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1. Introduction 

In the second half of the twentieth century, high rates of land use and land cover (LULC) 
change with severe deforestation trends have caused ecosystem degradation and 
biodiversity loss all throughout the tropical and sub-tropical belts (Lambin et al. 2003). 
Estimating the rate of change in tropical forest cover has become a crucial component of 
global change monitoring. For example, the viability of worldwide schemes such as the 
reduction of emissions from deforestation and degradation (REDD) depends on an accurate 
change estimate. Much research has covered the subject of tropical deforestation and 
degradation (Achard et al., 2010), however, there is so far very little information on the 
accuracy of quantitative estimates, leaving much room for uncertainty at regional and global 
scales. In Mexico, for example, the national projections for the rate of deforestation in the 
past three decades have ranged from 260,000 to 1,600,000 ha/year according to the record of 
academic studies and official reports (Velázquez et al., 2002). The estimate depended on the 
total area under study, on remote sensing materials and ground measurements involved in 
the computation of change rates, but above all none of the studies did contemplate a 
sampling scheme that would permit the computation of error margins for the rate of change. 
As a consequence, the alleged recent reduction in deforestation is subject to much political 
controversy in Mexico. Although, recent advances in Geographic Information Science (GIS) 
have been made for the accuracy assessment of maps, a standard method for assessing land 
cover change has not yet been established.  

This chapter presents a methodological framework for the measurement of tropical 
deforestation in Southeast Mexico, based on the experience of accuracy assessment of 
regional land cover maps and on-site measurements of tropical forest cover in Mexico. In 
this chapter, we first describe the status of the accuracy assessment of forest cover change 
maps, an emerging branch of research in GIS. We review the studies that relate to the 
measurement of deforestation in Mexico and focus on studies where the method for 
measuring forest cover change is explicitly described. Another section is dedicated to the 
challenges related to forest canopy change definitions for the assessment and to a sampling 
design that would encompass the extent of both change and non-change classes. We discuss 
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the need for systematic data as one of the technical limitations to achieve robust estimates. 
The next sections focus on the framework that is being developed as well as the planned 
application of the framework in the case of forest cover maps in Southeastern Mexico. As a 
conclusion, special emphasis lies on the distinctive features which make this case a 
pioneering experience for deforestation assessments as well as a possibly valuable 
benchmark for cartographic agencies dealing with forest cover mapping in other sub-
tropical regions of the world. Recommendations are drawn for the design of future REDD 
norms and regulations in Mexico.  

2. A review of forest cover change studies and reliability issues 

2.1 Deforestation globally and the emergence of REDD 

According to the Global Forest Assessment of the year 2010, tropical deforestation is estimated 
at   16 million ha per year in the period 1990-2000, and a 13 million ha per year in the period 
2000-2010 (FAO, 2010). This assessment is a report from the Food and Agriculture 
Organization (FAO), based on a global database of national estimates of forest area change for 
the period 1990-2010. These figures reflect in fact a significant institutional effort, at national 
level, of many sub-tropical countries, for tropical forest mapping since the 1980s. It is thought 
that the estimated reduction of net forest loss between the 1990s and 2000s is largely due to 
afforestation, natural forest regrowth, reforestation and forest plantations (Achard et al., 2010). 
However, the gross deforestation rate is still unacceptably high by the standards of global 
change processes that have trespassed several internationally recognized planetary boundaries 
(Rockström et al., 2009), especially biodiversity loss and climate change.  

Carbon emissions and fluxes from fossil fuels, cement production and various non-tropical 
land use changes, mainly as a result of our modern urban consumption habits worldwide, 
contribute for an estimated 85% of the anthropogenic emissions of greenhouse gases, a major 
driver of climate change (van der Werf, 2009). The remaining 15% is contributed by 
deforestation, as well as peat and forest degradation in the tropics, principally through the 
release of carbon dioxide. This latter emission, estimated at 1.5 +- 0.4 GtC yr-1 is considered 
significant in the global carbon budget. As a consequence, international discussions were 
initiated at the United Nations Framework Convention on Climate Change (UNFCCC) 11th 
Conference Of Parties (COP 11, 2005) on the issue of REDD in sub-tropical countries. The need 
to provide incentives for REDD was, however, not mentioned until COP-15 (Copenhagen 
Accord, 2009) in the final declaration of the Heads of State and governments. This declaration 
encourages the 'immediate establishment of a mechanism including REDD-plus to enable the 
mobilization of financial resources from the developed countries'. Decision 4/CP.15 deals with 
the establishment of 'robust and transparent national forest monitoring systems and, if 
appropriate, sub-national systems'. Indeed, the largest uncertainties of the global carbon 
budget are on the side of the land-use change balance (IPCC fourth Assessment report: 
Solomon et al., 2007). Sub-tropical countries are thus expected to demonstrate that they are 
fulfilling requirements in the framework of the REDD mechanism.  

2.2 Forest cover change studies in Mexico 

In the United States of Mexico (USM, hereafter ‘Mexico’), according to official information in 
2007, the extent of forest ecosystems (tropical and temperate forest) was estimated at 65.3 
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million hectares, which means a significant loss compared to an estimated 69.2 million 
hectares in 1993. However, the official document "Mexico’s REDD+ vision" (CONAFOR, 
2010), states that the country went from losing on average 354,035 hectares of forest extent 
each year for the period 1993-2002 to 155,152 ha for the period 2002 -2007. This means a 
decrease in deforestation rates of over 50%, highlighting the fact that for the last 5 years 
99.9% of the deforestation has occurred in the tropical forests. 

This information on deforestation is built on the basis of visual interpretation of medium 
resolution satellite imagery at the national level (1:250 000 scale) (Mas et al., 2002). As a 
consequence the interpretation of the deforestation phenomenon is limited to this scale. 
Additionally, an explicit estimate of error margins for this calculation is not provided. In 
fact, numerous studies in the country have focused on measuring deforestation, but the 
diverging results have contributed to a perception of high uncertainty and none has been 
able to offer error margins to the calculations. This situation of high discrepancies about the 
forest cover loss is illustrated in table 1, where academic studies and official sources are 
separated and compared. 
 

           Academic sources Official sources 

Source (ha/year) Source (ha/year) 

Grainger, 1984 1,600,000  FAO, 1988 615,000 

Repetto, 1988 460,000  SARH, 1992 365,000 

Castillo et al., 1989 746,000  SARH, 1994 370,000 

Myers, 1989 700,000  FAO, 1995 678,000 

Toledo, 1989 1,500,000  FAO, 1997 508,000 

Masera et al., 1997 668,000  CONAFOR, 2004 260,000 

Velázquez et al., 2002 550,000  FAO (Torres, 2004) 775,800 

Sánchez-Colón et al., 2008 484,000  SEMARNAT, 2006 365,000 

Sum 6,708,000  Sum 3,936,800 

Average 838,500  Average 492,100 

Stdev ±451,417  Stdev ±181,851 

Table 1. Deforestation rates estimated in Mexico for the last three decades. 

Variations in the inputs, projections, scale and timing, have probably contributed to the high 
variability of the results, and many difficulties have hampered efforts for a unified 
methodology that might have permitted statistical information on its reliability. Estimates of 
rates of deforestation seem contradictory and a consequence is a low credibility of the 
sources and an institutional weakness at designing regulation policies. 

Since 2001, the National Commission of Forests (CONAFOR), dependent of the National 
Environmental Agency in Mexico (SEMARNAT), is in charge of updating the vegetation 
cover and its change in Mexico, in parallel with the regional LULC cartography produced by 
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the National Institute of Statistics, Geography and Informatics (INEGI: 2002 ‘Serie III’ map, 
and 2007 ‘Serie IV’ map). None of this cartography to date has been generated with an 
international standard accuracy assessment scheme as described in this chapter. Since 2004, 
CONAFOR has established a periodical forest inventory every 5 years (‘Inventario Nacional 
Forestal y de Suelos’, INFyS: CONAFOR, 2008); The Mexican territory is monitored, based 
on a systematic grid of ground plots over the entire vegetation cover of Mexico. 

2.3 Accuracy assessment of maps 

Global reports on deforestation and forest degradation stem from the FAO and are based on 
a global database of national estimates of forest area change. These national estimates are 
obtained through governmental agencies of sub-tropical countries, using Land Use/ Land 
Cover (LULC) maps at a regional scale, intermediate between local (> 1:50,000) and 
continental (1:5,000,000). However, the quality of these LULC maps are usually 
unquestioned, taken for granted, just as if each spatial unit on the map perfectly matched 
the key on the map, which in turn perfectly matched ground reality. The minimum 
mapping unit, which defines the scale of the map, is commonly the only information 
available about the spatial accuracy of these maps and no statistically grounded reliability 
study is applied as a plain step of the cartographic production process. 

Since the 1990s, the classification of satellite imagery has become the standard for LULC 
mapping programs at the regional scale. However, the classification process is affected by 
different types of error (Green and Hartley, 2000; Couturier et al., 2009) related in part to the 
limited discrimination capacity of the spaceborne remote sensor. Indeed, the difficult 
distinction, on the satellite imagery, between categories (or ‘thematic classes’) of a 
cartographic legend (e.g. a density grade of a forest cover) can cause a high percentage of 
errors on the map, especially maps that were generated by coarse resolution, global satellite 
sensors. This is why a forest management policy whose strategy is simply ‘process map 
information and rely on the quality of the map’ is highly questionable.  

In Mexico, as discussed earlier, none of the regional cartography is evaluated using a 
statistically grounded assessment. This is most unfortunate since the statements of the 
CONAFOR governmental agency on recent deforestation rates is based on these maps 
(online geoportal: CONAFOR, 2008). These official statements and figures are then passed 
unquestioned on to the FAO database. Moreover, the absence of such estimate indicates that 
these figures stand without error margins, and as such, without statistical validity, so that 
the deforestation rate may remain the focus of controversial academic and public 
discussions nationwide. It is worth stating that the online availability of the satellite imagery 
– a feature advertized by this governmental agency - does not increase the reliability of a 
parameter derived from the imagery. The extraction of the parameter based on colour tones 
of the satellite imagery available online is far from trivial and it is simply impossible for a 
user to quantitatively derive the global reliability of the cartography from internet access to 
the imagery.  

An error bar is sometimes present aside the legend of National Institute of Statistics and 
Geography (INEGI) maps and indicates an estimate of positional errors in the process of 
map production. However, the procedure leading to this estimate is usually undisclosed, 
and any objective interpretation of this estimate by the user is thus discouraged (Foody, 
2002). Moreover, such error bar indicates a very reduced piece of information with respect 
to the thematic accuracy of the map. 
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Fig. 1. National Forest Inventory map of Mexico in the year 2000 (taken from Mas et al., 2002) 

Instead, the accuracy of a cartographic product is a statistically grounded quantity, which 
gives the user a robust estimate of the agreement of the cartography with respect to reality. 
Such estimate is essential when indices derived from cartography – i.e.  spatial extent 
statistics, deforestation rates, land use change analysis - are released to the public or to 
intergovernmental environmental panels. The accuracy of a map also serves as a 
measurement of the risk undertaken by a decision maker using the map. On the other hand, 
this information also allows error propagation modeling through a GIS (Burrough, 1994) in 
a multi-date forest monitoring task. The construction of the statistically grounded accuracy 
estimate is generally named ‘accuracy assessment'.  

Assessing the accuracy of LULC maps is a common procedure in geo-science disciplines, as 
a means, for example, of validating automatic classification methods on a satellite image.  
Generally, map accuracy is measured by means of reference sites and a classification process 
more reliable than the one used to generate the map itself. The classified reference sites are 
then confronted with the map, assuming that the reference site is “the truth”. Stehman and 
Czaplewski (1998) have proposed a standard structure for accuracy assessment designs, 
which are divided into three phases: 

1. Representative selection of reference sites (sampling design),  
2. Definition, processing and classification of the selected reference sites (verification 

design), 
3. Comparison of the map label with the reference label (synthesis of the evaluation).  

Agreement or disagreement is recorded in error matrices, or confusion matrices (Card, 
1982), on the basis of which various reliability (accuracy) indices may be derived. For 
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regional scale LULC maps, because of budget constraints and the large extension of the 
map, the complexity of accuracy assessments is increased. Only relatively recently, 
comprehensive accuracy assessments have been built and applied to the regional or 
continental LULC maps. In Europe, Büttner and Maucha (2006) reported the accuracy 
assessment of 44 mapped classes (including 3 forest classes) of the CORINE Land Cover 
(CLC) 2000 project. In the United States of America (USA), Laba et al. (2002) and Wickham 
et al. (2004) assessed the accuracy of 1992 maps of, respectively, 29 and 21 LULC classes for 
the Gap Analysis Project (GAP) and the National Land Cover Data (NLCD). As a part of the 
Earth Observation for Sustainable Development (EOSD) program of Canada, Wulder et al. 
(2006) provide a review on issues related to these three steps of an accuracy assessment 
design for regional scale LULC cartography, and the accuracy of this program is assessed in 
the Vancouver Island for 18 classes (Wulder et al., 2007).  

A noteworthy study in a sub-tropical area is the one in South and Southeast Asia (Stibig et 
al., 2007), with an accuracy assessment obtained at the biome level. A study at the biome 
level does allow a deforestation study (forest – non forest change) with error margins, but 
does not allow a land cover change study with more detailed processes (e.g. ‘forest to forest 
with alteration’), also important in REDD management requirements. Another study deals 
with the accuracy assessment of the National Forest Inventory (NFI) 2000 cartography in 
Mexico (figure 1). This assessment was carried out in four eco-geographical areas (Couturier 
et al., 2010).  

2.4 Accuracy assessment of forest cover change maps 

Operational forest mapping at the national level using satellite imagery is now a regular 
task for most of the sub-tropical countries. However, reducing the uncertainty in the 
national and global carbon budget for REDD mechanisms requires the capability to estimate 
changes of forest extents in a reliable manner. Technical capabilities and statistical tools 
have advanced since the early 1990s. Methods have been implemented for forest cover 
change at national level(e.g. Velázquez et al., 2002), based on either coarse (e.g. Advanced 
Very High Resolution Radiometer (AVHRR), Moderate Resolution Imaging 
Spectroradiometer (MODIS), SPOT-VEGETATION) or medium (e.g. Landsat, SPOT) 
resolution sensors or a combination of both: 

 Identification of areas of rapid forest cover change from coarse resolution imagery 

 Analysis of wall-to-wall coverage from coarse resolution imagery to identify locations 
of large deforestation fronts for further analysis with a sample of medium resolution 
imagery 

 Analysis of wall-to-wall coverage from medium resolution imagery from visible or 
radar sensors 

Several studies state that coarse resolution imagery alone should not be used to map 
changes in forested areas, owing to uncertainty levels (e.g. Achard et al., 2010, Couturier, 
2010), which are higher than levels of area changes (Fritz et al., 2009). Land cover maps 
obtained through coarse resolution imagery can serve as a prior stratification against which 
future change can be assessed. The use of medium resolution imagery for historical 
assessment of deforestation has been boosted by the recent free availability of the Landsat 
Global Land Survey Database(www.glovis.usgs.gov). However, in all cases no accuracy 
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assessment (with a sampling design and higher resolution imagery) of forest cover change 
has been achieved.   

A method has been developed at South Dakota State University (SDSU), as part of the 
NASA Land Cover and Land Use Change program, to improve the measurement of 
deforestation at pan-tropical level (Hansen et al., 2008). The method is based on a prior 
stratification of tropical forests according to forest cover change probabilities derived from 
time series of coarse resolution imagery. An analysis of medium resolution imagery on the 
stratified layer permits a rectification or refinement of the first step stratification. This 
method allowed a targeted sampling of medium resolution imagery, which saves costs 
because of the synergy coarse – medium resolution data. However, the method did not 
provide a rigorous protocol for error estimation. For example, one of the challenging 
features of an assessment design is related to sampling intensity (ratio of sampled surface 
over total studied surface) for the most extended non-change classes. The strategy does not 
precisely address this sampling challenge and the results are possibly affected by a strong 
bias in areas where coarse resolution imagery indicates no-change, because change may 
have been missed due to the limitation of coarse resolution imagery.  

Other academic efforts have focused on making operational the analysis of medium – 
resolution imagery for comprehensive forest change estimation. For example, the Forest 
Resources Assessment 2010 programme (FAO, 2010) prepares a Remote Sensing Survey of 
20 km x 20 km plots placed on an extensive systematic grid (around 0.9% of the land surface 
in sub-tropical areas). This approach is expected to deliver globally to regionally accurate 
estimates of forest cover change in periods 1990-2000 and 2000-2005 for those countries or 
regions where sampling intensity is sufficient (e.g. Brazil: Broich et al., 2009; the entire 
Congo River basin: Duveiller et al., 2008 ). In some regions, this approach has been assessed 
against wall-to-wall cartography based on medium resolution imagery (e.g. for Brazil: Eva 
et al., 2010).  

Whether through wall-to-wall or sample-based approaches, information derived from fine 
spatial resolution imagery is the most appropriate data to rigorously assess the accuracy of 
land-cover change estimation (Achard et al., 2010). For this purpose, the European Space 
Agency (ESA) is launching an action with the Joint Research Council (JRC) to build a 
database of high resolution satellite imagery susceptible to produce better estimates of forest 
cover change in Latin America and South East Asia up to the year 2010. 

Díaz-Gallegos et al. (2010) have proposed and applied an accuracy assessment scheme to 
regional land cover change for the first time in Mexico. The assessed LULC maps are official 
national level INEGI Serie I (year 1978: INEGI, 1980) and National Forest Inventory (year 
2000) maps over several states of Southeast Mexico. The assessment is based on a systematic 
aerial photograph coverage, and is well adapted to available reference material in Mexico. 
However, the sampling intensity (43 pairs of photograph) was probably not sufficient to 
ensure a statistical representation over change and non-change classes. Additionally, some 
features in the sampling design (e.g. stratification per center of aerial photograph) impeded 
the calculation of error margins from the accuracy indexes obtained in the study. 

Finally, on all the above-cited studies (including the popular FRA study), estimates of 
deforestation were considered with a minimum mapping unit above 5 hectares. This means 
only an extensive component of deforestation is measured, and in particular, these estimates 
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do not correspond to the forest definition emitted by FAO as an international standard, as 
will be seen in the next section. 

3. Challenges for the reliable measurement of deforestation 

3.1 Forest definitions and forest cover change definitions 

As adopted by the United Nations Framework Convention on Climate Change (UNFCCC) 
at the 7th Conference of the Parties (COP-7, 2001) under the ‘Marrakesh Accords’, ‘For LULC 
and forestry activities under Article 3, paragraphs 3 and 4 of the Kyoto Protocol 
(http://unfccc.int/kyoto_protocol/items/2830.php), the following definitions shall apply: 
(a) ‘Forest’ is a minimum area of land of 0.05-1.0ha with tree crown cover (or equivalent 
stocking level) of more than 10-30 percent with trees with the potential to reach a minimum 
height of 2-5m at maturity in situ. A forest may consist either of closed forest formations 
where trees of various stories and undergrowth cover a high proportion of the ground, or 
open forest….’ COP-7 further noted that parties recognize that there should be some 
flexibility. To date, most countries are defining forests with a minimum crown cover of 30%.  

As any definition choice would, this official definition (the FAO definition of forest) leads to 
a number of challenges for consistent forest monitoring worldwide. For instance, a 
minimum area of 0.05 – 1.0 ha implies that deforestation (understood officially as the 'direct 
human-induced conversion of forested land to non forested land', UNFCCC, Marrakech 
Accords, 2001) can certainly not be derived from cartography at 1:250,000 scale (whether 
generated by medium or coarse resolution imagery); Clearings due to the establishment of 
large scale mechanized agriculture may be detectable on the coarse scale map but not the 
removal of forest patches of 0.05 – 1.0 ha. Therefore, coarse scale cartography may detect the 
amount of a specific type of deforestation, which is not deforestation under FAO definition. 
However, this specific type of deforestation (large area deforestation) is the one reported in 
FAO worldwide reports and not FAO defined deforestation. It seems though that the FAO 
definitions of forest and deforestation agreed under the UNFCCC will also serve as a 
reference for the future REDD mechanism (The Marrakech Accords).  

A difficulty in any definition of forest cover change is to handle a sufficiently small minimum 
area of forest (e.g. 0.5 ha in the FAO definition) and a compatible scale of the available 
cartography from governmental agencies. Another potential difficulty is related to the variety 
of vegetation types in a diverse environment, some within the FAO definition of forests and 
some outside this definition but within the 'Other Forested Land' (OFL) definition. At national 
level it may be desirable to count the removal of such vegetation cover as deforestation 
because of its ecological function. Yet the inclusion of many vegetation types within the 
deforestation count may cause greater levels of uncertainty in deforestation figures. 
Additionally, there is no official definition of forest degradation, but in a REDD-plus context, it 
is directly related to a loss of carbon stocks in forests due to human activities.  

3.2 The sampling design challenge  

Apart from the forest definition issue, the a posteriori (posterior to mapping efforts) spatial 
detection of estimated change, and the general dominance of non-change on the map, both 
pose a challenge for their validation with reference sites. The selection of reference sites is a 
statistical sampling issue (Cochran, 1977), where strategies have varied according to the 
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application and complexity of the spatial distribution. Stehman (2001) defines the 
probability sampling, where each piece of mapped surface is guaranteed a non-null 
probability of inclusion in the sample, as being a basic condition for statistical validity. In 
most local scale applications, reference sites are selected through simple random sampling. 
Two-stage (or double) random sampling has been preferred in many studies in the case of 
regional cartography; in a first step, a set of clusters is selected through, for example, simple 
random sampling. This technique permits much more control over the spatial dispersion of 
the sample, which means much reduction of costs (Zhu et al., 2000), and was adopted in the 
first regional accuracy assessments in the USA, for LULC maps of 1992 (Laba et al., 2002; 
Stehman et al., 2003).  

A random, stratified by class sampling strategy means that reference sites are sampled 
separately for each mapped class (Congalton, 1988). This strategy is useful if some classes 
are sparsely represented on the map and, therefore, difficult to sample with simple random 
sampling.  This strategy was adopted by Stehman et al. (2003) and Wickham et al. (2004) at 
the second stage of a double sampling design and might be useful for the assessment of 
change classes.  

Finally, systematic sampling refers to the sampling of a partial portion of the mapped 
territory, where the portion has been designed as sufficiently representative of the total 
territory. This strategy, adopted as a first stratification step, is attractive for small scale 
datasets and reference material of difficult access. Wulder et al. (2006) define a systematic 
stratum for the future (and first) national scale accuracy assessment of the forest cover map 
in Canada.  

4. A framework for deforestation measurement with error margins 

This research proposes a framework for reliable deforestation measurement in Mexico, with 
key features based on forest definitions and sampling design. This framework is aimed at 
contributing to technical specifications for REDD monitoring in Mexico. 

4.1 Remote sensor discrimination capacity 

As discussed earlier, the deforestation according to UNFCCC talks (FAO definition) cannot 
be derived through coarse scale (e.g. 1:250,000) data because the minimum area of 0.05 – 1.0 
ha is not resolved by coarse scale data. Clearings for large agriculture (usually) mechanized 
projects or for a massive newly settled migrant population (e.g. relocation programs in 
Indonesia, colonization of land in the Amazon), may be detected with coarse resolution 
imagery based on digital analysis (see PRODES (2010) in Brazil). On the contrary, small 
agricultural clearings or clearings for peripheral settlements require higher resolution data 
(< 50m x 50m, achieved by medium resolution imagery). Even smaller clearings or 
degradation of the forest canopy require high resolution (10m x 10m or smaller) imagery 
and a greater visual control on the interpretation of the imagery.  With the  experience from 
earlier studies, we propose to handle three levels of sensor discrimination capacity for the 
assessment of deforestation and degradation in Mexico (Table 2). 

Depending on its capacity, a sensor is able to detect a complex or a simple process; this 

suggests (next sub-section) that definitions of deforestation should be compatible with the 
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capacity of sensors, in order for the measurement of deforestation to be more reliable. The 

measurement of a complex process (e.g. forest degradation) also means higher costs than the 

measurement of a simpler process (forest to non-forest). Also, the use of a sensor of higher 

capacity (from 1 to 3) means more costs for the measurement of a given process.  

 

Sensor 
discrimination 

capacity 

Minimum 
detectable area 

(ha) 

Indicative 
temporal 

resolution of 
sensor set 

Access/ 
indicative cost 

in Mexico 

Processing cost for 
an area of 

200x200km 
(indicative) 

Capacity 1: 
Resolution 250-

1000m (e.g. MODIS, 
AVHRR) 

6-100 Daily Free 1 day person 

Capacity 2: 
Resolution10-30m 

(e.g. Landsat, ASTER, 
SPOT XS 

multispectral) 

0.05-0.30 3 days $US 250 per 
scene of 

180x180 km2 

/Free* 

3 days person 

Capacity 3: 
Resolution 0.5-5m (ej. 
Quickbird, GeoEye)

0.01 3 days $US 20 / km2 30 days person 

* Free under governmental agreement for government agencies, higher education and research 
institutions.  

Table 2. Grouping of sensors according to their discrimination capacity for deforestation and 
degradation processes. 

4.2 Forest cover change definitions 

The definition of deforestation stems from the FAO definition of forest and refers to the 
forest – non forest change in a 0.5 ha surface or more. We will name this definition as the 
'FAO deforestation’. Symmetrically we define as ‘consolidated reforestation’ the change from 
non forest to forest in a 0.5 ha surface or more. These processes can be detected by medium 
(Capability 2) to high (Capability 3) resolution sensors (Couturier et al., 2010). It is further 
proposed to attach the ‘degradation’ process to a physiognomic concept of forest compatible 
with its detection by remote sensors. Our proposal is to define forest degradation as the 
permanence of forest with a loss of more than 30% of its canopy cover (e.g. a canopy cover 
of 70% becomes a canopy cover of 40%). It is thought that this process might be detected by 
medium resolution (Capability 2) sensors, but should be preferably detected (with much 
higher reliability) by high resolution (Capability 3) sensors. 

Because of the difficulties associated with a necessary 0.5 ha minimum mapping unit (or 
less) for the measurement of FAO deforestation (for this reason, deforestation rates in FAO 
reports are not ‘FAO deforestation’), and because of the attractive characteristics of capacity 
1 sensors (daily availability of data), we propose to consider other forest definitions as well.  

In the first place, we propose the notion of 'extensive deforestation', which would refer to the 
removal of forest in a convex area of 6 ha, and would be associated to a process susceptible 
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of being detected by Capacity 1 sensors. Obviously, the measurement of FAO deforestation 
is more costly than the measurement of extensive deforestation.  

Finally, forested land is ecologically considered to have many life forms in mega-diverse 
Mexico (Table 3), a few of which are not included in the FAO definition of forest (e.g. some 
low tropical forests, sub-tropical shrublands, Chaparrales, open oak forests). Many are 
defined as 'forested vegetation' in Mexico (according to forest law LGDFS) and included in 
the FAO category of Other Forested Land (OFL). To report the removal of this forested 
vegetation is very relevant in the case of Mexico.  

 

Formation Vegetation Type
 

Temperate 
Forest 

1. Cedar forest, 2. Fir forest, 3. Pine forest, 4. Conifer scrubland, 5. Douglas fir 
forest, 6. Pine-oak woodland, 7. Pine-oak forest, 8. Oak-pine forest, 9. Oak forest, 
10. Mountain cloud forest, 11. Gallery forest. 

Tropical 
forest 

Humid/ evergreen & sub-evergreen tropical forests: 12. Tropical evergreen forest,  
13. Tropical sub-evergreen forest, 14. Tropical evergreen forest (medium height),  
15. Tropical sub-evergreen forest (medium height), 16. Tropical evergreen forest 
(low height), 17. Tropical sub-evergreen forest (low height), 18. Gallery forest. 

 Deciduous & sub-deciduous forests: 19. Tropical sub-deciduous forest (medium 
height), 20. Tropical deciduous forest (medium height), 21. Tropical sub-
deciduous forest (low height), 22. Tropical deciduous forest (low height),  
23. Tropical forest of thorns.  

Scrubland 24. Sub-montane scrubland, 25. Spiny Tamaulipecan scrubland, 26. Cactus-
dominated scrubland 27. Succulent-dominated scrubland, 28. Succulent-cactus-
dominated scrubland, 29. Sub-tropical scrubland, 30. Chaparral, 31. Xerophytic 
scrubland, 32. Succulent-cactus-dominated cloud scrubland, 33. Rosetophyllic 
scrubland, 34. Desertic xerophytic rosetophyllic scrubland, 35. Desertic 
xerophytic microphyllic scrubland, 36 Prosopis spp.-dominated, 37. Acacia spp.-
dominated, 38. Vegetation of sandy desert. 

Grassland 39. Natural grassland, 40. Grassland-huizachal, 41. Halophilous grassland,  
42. Savannah, 43. Alpine bunchgrassland, 44. Gypsophilous grassland. 

Hygrophilous 
vegetation 

45. Mangrove, 46. Popal-Tular (Hydrophilous grassland), 47. Riparian vegetation. 

Other 
vegetation 
Types 

48. Coastal dune vegetation, 49. Halophilous vegetation. 

Table 3. Classification scheme of the INEGI land use land cover cartography (only natural 
land cover categories are indicated): 

For this reason we propose the definition of total forest cover that encompass woody plants of 
low size and shrubs which are not secondary vegetation, at the intersection of the notions of 
'Forested vegetation' in Mexico and Other Forested Land in the FAO nomenclature. The 
notion of 'FAO-Mexico deforestation' is then defined as the change of total forest cover (Forest 
+ Other Forested Land for FAO) to non-forested cover in a 0.5 ha area. It is noteworthy to 
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mention that Capacity 1 sensors are not likely to detect change in low size forest cover with 
reasonably high accuracy, even for areas of more than 6 ha (see Couturier, 2010).  

In synthesis, we define three notions of deforestation, one of them detectable by Capacity 1 
sensors and two by Capacity 2 and 3 sensors, as showed in Tables 4 and 5. The accuracy 
assessment of the process implies the use of a sensor with more capacity than the sensor 
involved in the map production process.  
 

Type of Detectable Process Definition 

Extensive deforestation Change from forest to non-forest in a convex area of 6 ha. 

Consolidated extensive 
reforestation 

Change from non-forest to forest in a convex area of 6 ha. 

Extensive permanence of forest Permanence of forest in a convex area of 6 ha. 

Extensive permanence of non-
forest 

Permanence of non-forest in a convex area of 6 ha. 

Table 4. Processes detectable by capacity 1 sensors (low spatial resolution) 

 

Type of Detectable Process Definition 

Deforestation (FAO or FAO-
Mexico) 

Change from forest to non-forest in an area of 0.5 ha. 

Consolidated reforestation (FAO 
or FAO-Mexico) 

Change from non-forest to forest in an area of 0.5 ha. 

Degradation (FAO or FAO-
Mexico) 

Permanence of forest but with a decrease of more than 
30% of canopy cover (e.g. A canopy cover of 70% 
decreases to 40%). 

Regeneration (FAO or FAO-
Mexico) 

Permanence of forest but with an increase of more than 
30% of canopy cover (e.g. A canopy cover of 40% 
increases to 70%). 

Forest permanence (FAO or FAO-
Mexico) 

Permanence of forest in an area of 0.5 ha. 

Non-forest Permanence (FAO or 
FAO-Mexico) 

Permanence of non-forest in an area of 0.5 ha. 

Table 5. Processes detectable by capacity 2 and 3 sensors (medium to high spatial 
resolution) 

4.3 Sampling design for LULC change classes 

The method comprises a sampling design that efficiently controls the spatial distribution of 

samples for all classes of the forest cover change map, including sparsely distributed (or ‘ 

rare’) change classes. Previous assessments have relied on two-stage sampling schemes, 

where simple random or stratified by class random sampling was employed in the first 

stage. Couturier et al. (2007) demonstrated that these strategies fail in the case of sparsely 

distributed (rare) classes. This research proposes a two-stage hybrid scheme where 

proportional stratified sampling is employed for the rare change classes.  
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The first stage of the sampling design consists in the selection of two subsets of Primary 

Sampling Units (PSUs). The first subset of PSUs is obtained with a simple random selection 

and shall be used for the assessment of non-change classes. The second subset of PSUs is 

obtained with a proportional random selection of PSUs, and shall be used for the assessment 

of change classes. In the latter selection, the probability of selection attributed to each PSU is 

proportional to the abundance of the change class in that PSU, as described in Stehman et al. 

(2000, further discussed via personal communication); this mode of selection is retained as 

an appropriate way for including all classes, in the sample while maintaining a low 

complexity level of statistics (i.e. standard stratified random formulae to compute estimators 

of accuracy).  

According to this scheme, the PSU selection process is made independently for each change 

class and a given PSU can be potentially selected multiple times (for rare classes as well as 

for common classes). This hybrid selection scheme, differentiated according to non-change 

(a common class) and change (a rare class), was proposed and detailed in Couturier et al. 

(2007), where its potential advantages with respect to sampling designs formerly applied in 

the literature were evaluated.  

Once the sample PSUs are selected, all points of the second stage grid included within these 

PSUs are assigned the attribute of their mapped class. The full second stage sample consists 

of the selection of 200 points [Secondary Sampling Units (SSUs)] for each class mapped in 

the area. For each non-change (common) class, the selection is a simple random sorting of 

points within the second stage grid in the first subset of PSUs. For change (rare) classes, the 

selection of points is obtained via proportional random sampling in the second subset of 

PSUs, this time with a probability inversely proportional to the abundance of the class. This 

mode of selection can preserve equal inclusion probabilities at the second stage within a rare 

class (see the option of proportional stratified random sampling advocated in Stehman et al. 

2000. A sequence of ArcView (2010) and Excel-based simple Visual Basic routines, for easy 

and fast repeated use on vector attributes of each class, was specifically designed to perform 

this proportional selection at both stages. 

5. Preparing the framework for the case of Southeastern Mexico 

The Grijalva and Usumacinta rivers in Southeastern Mexico are two of the most important 

in Mexico and North America. In terms of stream flow, the Usumacinta river (ranks 7th 

worldwide) is the most important in the Gulf of Mexico after the Mississippi river. The 

Grijalva – Usumacinta basin, one of the major rain-laden regions in Mexico (figure 2) is 

characterized by a contrasted anthropogenic transformation of the landscape, ranging from 

a highly modified coastal plain, to two mountain chains with mainly indigeneous 

agricultural management, to some very well conserved forested lands on the Guatemala 

border. This contrast reflects the level of incorporation of agricultural products to local, 

regional or international markets. This research first presents some results of a LULC change 

study in the Grijalva – Usumacinta basin, based on INEGI national level maps (sub-section 

5.1). And then results of a deforestation study which approaches the FAO forest definition 

are obtained in the Marquéz de Comillas area (sub-section 5.2), a highly dynamic 

agricultural frontier within the Usumacinta watershed.  
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Fig. 2. The Grijalva-Usumacinta watershed and its ecoregions with the main vegetation 
types. 1) Gulf of Mexico Coastal Plain with Wetlands and Tropical evergreen forest, 2) Hills 
with High and Medium Tropical sub-evergreen forest, 3) Hills with Medium and High 
Tropical Evergreen Forest, 4) Chiapas Highlands with Conifer, Oak, and Mixed Forest, 5) 
Chiapas Depression with Low tropical deciduous and medium tropical sub-deciduous 
Forest, 6) Central American Sierra Madre with Conifer, Oak, and Mixed Forests. 

5.1 'Extensive deforestation' measurement derived from regional maps in 
Southeastern Mexico 

Three spatial data sets of LULC from the INEGI 1:250 000 series were used to analyse changes 
during the periods 1993–2002 and 2002–2007. For this purpose, the 55 original LULC classes 
were grouped into 18 categories (Table 6) following a hierarchical classification system 
developed for the INEGI maps. This system takes into account the vegetation dynamic and 
gives consistent results in time series analysis (Velázquez et al. 2002).  

The level of anthropogenic modification of the forest cover is reflected in the appellation 
‘primary’ versus ‘secondary’ in order to estimate the forest degradation. Forest degradation 
is understood as a forest change from a well conserved state (‘primary’) into a highly 
modified (‘secondary’) state. Additionally, 3 temperate and 2 tropical forest types were 
distinguished in order to specifically analyse LULC changes in each of these forest classes. 
Pastures for extensive cattle ranching and several agricultural classes were considered, as 
they are responsible of deforestation processes. Once possible and impossible transitions 
were established, thematic errors of the maps were detected and corrected with a revision of 
additional maps.  
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Formation 
Vegetation 
and land use 
types 

Categories of analysis Original land use and cover classes 

Temperate 
forests 

Coniferous 
and broad 
leaved  

Coniferous forests (1) 
Primary Juniperus forests, primary fir forests, 
primary pine forests, primary pine-oak forests 

Broad-leaved forests (2) Primary oak forests, primary oak-pine forests 

Montane cloud forests 
(3) 

Primary montane cloud forests 

Tropical 
forests 

Rain Rain forests (4) 
Primary evergreen forests (tall, medium and 
low), primary sub-evergreen forests (medium), 
primary sub-evergreen forest of thorns (low) 

Dry Dry forests (5) 
Primary deciduous forests (low), primary sub-
deciduous (medium) 

Hydrophilic 
vegetation 

Mangrove 
forests, reed, 
halophilic 
vegetation 

Mangrove forests, reed 
(6) 

Primary and secondary mangrove forests, reed, 
primary and secondary halophilic vegetation, 
primary halophilic grasslands 

Secondary 
vegetation 

Temperate 
forests 

Secondary coniferous 
forests (7) 

Secondary Juniperus forests, secondary fir 
forests, secondary pine forests, secondary pine-
oak forests 

Secondary broad-leaved 
forests (8) 

Secondary oak forests, secondary oak-pine 
forests 

Secondary montane 
cloud forests (9) 

Secondary montane cloud forests 

Tropical 
forests 

Secondary rain forests 
(10) 

Secondary evergreen forests (tall, medium and 
low), secondary semi evergreen forests 
(medium), secondary sub evergreen forest of 
thorns (low) 

Secondary dry forests 
(11) 

Secondary deciduous forests (low), secondary 
sub deciduous forests (medium) 

Pastures Pastures Pastures (12) Cultivated and induced grasslands, savanna 

Cultivated 
areas 

Agriculture 

Irrigated agricultura (13)
 Irrigated, eventually irrigated, suspended 
irrigation 

Permanent crops (14)  Permanent and semi-permanent 

Rain fed agricultura (15)  Annual crops 

Plantations Forest plantations (16) Forest plantations 

Others 

Urban areas Urban areas (17) Urban areas 

Other 
vegetation 
types 

Othervegetation types 
(18) 

Primary palm forests, induced palm forests, 
bare, primary and secondary riparian vegetation 
and forests 

Table 6. Land use land cover (LULC) categories of analysis and classification scheme of the 

original LULC classes in the Grijalva-Usumacinta watershed (Southeast Mexico). 
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Deforestation and other changes were mapped to calculate the surface distribution and to 
capture the patterns of change and permanence. The proportion of change with respect to 
the initial extent (LULC rate of change), was calculated for each year as follows (FAO, 
1996): 

 R = [(1-(A1-A2)/A1)1/t)-1]*100  (1) 

where ‘R’ is the annual change rate in percentage, ‘A1’ is the area at ‘t1’ , ‘A2’ the area at ‘t2’ 

and ‘t’ the number of years in the period. For deforestation rates, primary and  secondary  

forest  classes  were  aggregated  and the results  were  multiplied  by  –1  to  obtain  positive 

numbers for negative change rates.  

One way to determine LULC change dynamics is to establish the major change processes 
resulting from observed changes; these were defined as:  

 deforestation, the conversion of forest into land use classes, 

 forest degradation, a process leading to a temporary or permanent deterioration in the 
density or structure of the vegetation cover, 

 transitions,  change  between  different  land  use classes, and  
 regeneration, the transitions of any land use into secondary vegetation. 

The land use change processes were identified based on annualized change probabilities 

calculated with Markov chain properties based on area change matrices with the software 

package DINAMICA-EGO (Soares-Filho et al. 2009). Afterwards, the transitions with a 

probability greater than 0.00 were used for an analysis of the major change processes and 

the related dynamics by subsuming them into principal change processes: 

 Pt = M * V1/t * M-1  (2) 

where ‘P’ is the annualised probability of change, ‘M’ the Eigen values of the matrix, ‘V’ the 
associated Eigenvectors  and  ‘t’  the number  of  time  steps  within  a  time period. 

The detailed LULC change data revealed that from 1993 to 2007, the major land cover losses 
were in tropical rain forests, temperate coniferous forests (both >300 000 ha) and secondary 
tropical dry forests (128 000 ha). For other land cover categories, the loss was smaller and 
mainly between 1993 and 2002. The primary tropical dry forests had the lowest cover loss 
(4000 ha). Secondary vegetation increased in almost all forest types, though most gain 
belonged to secondary coniferous forests (227 000 ha). Among land use classes, the extent of 
pasture increased most (392 000 ha) followed by rain-fed agriculture (264 000 ha).  

However, for the reasons developed in this chapter, the results presented in tables 7 & 8 
should be read with caution. The INEGI cartography, a key input of this study, lacks error 
margins, and does not permit a rigorous assessment of deforestation, forest degradation or 
regeneration rates in Mexico. Indeed, the partial accuracy assessment of the 2000 NFI map 
(Couturier et al., 2010) called for prudence in interpreting land cover change from Landsat-
based INEGI-like maps, especially in the case of degradation studies. In contrast with the 
relatively high levels of accuracy of vegetation cover with little modification (classes labeled 
as ‘primary’ in the INEGI legend), many errors were reported for classes of highly modified 
vegetation cover (classes labeled as ‘secondary vegetation’). For instance, in the Cuitzeo 
watershed, the accuracy of sub-tropical scrubland (78%), oak-pine forest (97%), pine forest  
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 1993-2002 2002-2007 1993-2007 

Forest type 
 

Deforestation rate 
(%) 

Deforestation rate 
(%) 

Deforestation 
rate (%) 

Coniferous forests 0.77 0.55 0.69 

Broad-leaved forests 1.33 1.31 1.33 

Montane cloud forests 0.38 0.18 0.31 

Tropical rain forests 0.91 0.68 0.83 

Tropical dry forests 2.62 1.55 2.24 

Total 1.02 0.70 0.90 

Table 7. Deforestation rates for different forest types (Kolb and Galicia, 2011). 

 

 1993-2007 1993-2002 2002-2007 

Land cover and land use 
classes 

 Area 
(ha) 

Change 
rate 

 Area 
(%)* 

Change 
rate 

 Area 
(%)* 

Change 
rate 

Coniferous forests -316,258 -6.08 79 -6.61 21 -5.13 

Broad-leaved forests -96,317 -6.16 85 -7.39 15 -3.91 

Montane cloud forests -118,878 -3.34 87 -4.34 13 -1.5 

Tropical rain forests -305,440 -2.41 78 -2.79 22 -1.72 

Tropical dry forests -4,263 -3.31 88 -4.36 12 -1.41 

Hydrophilic vegetation 1,798 0.02 248 0.07 -148 -0.08 

Secondary coniferous forests 227,023 3.09 81 4.06 19 1.37 

Secondary broad-leaved forests 50,772 2.89 101 4.56 -1 -0.04 

Secondary montane cloud 
forests 

93,881 2.14 89 3.03 11 0.57 

Secondary tropical rain forests 93,596 0.74 91 1.05 9 0.18 

Secondary tropical dry forests -127,520 -2.22 78 -2.59 22 -1.55 

Pastures 391,513 1.12 69 1.24 31 0.91 

Irrigated agriculture 18,294 1.14 99 1.76 1 0.03 

Permanent agriculture -151,041 -3.46 56 -2.69 44 -4.82 

Rain-fed agriculture 263,653 2.11 60 2.08 40 2.17 

Forest plantations 2,132 10 90 59.29 

Other vegetation types 3,816 0.06 7 0.01 93 0.17 

Urban areas 15,038 2.94 41 2.09 59 4.49 

Table 8. Areas of land use and land cover (LULC) change and change rates for each category 
and period (Kolb and Galicia, 2011).  Area is the difference in area for the different LULC 
classes for 1993-2007.  Area in percentage for 1993-2002 and 2002-2007 is relative to the 
total change area for 1993-2007. 
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(79%) and fir forest (76%) contrast with the accuracy of highly modified oak forest (46%), 
highly modified pine forest (12%) and highly modified mixed forest (45%). From both the 
taxonomical and landscape points of view, a class of highly modified vegetation cover is 
close to a wide set of land use classes as well as low modification vegetation cover classes, 
which makes it prone to more confusions than a class of low modification vegetation cover. 
These low accuracy levels, however, appear as a real challenge for improving the quality of 
future forest cover cartography because degradation estimates are probably characterized 
by very poor reliability, and yet degradation studies are an important part of the REDD - 
based forest management. 

In this research, the accuracy assessment method proposed for the case of extensive 
deforestation measurement with regional LULC cartography consists in a multi-spectral 
SPOT coverage for reference data and a sampling design defined in section 4.3 where SPOT 
frames are the PSUs. In the extent of the Grijalva – Usumacinta region, a total of 5 SPOT 
images per change class and 7 SPOT images for non change classes is thought to achieve a 
good spatial distribution of the sample. SSUs should be constructed as squared frames 
centered on the points of the periodic INFyS, and the amount of SSUs should be selected so 
as to achieve a sampling intensity of at least 4% for all classes.  

5.2 'FAO deforestation' measurement in the Marquéz de Comillas area 

The forest monitoring program over the Marquéz de Comillas area is an instrument to 
measure the impact of conservation programs around the Montes Azules Biosphere Reserve 
(figure 3). The main objective is the measurement, via remote sensing, of the forest cover at 
the landscape scale. Part of the challenge is to establish deforestation estimates with error 
margins at a scale approaching the FAO forest definition.  

For this purpose, forest cover was defined as: “Areas densely covered by tree vegetation, 
photosynthetically active at the evaluation season, and canopy cover of more than 30% of 
the observation area”. This definition makes no reference to forest use (e.g., plantations, 
forest area under management), successional stages (secondary forest or ‘acahual’, vs low 
modification or ‘primary’ forest), or seasonal conditions (sub-evergreen forests). The 
purpose of this definition of forest cover is to provide a general framework on the dynamics 
of forest cover. 

Landsat TM, ETM + and SPOT HRVIR  multispectral images from three different years were 
used to develop forest cover maps (Table 9). Values were sampled in homogeneous reflectance 
areas, which were used to search for patterns from a number of independent variables 
containing spectral and spatial information on the forest cover. From these patterns, a pixel-
based probability of ownership to the forest class was derived. We then used a multivariate 
logistic regression model, in which different spectral and spatial transformations (e.g., 
vegetation indices and topographic information obtained from a Digital Elevation Model) 
were the independent variables. The accuracy of the map was measured at every date of study 
(1990, 2000, 2010), using a stratified random sampling, the visual appraisal of colour 
composites of Landsat/ SPOT original data and auxiliary ground data.  

The forest cover data was derived with accuracies of 91% and Kappa coefficient (K) of 0.7055 

for 1990, 88% and K = 0.7540 for 2000 and finally in 2010 the accuracy was estimated at 88% 

and Kappa coefficient of 0.7660. The estimated annual deforestation rate was -2.1% for the 
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entire period, showing a net loss of 88 098 hectares. In 1990, 95% of the study area was forest 

cover, while in 2000 forest cover had decreased to 78% and, finally, by 2010 the forest cover 

declined to 61%. The results show a loss of 4,557 ha/year for the period from 1990 to 2000, 

down to 4,252 ha/year for the period 2000 to 2010 (Figure 4). 

 

Fig. 3. The ‘Marquéz de Comillas’ study area is located between Montes Azules Biosphere 

Reserve (grey dots) and the Mexico-Guatemala border. The Usumacinta watershed was 

delineated in grey. The study area includes the Mexican municipalities of Maravilla 

Tenejapa, Marquéz de Comillas and Benemérito de las Americas, in the state of Chiapas. 

 

Platforms & Sensors 
Number of 

scenes 
Spectral 
bands 

Pixel size (m) Year 

     

Landsat 5 TM 2 7 30 1990 

Landsat 7 ETM+ 2 7 30 2000 

SPOT 5 HRVIR 4 4 10 2010 

Table 9. Principal characteristics of Landsat TM, ETM + and SPOT HRVIR used for forest 
cover mapping. 
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Fig. 4. Forest cover data 1990, 2000 and 2010 for the study area in Chiapas, Mexico.  

The accuracy indices correspond to each individual forest cover map in 1990, 2000, and 2010, 
but the accuracy of the deforestation rate, still cannot be derived. The tools presented in this 
research will provide grounds for the measurement of total deforestation (because the forest 
definition of this study approaches the FAO definition) in this area, and more generally in 
the region surrounding the Biosphere Reserve.  

For the sake of comparison, we identified studies specific to the region and with forest 

definitions similar to ours. The rate of change obtained in this study (2.13%) is quite 

comparable with those reported by Velazquez et al. (2002) about forests in the period 1993 to 

2000 (2.06%) and almost equal to that reported for the Lacandona rainforest in the period 

1984 to 1991 (2.14%), after 1978 when the Montes Azules Biosphere Reserve was officially 

decreeted (Mendoza and Dirzo, 1999).  

Our deforestation figures are also above the national figures in the same period. According 
to official FAO reports for the period 1990 to 2010 in Mexico, about 298 000 hectares was lost 
(FAO, 2010). If we were to compare local with national figures, annual forest loss was 
estimated in this area at about 4,463 hectares, representing 1.5% of the national loss, in just 
0.1% of the country. However, as said earlier, the deforestation definitions are not 
compatible, by at least two aspects: in the first place the Minimum Mapping Unit of forest is 
much smaller in our study than in the INEGI national cartography (source of the FAO 2010 
Mexico report) and also the percentage of canopy cover is stricter in our study and would 
not encompass a large variety of forest covers at the national level. In any case, this study 
perhaps highlights the importance of spatial variability in the dynamics of forest cover 
throughout the country, and illustrates at what point a national average of extensive 
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deforestation hides the magnitude of the fragmentation of forests and of spatial differences 
throughout the country. 

In this research, the accuracy assessment method proposed for the case of local forest - non 

forest cartography consists in a panchromatic SPOT coverage for reference data and a 

sampling design defined in section 4.3 where SPOT frames are the PSUs. In the extent of the 

Marquéz de Comillas area, a total of 2 SPOT images per change class and 3 SPOT images for 

non change classes are thought to achieve a good spatial distribution of the sample. SSUs 

should be constructed as squared frames centered on a regular grid of the area, and the 

amount of SSUs should be selected so as to achieve a sampling intensity of at least 4% for all 

four classes.  

6. Conclusion 

International schemes such as REDD related to tropical forest monitoring, critically depend 

on the reliability of forest cover maps and tropical deforestation rates. In contrast with the 

poor (almost null) information on this reliability in the world, this chapter provides much 

evidence from previous studies and experiences that high uncertainty and imprecision still 

characterize the cartography, remote sensing data, and the forest definitions from which 

these rates are produced. For example, the FAO reports, which include per-nation tropical 

deforestation rates (flowchart on figure 5a), are based on national level cartography, 

provided by sub-tropical agencies, which understandably produce cartography that do 

NOT (and maybe CANNOT) correspond to the FAO definition of forest, in the first place 

because this definition requires very fine scale mapping (0.5 hectares Minimum Mapping 

Unit). Additionally, for the overwhelming majority of governmental agencies in the world, 

the quality of the cartography is easily confounded with the spatial resolution, or 

temporality of the satellite imagery used in the map production process. Confusions 

between thematic classes on the imagery that lead to errors on the map are simply ignored, 

so that the derived deforestation rates, forest extent baselines, etc. are quantities without 

error margins, therefore without statistical support. 

A rigorous accuracy assessment scheme with appropriate forest definitions and adapted 

remote sensing data is thus a pending challenge in sub-tropical countries where the baseline 

cartography is essentially produced. This research proposes a novel deforestation 

assessment framework, adapted to typical materials and cartography in sub-tropical 

countries and suitable for REDD schemes. This framework comprises two features. The first 

feature consists in considering a set of three definitions of forest cover change based on the 

FAO definitions of forests as well as the Mexican standards on the forest cover definitions. 

This set of forest cover change definitions permits different levels of deforestation 

assessment (‘FAO deforestation’ which would reflect total deforestation and corresponds to 

flowchart illustrated in figure 5b, and only ‘extensive deforestation’) and considers the need 

for reporting change of a diversity of vegetation types in Mexico. Accordingly, remote 

sensors with low or high discrimination capacity are suited to different definitions of 

deforestation/degradation. The second feature, derived from recent theoretical advances 

made by the geo-science community, consists in a sampling design that efficiently controls 

the spatial distribution of samples for all classes, including non-change classes.  
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Small scale cartography time 1 Small scale cartography time 2

Deforestation Rate currently reported by FAO

BUT: 

1. Not the deforestation rate for the FAO definition of forests

2. No statistical calculation of uncertainties (error margins)

Map Comparison time 1 to 2 

through GIS

 
a. 

Medium scale

cartography time 1

Medium scale

cartography time 2

Total Deforestation Rate with error margins

AND: 

1. Equates the deforestation rate according to FAO definition of forests

2. Includes statistical uncertainty measurement (error margins)

Map Comparison time 1 to 2 

through GIS

Sampling design of change/

non-change classes

Accuracy Assessment with big scale

reference imagery at both dates

 
b. 

Fig. 5. Sequence of GIS for deforestation calculation: a. Traditional sequence (which leads to 

FAO deforestation figures currently), b: Proposed sequence (which is compatible with FAO 

definition of forests and includes error margins)  
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This chapter provides the planning for future application of this framework on two cases of 
ongoing deforestation measurement and analysis, at regional and landscape scales, in bio-
diverse Southeast Mexico. The first case is the use of typical national level (INEGI) 
cartography in the Grijalva – Usumacinta basin and the second case is a more optimal use of 
medium resolution imagery for the measurement of the deforestation in accordance with the 
FAO definition of forest, in the highly dynamic edge of a National Biosphere Reserve 
(Montes Azules). In addition, since 2003, the monitoring of deforestation in Mexico is partly 
ensured using the MODIS sensor (CONAFOR, 2008), which is comparable with the SPOT-
VEGETATION sensor used by Stibig et al. (2007) in Asia. We recommend the method 
presented here be extended to the national level for comprehensive accuracy assessment of 
these SEMARNAT vegetation cover annual maps. This method would ensure very 
reasonable costs and would contribute to solve the polemical discussions on the reliability of 
deforestation rates and land use change rates in the country. We conclude that the work 
presented here contributes to set grounds for the quantitative accuracy assessment of forest 
cover change cartography in the context of the REDD programme.  
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AVHRR  Advanced Very High Resolution Radiometer 
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CONAFOR the Mexican National Commission of Forests (Comisión Nacional Forestal) 
COP  Conference Of Parties 
CORINE European ‘Coordination of Information on the Environment’ Program 
EOSD  Earth Observation Sustainable Development Program of Canada 
ESA  European Space Agency 
FAO  Food and Agriculture Organization  
FRA  Forest Resources Assessment 
GAP  Gap Analysis Project in the USA 
GFA  Global Forest Assessment of the United Nations 
GIS  Geographic Information Science 
HRVIR  High Resolution Visible and Infra Red 
INEGI  National Institute of Statistics, Geography and Informatics in Mexico 
INFyS  National Inventory of Forests and Soils in Mexico 
IPCC  Intergovernmental Panel on Climate Change 

www.intechopen.com



 
Tropical Forests 

 

292 

JRC  Joint Research Council 
Landsat GLC Global Land Cover program of the Landsat satellite 
LULC  Land-Use and Land-Cover 
MODIS  Moderate Resolution Imaging Spectroradiometer 
NASA  National Aeronautics and Space Administration of the USA 
NFI  Mexican National Forest Inventory 
NLCD  National Land Cover Data of the USA 
OFL  Other Forested Land 
PSU  Primary Sampling Unit 
REDD  Reduction of Emissions from Deforestation and Degradation 
SPOT  French Satellite for Earth Observation (Systeme Pour l’Observation de la 

Terre’) 
SSU  Secondary Sampling Unit 
SEMARNAT National Environmental Agency (Secretaría del Medio Ambiente y 

Recursos Naturales) 
UNFCCC United Nations Framework Convention on Climate Change 
USA  United States of America 
USM  United States of Mexico 
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