 

differentiation (Parsa et al, 1999, J Invest Dermatol). p63-deficient mice have striking 

developmental defects such as absence or truncation of limbs, absence of hair follicles, teeth 

and mammary glands, and the skin lacks stratification and differentiation (Mills et al, 1999, 

Nature). This indicates that p63 is essential for several aspects of differentiation during 

embryogenesis. Several isoforms of p63 can bind to p53 consensus sequences and activate 

p53 target genes. p63 is only rarely mutated in BCC ( Little et al. , 2002, Int J Biochem Cell Biol 

). p63 functions not only as a stem cell marker of keratinocytes but also maintain the stem 

cell phenotype. In keeping with its basal localisation in normal epidermis, BCC cells express 

p63 (Di Como et al, 2002, Clin Cancer Res, Dellavale et al, 2002, Exp Dermatol). It was shown 

that aberrant expression of p63 altered the UVB induced apoptotic pathway that down 

regulation of this protein in the response to UV irradiation is important in epidermal 

apoptosis (Liefer et al, 2000, Cancer Res). 

Although it has been described that in contrast to p53, p63 seems not to be associated with 

tumor predisposition, as neither p63 knockout mouse models nor germline p63 mutations 

are related to an increased risk of tumourigenesis; its role in the pathogenesis of SCC is 

becoming more convincing. Using immunohistochemistry techniques undifferentiated cells 

of grade III SCCs showed strong positivity for p63 (Reis-Filho et al 2002, J Cutan Pathol.). 

The SCCs in situ showed remarkable expression of p63 in all cell layers. Terminally 

differentiated squamous cells were either negative or showed only focal immunoreactivity 

in the carcinomas. p63 is consistently expressed in the basal cells of epidermis and 

cutaneous appendages, including the basal/myoepithelial cells of sweat glands. These 

probabilities favour that p63 might play a role in the pattern of differentiation and in the 

oncogenesis of usual carcinomas of the skin (Reis-Filho et al 2002, J Cutan Pathol.). 
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4.3 PTCH  

A major breakthrough in understanding BCC tumourigenesis came from the study of 

patients with Nevoid Basal Cell Carcinoma Syndrome (NBCCS) an autosomal dominant 

disease whose symptoms include developmental abnormalities and a predisposition to 

multiple BCC. The disease is linked to chromosome 9q22, which harbours the PTCH gene 

where inactivating germline mutations have been found in these patients (Hahn et al, 1996, 

Cell; Johnson et al, 1996, Science). Somatic PTCH mutation has also been described in sporadic 

BCC (Azsterbaum et al, 1998, J Invest Dermatol, Gailani et al. 1996, Nat Genet). In accordance 

with a tumour suppressor mechanism for PTCH, loss of the wild type allele has been 

demonstrated in BCC from both NBCCS patients and in up to 68% of sporadic BCC (Gailani 

et al. 1996, Nat Genet). 

Although most SCC carry a mutation in the p53 gene, they have also been shown to display 

PTCH mutations (Ping et al, 2001,J Invest Dermatol.) and allelic loss of PTCH gene 

(Ahmadian et al 1998,Oncogene.) and an increased incidence of SCC has been observed in 

UV irradiated heterogeneous PTCH knock out mice (Aszterbaum et al, 1999, Nat Med). The 

introduction of wild-type PTCH into human SCC lines that express mutant PTCH has been 

shown to suppress their oncogenic potential (Koike et al 2002, Oncogene). These finding 

implicate the role of PTCH in development of SCC in addition to its established association 

with the development of BCC (Asplund et al 2005, Br J Dermatol.) However, the association 

between PTCH and cutaneous SCC development remains controversial as a previous 

investigation of the PTCH status in cutaneous SCC failed to identify mutations on such 

cases (Eklund et al 1998, Mol Carcinog). Consistently, PTCH LOH has not been found to be 

as frequent in SCC, indicating a lesser importance of PTCH gene in SCC development 

(Asplund et al 2005, Br J Dermatol.) 

4.4 Hedegehog signalling and BCC development 

PTCH is the human homologue of the Drosophila patched (ptc) gene which encodes Ptc 

protein. Ptc a part of a receptor for the diffusible morphagen Hedgehog (Hh). In Drospophila 

Hh signalling is essential for the control of segment polarity during development. Hh is 

expressed in the Hensen node, the floorplate of the neural tube, the early gut endoderm, the 

posterior limb buds and throughout the notochord, and encodes a signal responsible for 

patterning the early embryo (Kim et al, 2002, J Dermatol Sci, Bodak et al, 1999, Proc Natl Acad 

Sci USA, Bale et al, 2001, Hum Mol Genet). 

Ptc negatively regulates Hh signalling through inhibition of a transmembrane signalling 

protein Smoothened (Smo). There is some evidence that Ptc may influence the localisation or 

intramembrane conformation of Smo (Sprong et al, 2001, Nat Rev Mol Cell Biol). Binding of 

Hh to Ptc releases Smo inhibition leading to intracellular signalling involving Costal-2, 

Fused and Suppressor of Fused proteins (Stone et al, 1999, J Cell Sci). This leads to activation 

of GSK3ǃ which stimulated the release of a transcription factor Cubitus interrruptus (Ci) 

that regulates the expression of important genes involved in Drosophila cell proliferation 

including dpp, wingless and ptc. The Hh signalling pathway is highly conserved, where it is 

involved in determining cell fate and organogenesis in different species including humans 

(Wicking et al, 1999, Oncogene). 
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In humans, it is thought that signalling operates in a similar fashion to that described in 
Drosophila. To date, disrupted expression of the human homologues of Hh (sonic hedgehog; 
SHH), Ptc (PTCH and PTCH2), Smo (SMOH) and Ci (GLI) have been demonstrated in BCC 
tumourigenesis. Overexpression of SHH in transgenic human skin induces features of BCC 
in mice (Fan, 1997, Nat Med, Oro et al, 1997, Science). Furthermore, SHH activating mutations 
have also been described in sporadic BCC (Oreo et al, 1997, Science). SMOH and GLI 
transgenic activation in mice leads to BCC-like cutaneous growths (Xie et al, 1998, Nature, 
Nilsson et al 2000 Proc Natl Acad Sci. USA). SMOH, GLI-1 and GLI-2 are frequently over 
expressed in BCC and SMOH activating mutations have also been described in 20% of 
sporadic BCC’s (Xie et al 1998, Nature; Kallassy, 1997 Cancer Res; Dahmane 1997, Nature; 
Grachtchou, ,2000, Nature Genet ). The consequences of deregulated Hh signalling are 
widespread, as the downstream targets of GLI transcription factors include WNT signalling 
(human homologue of wingless), TGFß (homologue of dpp) BMP2B and BCL-2 (Fan, 1997, 
Nature Med) and may also influence cell cycle control genes including p21WAF1 the D-type 
cyclins and cyclin E (Fan, 1999, J Cell Biol; Duman-Scheel , 2002, Nature).  

4.5 Melanocortin-1 receptor genotype 

As pigmentation influences NMSC risk, the identification of gene variants at the 
melanocortin-1 receptor (MC1R), which control the production of red pigmentation in 
Caucasian individuals, suggest that the allelic variation within this gene should likewise be 
associated with skin cancer risk (Box et al 2001,J Invest Dermatol.) Indeed, gene variations at 
this locus are important in determining susceptibility to melanoma, BCC, SCC and solar 
keratoses (Box et al 2001, J Invest Dermatol.). The association between MC1R variants and 
the propensity to develop solar lesions is mediated largely through three variants, 
Arg151Cys, Arg160Trp, and Arg294His, which are also associated with red hair, fair skin 
colour and tanning ability (Box et al 2001,J Invest Dermatol.). 

4.6 RAS mutations 

Although the role of TSG in the development of SCC is well established, evidence relating to 
the role of dominantly transforming oncogenes in the development of skin cancers is slow to 
emerge. Activating RAS mutations are the most common genetic abnormalities in human 
cancers. Following RAS mutation, MAPK mediated signalling and other pathways are 
activated, resulting in cell proliferation (Shields, 2000, Trends Cell Biol.). Activation of RAS 
oncogenes usually occurs by point mutations within specific codons of the H-RAS, N-RAS, 
and K-RAS genes. Activating H-RAS mutations were observed in 35% to 46% of SCC 
(Kreimer-Erlacher, 2001, Photochem Photobiol., Pierceall, 1991,Mol Carcinog.) and 12% of 
actinic keratoses (Spencer et al , 1995,Arch Dermatol.). Incidences and numbers of skin 
tumors were much greater in Hras128 rats (a transgenic rat line carrying 3 copies of the 
human c-Ha-ras proto-oncogene with its own promoter region) than in their wild-type 
counterparts (Park el al, 2004, Cancer Sci.) 

These data suggest that RAS mutations play an important role in the pathogenesis of SCC. 

4.7 CDKN2A 

The p16(INK4a) and p14(ARF) TSGs are encoded within the CDKN2A locus on 
chromosome 9p21 and function as cell cycle regulatory proteins in the p53 and RB 
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pathways. Loss of heterozygosity of 9p21 markers has been seen in some cases of SCC 
(Brown et al 2004). Mutational analysis has confirmed point mutations that changed the 
amino acid sequence of p16 (INK4a) and p14 (ARF). Promoter methylation of p16 (INK4a) 
and p14 (ARF) has also been detected. Absent protein expression was has been confirmed 
by immunohistochemistry in SCC with biallelic inactivating events. Overall, promoter 
methylation is the commonest mechanism of gene inactivation. Alterations at this locus are 
significantly more common in tumors from immunocompetent compared with 
immunosuppressed individuals (Brown et al 2004, J Invest Dermatol.). UV radiation-
induced mutations in INK4a-ARF have been demonstrated in XP-associated skin 
carcinomas. The simultaneous inactivation of p53 and INK4a-ARF may be linked to the 
genetic instability caused by XP and could be advantageous for tumour progression. 

4.8 Progression and initiation of BCC  

Exposure to UVR is significant in BCC formation and this is reflected in the p53 mutations 

identified; C-T and CC-TT transitions at di-pyrimidine sites. A third of the BCC displaying 

LOH at 9q reveal mutations to PTCH indicative of UVR exposure. However, most mutations 

to PTCH are not typical of exposure. Further, inactivation of the second PTCH allele through 

LOH is unlikely to be due to UVB (Gailani et al, 1996, J Natl Cancer Inst). In addition, ptc 

heterozygous knockout mice (ptc/ptc-) display features of NBCCs syndrome, these mice 

develop microscopic follicular neoplasms similar to trichoblastoma and 40% subsequently 

develop BCC. If exposed to ionising or UVR irradiation these neoplasms occur at a much 

earlier stage and there is a clear shift in histological features to BCC (Aszterbaum et al, 1999, 

Nature Med). Thus, whilst UVR exposure is critical to SCC development, it appears that in 

BCC, UVR exposure may be more important in modifying tumour progression. Further 

characterisation of the role of the Hh signalling pathway should provide new insights into 

BCC carcinogenesis. Identifying the mutations to these BCC genes and the relationship of 

these mutations to environmental carcinogens may explain the variation in phenotype of 

sporadic BCC. It is possible that mutations manifest different phenotypic effects depending 

on the genetic background of the patient (e.g. skin type, hair colour, GST genotype). Whilst 

gene mutation influences tumour development, we can speculate that inter-individual 

variation in genes that protect against exposure to environmental carcinogens may modify 

the effects of exposure to mutation in these target genes. Thus, we have found an increase in 

the incidence of tumour specific p53 mutation and expression in ovarian cancer patients 

with GSTM1 null genotype (Sarhanis et al 1996, Br J Cancer). In addition, CYP3A and CYP2D6 

activities and the GSTM1 null genotype have been associated with mutations to p53 and RB 

and are associated with aggressiveness in bladder carcinoma (Romkes et al, 1996, 

Carcinogenesis).  

5. Pharmacogenomics  

As discussed above, UV radiation induced oxidative stress and mutagenic DNA lesions 

formed by reactive oxygen species (ROS) are pivotal in the pathogenesis of SCC. Clinical 

treatments inducing chronic oxidative stress may therefore carry a risk of therapy-related 

cancer. Immunosuppression by azathioprine (Aza) has been proposed as one such 

treatment. Biologically relevant doses of ultraviolet A (UVA) generate ROS in cultured cells 
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with 6-thioguanine substituted DNA and 6-thioguanine and UVA are synergistically 

mutagenic (O'Donovan et al, 2005, Science.). 

Kidney transplant recipients receiving cyclosporine, azathioprine, and prednisolone have a 

significantly (2.8 times) higher risk of cutaneous SCC relative to those receiving azathioprine 

and prednisolone alone (Jensen et al, 1999, Am Acad Dermatol) suggesting a tumourigenic 

role of cyclosporine based immunosuppressive therapy. Both cyclosporine and ascomycin 

inhibit removal of cyclobutane pyrimidine dimers, and UVB-induced apoptosis (Yarosh et 

al, 2005, J Invest Dermatol.). UVB induces nuclear localization of the transcription factor 

nuclear factor of activated T-cells (NFAT), a process blocked by cyclosporine and ascomycin 

(Yarosh et al, 2005, J Invest Dermatol. ) These data suggest that the increased risk of skin 

cancer observed in organ-transplant patients may be as a result of not only systemic 

immune suppression but also the local inhibition of DNA repair and apoptosis in skin by 

calcineurin inhibitors(Yarosh DB et al, 2005, J Invest Dermatol.) 

Thus, cancer is an increasingly recognized problem associated with immunosuppression. 

However, in contrast to cyclosporine which protects allografts from rejection but promotes 

cancer progression in transplant recipients, immunosuppressive agent rapamycin has been 

found to simultaneously protect allografts from rejection and attacks tumors in a complex 

transplant-tumor situation (Koehl et al, 2004,Transplantation.). In vitro experiments have 

shown that cyclosporine promotes angiogenesis by a transforming growth factor-beta-

related mechanism, and that this effect is abrogated by rapamycin (Koehl et al, 2004, 

Transplantation.). Various surgical and non- surgical therapies are available for the 

treatment of BCC (Albright et al, 1982, J Am Acad Dermatol). In spite of the fact that surgical 

excision is still the most prominent therapy used, non –invasive therapies such as 

photodynamic therapy (PDT) (Thissen et al, 2000, Br J Dermatol), or topical application of 5-

fluorouracil (5-FU) (Miller, 1997, J Am Acad Dermatol) are currently becoming more and 

more interesting in selective cases, especially because of the improved cosmetic outcome.  

5.1 Induction of apoptosis 

Many currently used antineoplastic agents exert their therapeutic effects through the 

induction of apoptosis. Different cell types vary profoundly in their susceptibility, 

suggesting the existence of distinct cellular thresholds for apoptosis induction (Fisher, 1994, 

Cell). For example, BCC cells overexpressing IL-6 are resistant to UV irradiation and PDT – 

induced apoptosis (Jee et al, 2001, Oncogene). de novo p53 synthesis or stabilisation of p-53 is 

essential to induce apoptosis in BCC ( Jee et al, 1998, J Invest Dermatol). Overexpression of the 

antiapoptotic bcl-2 has also been linked to resistance of cancers to various chemotherapeutic 

drugs (Huang, 2000, Oncogene). In BCC, interferon (IFN)-ǂ induces apoptosis and is thus 

effective in the treatment (Rodriguez- Villanueva et al, 1995, Int J Cancer). Untreated BCC cells 

express FasL but not the receptor, but in IFN-ǂ - treated BCC patients, the tumour cells 

express both FasL and receptor, whereas the peritumoural infiltrate mainly consists of Fas- 

receptor- positive cells (Buechner, et al, 1997, J Clin Invest). Therefore, with IFN- ǂ treatment, 

BCC most likely regress through apoptosis. 

The regression of tumours treated with 5-FU is probably caused by enhancing apoptosis in 

the tumour cells (Brash, 1998, Cancer Surveys). Apoptosis is involved in the regression of 
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actinic keratoses after PDT (Nakaseko et al, 2003, Br J Dermatol).This therapy is also used for 

treatment of BCC, (Kalka, 2000, J Am Acad Dermatol), where tumour cells may also undergo 

apoptosis. 

Phytochemicals known to induce apoptosis are also being applied in cancer prevention and 

therapy (Hoffman et al, 1999, Cancer and the search for selective biochemical inhibitors, CRC Press). 

In mice bearing skin tumours, tumour growth was inhibited by 70% after treatment with 

black tea, which was established by inhibition of proliferation and enhanced apoptosis (Lu et 

al, 1997, Carcinogenesis). Ajone, an organosulphur compound of garlic (Apitz- Castro et al, 

1988, Arznei-Mittelforschung) has been shown to induce apoptosis in human 

promyeloleukaemic cells (Dirsch, 1998, Mol- Pharmacol). Recently, it was shown that ajone 

can induce apoptosis in the human keratinocyte cell line HaCat and has a diminishing on 

BCC in vivo by down–regulating the expression of the apoptosis- suppressing protein Bcl-2 

(Tilli et al, 2003, Arch Dermatol-Res). A SHH antagonist, the Veratrum alkaloid cyclopamine 

(11-deoxojervine) can be used to treat BCC (Taipale et al, 2000, Nature). Interestingly 

cyclopamine binds directly to Smoothened, which explains its activity in tumours 

characterised by activated SHH pathways (Chen et al, 2002, Proc Natl Acad Sci USA). 

Interestingly its application to the surface of the tumour resulted not only in the rapid 

induction of apoptosis but also influenced the differentiation status 7 of 7 tumours (Tas et al, 

2004, Eur J Dermatol) 

5.2 Modulation of differentiation 

Systemic retinoids are frequently used for chemoprevention of cutaneous malignancies in 

organ transplant recipients (Chen et al, 2005, Br J Dermatol.). Retinoids (vitamin A 

metabolites and analogues) have been shown to have suppressive effects on tumour 

promotion when administered in high doses, and the mechanism appears to be associated 

with modulation of growth, differentiation and apoptosis (Lotan et al, 1996, Faseb J). 

Retinoids are most effective in patients with multiple previous non-melanoma skin cancers 

(Kovach et al, 2005,Clin Transplant.) Low-dose systemic retinoids significantly reduce SCC 

development in organ transplant recipients for the first 3 years of treatment, and this effect 

may be sustained for at least 8 years (Harwood et al, 2005,Arch Dermatol.) It has been shown 

that retinoic acid is effective in inhibiting telomerase activity in HSC-1 human cutaneous 

squamous cell carcinoma cells (Kunisada et al, 2005,Br J Dermatol. ).  

5.3 Immunomodulation 

Because BCCs often elicit a strong inflammatory response, recent studies have sought to 

evaluate the effects of immunomodulatory compounds. On of the most promising is 

imiquimod, a Toll- like receptor 7/8 agonist that enhances the endogenous cytokine 

response (INF- ǂ, IL-10, TNF-) among others stimulating the T- helper 1 – mediated 

inflammatory responses. 

6. Conclusions/ future directions 

In the past decade, significant progress has been made, in understanding the molecular 
genetics of NMSC and the molecular pathways involving tumour suppressor genes and 
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oncogenes. Research into immune response to p53 had led to promising therapeutic 
potential. p53-specific cytotoxic T lymphocytes capable of mediating protective immunity to 
tumours have been generated in murine models (Black et al, 2003,Clin Exp Immunol.). 
Adoptive transfer of p53 specific cytotoxic T lymphocytes generated in p53-/- mice confers 
immunity on the recipient to p53 overexpressing murine tumour (Vierboom et al, 1997,J Exp 
Med.). As p53 is over expressed in cutaneous SCC, vaccination against p53 is a logical 
approach to induce tumour reactive immunity (Black et al , 2003,Clin Exp Immunol.) 
Vaccines used to induce p53 specific immune responses in mice have included, Canary pox 
virus vectors (Roth et al, 1996,Proc Natl Acad Sci U S A.), peptide pulsed dendritic cells 
(Mayordomo et al, 1996, J Exp Med. ), recombinant adenovirus transduced dendritic cells 
(Ishida et al, 1999, Clin Exp Immunol., Nikitina , 2002,Gene Ther.), recombinant DNA, 
(Petersen et al, 1999,Cancer Lett.) recombinant vaccinia virus (Chen et al, 2000, Cancer Gene 
Ther. ) and pulsed human monocyte-derived dendritic cells (Tokunaga et al, 2005,Clin 
Cancer Res.). However, besides p53, many genes are involved in the pathogenesis of SCC 
and an understanding into the genomic of SCC is far from complete. It is very likely that 
new genetic and molecular pathways for SCC genesis will unravel in the future, hopefully 
leading to novel therapies. 

Clearly exposure to UVR is an important initiating factor in skin cancer, though the exact 
relationship between BCC risk and nature, extent and timing of exposure remains poorly 
understood. More recently, the influence of genetic factors influencing BCC susceptibility 
has been an area of intense interest with many genes having a similar impact as traditional 
risk factors such as skin type. Data so far suggests that risk of sporadic BCC is likely to 
result from the combined effect of many genes (defining distinct areas of biochemical 
activity) each with a relatively weak individual contribution, rather than a small number of 
highly influential genes. 

Presumably, the effect of disruption of these biochemical activities will result in 
dysregulation of expression of key TSG or oncogenes. In this regard, the function of the 
hedgehog signalling pathway appears critical in BCC development. Though the PTCH gene 
has been suggested to be the ‘gatekeeper’ for BCC development, future studies will need to 
address the role of other members of this pathway. There are no studies to date focusing on 
the interaction between susceptibility genes and mutational events in TSG in BCC; this may 
represent a way forward. 
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