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1. Introduction 

Present-day communities are the result of speciation, extinction, and migration (Leigh et al., 
2004). Hence, the final outcome of these processes, the assemblage of species present at a 
site, has been sieved by both ecological and stochastic factors through time (Kristiansen et 
al., 2011; Stropp et al., 2009). Palinological evidence has demonstrated a correlation between 
Neotropical floral diversity and climatic change throughout the Cenozoic, showing the 
highest diversity in the Eocene during periods with high temperatures and an extensive area 
of tropical forests (Jaramillo et al., 2006). These results imply that present day communities 
are incomplete “museums” of plant diversity, which have suffered extinctions either 
through deterministic or stochastic effects. Then, findings from paleoecological studies 
suggest direct or indirect effects of macro-ecological factors, such as temperature and 
forested area, determining patterns of plant diversity in the tropics (Fine & Ree, 2006), and 
reveals patterns of species accumulation during hot and humid periods.  

We still know little about the ecological and biogeographical factors that promote species 
diversification in plants. Plant-animal interactions, such as pollination and seed dispersal, 
have been proposed as mechanisms that promote plant diversification (Gentry, 1988). 
However, strict specializations are not common in pollination systems and the role of 
pollinators in generating diversification of plant species has not been supported 
(Gravendeel et al., 2004; Waser et al., 1996), although preferences may occur (Gong & 
Huang, 2011). Recent studies have suggested that habitat specialization to contrasting soil 
types, mediated by tradeoffs in strategies to avoid herbivory, has occurred in lowland 
Amazonian plants (Fine et al., 2006). Currently, among many theories to explain plant 
coexistence in diverse tropical forests at local scales, there are four hypotheses well 
supported which involve niche differentiation, infrequent competition among understory 
plants, host specific pests, and negative density dependent effects (Wright, 2002). According 
to Leigh et al. (2004), microhabitat specialization and disturbance appear insufficient to 
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maintain alpha-diversity of trees in tropical forests, and there is a positive influence of larger 
areas covered by forests, where small populations have the chance to establish a new 
species.  

Similarly, the disturbance and generation of new habitats that occurred during the uplift of 
the Andes ranges, was proposed as a major influence in the diversification of Neotropical 
plants. Gentry (1982) related the differences in familial composition to historical and 
ecological factors. He postulated the existence of two main centers of distribution in the 
Neotropics: Northern Andes and Central Amazonia. In each region, only certain families 
underwent processes of species diversification and, for this reason, present day floras in 
these two regions have an overrepresentation of certain families, in terms of species 
richness. Families with predominantly herb and shrub species tend to be diverse in 
Northwest South America (such as Costaceae, Gesneriaceae, Heliconiaceae, Zingiberaceae), 
while tree families are represented by many species in Central Amazonia (e.g. Burseraceae, 
Chrysobalanaceae, Lecythidaceae, Sapotaceae).  

The most extreme extinction rates have been associated to drastic changes in global 
conditions (Benton & Twitchett, 2003), and local extinctions of particular plant species can 
also be caused by small changes in ecological conditions (Tilman & Lehman, 2001). Good 
examples of local extinctions come from studies of forest fragmentation, where changes in 
conditions, reductions in population numbers, and the extinction of mutualistic species tend 
to accelerate plant extinction rates and lower diversity (D’Angelo et al., 2004; Laurance et al., 
2002). Therefore, even though fragmentation sets barriers to gene flow between populations, 
a process that might facilitate allopatric speciation and hence diversity (e.g. Haffer, 1969; 
Prance, 1982), evolutionary rates may be slow enough to allow differentiation of viable 
populations in such fragmented habitats.  

Migration and colonization rates of trees have been estimated for temperate but not often for 
tropical regions. For instance, fossil pollen from northern latitudes has indicated rapid 
colonization rates unrelated with life history traits (i.e. dispersal kernels), which suggests 
that the colonization front was similarly limited to all plant species by climatic or 
geographic factors (Clark, 1998). Few studies have focused on colonization fronts in tropical 
plants, and these studies also suggest a large potential of rapid migration in these 
ecosystems (e.g. Charles-Dominique et al., 2003). In fact, the present geographic 
distributions of tropical plants show large variations in size, with some species restricted to 
particular sites, and other species with wide distributions (e.g. Henderson et al., 1995). This 
variation is consistent with the idea of rapid migration rates to areas with good climatic 
conditions, which may then be followed by local extinctions in less favorable periods, and 
low beta-diversity in western Amazonian forests (Condit et al., 2002). Although molecular 
analysis may provide information suggesting population dynamics of colonization, 
extinction and recolonization, this has been reported only a few times (e.g. Dutech et al., 
2003), and it is difficult to be sure that local extinctions were driven by ecological or by 
stochastic population factors (e.g. random variations in population size).  

In order to assess the relative importance of ecological vs. stochastic factors, several studies 
have quantified the proportion of the variation in floristic comparisons that can be 
attributed to ecological factors, then, the remaining variance in floristic patterns can be 
attributed to history or to chance (Tuomisto & Ruokolainen, 1997). On the other hand, 
neutral theories based on stochastic processes modeling community structure, predict a 
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negative relationship between floristic affinity and geographical distance (Hubbell, 2001). In 
fact, some studies using abundance of individuals between plant groups showed that 
floristic affinities between sites decrease with geographical distance at some regional scales 
(Terborgh & Andressen, 1998; Tuomisto et al., 2003). However, these studies do not rule out 
the influence of ecological factors. In fact, several studies have found significant 
contributions of geographical distance and ecological factors in explaining patterns of 
floristic similarity (Chust et al., 2006; Plotkin et al., 2000; Pyke et al., 2001; Tuomisto et al., 
2003). 

All lowland rain forests in the Neotropics have floras with similar familial compositions 
(Gentry, 1988). This has been explained by the common origin of the most important 
families, which differentiated long before the separation of Gondwanaland (Gentry, 1982). 
Furthermore, lowland Neotropical forests have not been greatly influenced by the invasion 
of predominantly temperate families. Thus, plant families such as Leguminosae, 
Annonaceae, Lauraceae, Rubiaceae, Moraceae, Myristicaceae, Sapotaceae, Melicaceae, 
Palmae, Euphorbiaceae and Bignoniaceae are common in almost all Neotropical lowland 
forests (Gentry, 1988). However, there is variation in floristic composition among particular 
localities, and predominant plant families are not always the same among different regions. 
Gentry (1990) pointed out that macro-ecological factors (e.g. soil quality, rainfall patterns, 
pollination syndromes) are important in determining floristic composition and affinities of 
different areas. Based on a qualitative comparison of four florulas, he showed differences in 
families and habitat composition, which were explained mostly by broad categorization of 
ecological conditions. For instance, the richest taxa in hyper-humid sites corresponded to 
families with high representation of epiphytes such as Orchidaceae, Araceae, and 
Piperaceae, while Leguminosae dominated at other places. The aim of this study is to make 
a quantitative floristic comparison based on the patterns of species richness in families and 
genera for more than twenty tropical areas, and to correlate floristic similarities with 
ecological and stochastic factors (e.g. geographical distance). We attempted to test the 
significance and relative roles of ecological and stochastic factors from the following 
predictions. If floristic similarities are significantly affected by ecological variables we 
expected: 1) to find sites of similar conditions grouped together in ordination analyses, and 
2) a significant correlation between matrices of floristic similarity and ecological factors in 
Mantel tests (Mantel, 1967). On the other hand, according to the hypothesis that floristic 
composition is determined by chance, we expected to find: 1) agglomeration of close-by sites 
in the ordination, and 2) a positive correlation between geographical distance and floristic 
dissimilarity. 

2. Methods 

2.1 Localities 

We searched the literature of florulas in lowland Neotropical areas, and included all places 
with appropriate macro-ecological information and good collection effort. We obtained a 
database of 26 sites for families and 25 sites for genera (Fig 1). In order to avoid biased 
inventories due to small sampling effort, we only included humid forests with at least 1,000 
species reported, and dry forest with more than 500 species. We searched for geographic 
coordinates of each site to estimate the geographic distance between sites (calculated as a 
distance along the earth curvature). When the florula corresponded to a large area, we used 
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the centroid of the area to calculate the geographic distances to other places. The ecological 
conditions for each site were also extracted from the literature and from databases. We 
included information on average annual rainfall, average number of dry months (months 
with precipitation lower than 100 mm), and temperature for the 26 locations included in the 
analyses (Table 1). 

 

Fig. 1. Map of the neotropical region showing the location of the analyzed florulas, 
superimposed on a map of nitrogen content in the soils (from a geochemical and ecological 
database, ORNL DAAC, http://daac.ornl.gov/). 

 

Site Rainfall Dry 
mo. 

Temp Reference Coordinates 

(mm) (oC) Long Lat.  

1.Iquitos  
(Perú) 

2949 0 25.9 Vásquez, 1997 73.30 3.50 S 

2.Rio Palenque 
(Ecuador)  

2650 0 23 Dodson & Gentry, 1978 79.40 0.40 S 

3.La Selva 
(Costa Rica) 

3962 0 25.8 Hammel & Grayum, 1982 84.00 10.40 N 

4.Choco 
(Colombia) 

6573 0 27 Forero & Gentry, 1989 77.00 6.00 N 

5.Caqueta 
(Colombia) 

3060 0 25.7 Duivenvoorden, 1996 71.00 1.00 S 

6.Jatun Sacha 
(Ecuador) 

  http://www.mobot.org/MOBOT/resea
rch/ecuador/jatun/checklist.shtml 

77.6 1.07 S 
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Site Rainfall Dry 
mo. 

Temp Reference Coordinates 

(mm) (oC) Long Lat.  

7.Leticia 
(Colombia) 

3215 0 25.8 Rudas & Prieto, 1998 70.20 3.40 S 

8.Tuxtlas 
(Mexico)  

4725 1 23.2 Ibarra-Manriquez & Sinaca-Colin, 
1995 

95.10 18.60 N 

9.Tinigua 
(Colombia) 

2702 2 26 Stevenson et al., 2000 74.20 2.70 N 

10.Nouragues 
(French 
Guyana) 

3124 2 27 Forget, 1994 52.70 4.10 N 

11. Iwokrama 
(French 
Guyana) 

2200 2  www.iwokrama.org 59.00 4.50 N 

12.Mabura Hill 
(French 
Guyana) 

2700 2 25.9 Renske & ter Steege, 1998 58.80 5.20 N 

13.Cocha Cashu 
(Perú)   

2028 3 24 Gentry, 1990 71.40 11.90 S 

14.Bahia  
(Brazil) 

1502 3.5 24.5 Mori et al., 1983 41.50 15.60 S 

15.Ducke 
(Brazil) 

2186 4 26.7 Gentry, 1990 60.00 2.50 S 

16.BCI  
(Panama) 

2656 4 27 Gentry, 1990 79.90 9.20 N 

17. Maracá 
(Brazil) 

2300 5 26.5 Thompson, 1992;  
Moskovits, 1985 

61.30 3.30 N 

18.Saul  
(French 
Guyana) 

2413 6 27.1 Mori & Boom, 1987  53.20 3.60 N 

19. Beni 
(Bolivia) 

2550 2.5  Smith & Killeen, 1998 67.12 15.53 S 

20.Las Quinchas 
(Colombia) 

2654.7 0.5 27.8 Balcazar-Vargas et al., 2000 74.27 6.05 N 

21. Chiribiquete 
(Colombia) 

4000 0  Cortés-B & Franco-R,1997 72.80 0.80 N 

22.Tuparro 
(Colombia) 

2708 4  Mendoza et al., 2004 68.50 5.28 N 

23. Yasuni 
(Ecuador) 

2717 0  Valencia, 2004 76.5 0.95 S 

24.Caparú 
(Colombia) 

4000 0  Clavijo et al., 2009 69.52 1.65 S 

25.Sta Rosa 
(Costa Rica) 

1503 6 27.4 Enquist & Sullivan, 2001 85.20 10.50 N 

26. Chiquitania 
(Bolivia) 

1129 7 24.3 Killeen et al., 1998 61.80 16.20 S 

 

Table 1. List of sites included in the study, their main climatic characteristics and location. 
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To facilitate comparison between localities, we used the floristic categories proposed by 
Foster and Hubbell (1990). Ferns are included as one group without differentiation of 
families, the three legume subfamilies (Papilionoidae, Mimosoidae and Caesalpinioidae) are 
presented as one (Fabaceae) and we did not treat Cecropiaceae within Urticaceae. 

2.2 Climate and soil information 

For each study site we obtained soil data from a geochemical and ecological database, 
ORNL DAAC (http://daac.ornl.gov/). Data were collected in the field, by satellite or 
generated by models. We chose 7 variables that describe soil properties:  soil-carbon density 
(kg/m²), profile available water capacity (mm), total nitrogen density (g/m²), bulk density 
(g/cm3), field capacity (mm) (PsiFC=-10 kPa), thermal capacity (J/m3/K) (Theta=0.00 
%v/v), and wilting point (mm) (PsiWP=-1500 kPa). 

We characterized each of our study sites with 25 climatic variables found in WorldClim 
(http://www.worldclim.org; Hijmans et al., 2005). These bioclimatic variables are derived 
from monthly rain values and temperature, and represent annual trends. We included 
limiting environmental factors such as the temperature of the coldest and the warmest 
month, the rainfall of the 3 rainiest, and driest months. Additionally, the information for the 
number of dry months was taken from the field database or from the literature, because this 
variable explains a large part of the variation on maximal diversity of plants in the Amazon 
(Ter Steege et al., 2003). 

We characterized each of the study sites in terms of soil and climate variables by spatially 
locating their area using the ArcGis program (http://www.arcgis.com/). Then, we 
quantified the weighted average of each variable for each site, depending on the 
characteristics of each polygon. We used this average as the value for each variable to 
comparison between the sites. 

2.3 Floristic analysis 

We ranked families and genera within each locality because the collection efforts were 
dissimilar between florulas, thus, it was not possible to quantify the vegetation by the 
absolute number of species. We included the 20 families with the highest number of species 
for each location. We assigned ranks to the families in the list (i.e. the most species-rich 
family in the list got a value of 20, the second a value of 19, and so on). The same was done 
for the top 22 genera in each locality. Then, we calculated an index of floristic similarity 
between sites based on these ranks (Stevenson, 2004): 

 Dab = 
i
 │ rank ia– rank ib│/ (n(n+1)) (1) 

where, Dab the floristic distance for each pair of localities (a and b) was the sum of the 
absolute differences between ranks. Then, ‘i' was each of the families in the list included in 
both localities and ‘n’ is the number of families included (20 in this case). The division by 
n(n+1) standardizes the index between 1 and 0.  High values (close to 1) indicated higher 
floristic differences. For instance, shared families that have high ranks in both localities 
contribute little to the index, while a high-ranking family from one locality that is absent in 
the other contributes the most. This index was used for one of the matrices (floristic matrix) 
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that we then used in Mantel Tests (Mantel, 1967). We also used this index for the 22 richest 
genera in each site. The cut off was generated as a tradeoff between increasing sampling size 
and avoiding sites with little information. 

2.4 Statistical analysis 

First, we ran a correlation analysis between the 26 environmental and soil variables to 

exclude redundant variables. Then we kept only variables which were not highly correlated 

with other independent variables (r > 0.6, Appendix 1). 

We ordinated the localities according to the initial ranks using Nonmetric Multidimensional 

Scaling (NMS) in PCORD (Pc-Ord for Windows, Multivariate Analysis of Ecological Data. 5 

version). We ran different analyses for family and genus information (Terborgh & 

Andresen, 1998). We did not make analyses at the species level because these comparisons 

could be compromised if species are misidentified, or if the same species is given a different 

name just because of its geographic location. To estimate floristic similarity, we used 

Euclidian distances from the rank matrix using PCORD. We allowed 20 runs for the NMS 

analysis, which used Euclidean distances. A posteriori, we determined the families (or 

genera) and the ecological factors that showed the highest correlation coefficients with the 

two main axes of the ordination, and according to the critical value of the Pearson’s r (> 

0.33) (Acton, 1966). Relevant families/genera and ecological factors can be graphically 

overlaid on the ordination. 

To determine whether the observed patterns in the ordination were explained by 

geographical distances and/or ecological factors, we performed Mantel tests to evaluate the 

relationship between three different matrices for the 26 locations. The first matrix was a 

floristic distance matrix constructed from the ranks described above (either families or 

genera). The second matrix contained the values of climate and soil variables associated to 

each site. A third distance matrix included the Euclidean distances between the localities 

based on ecological factors and the distance from the young mountains (Andes and Central 

American ridges up to 1000m), as a proxy to relatively fertile sedimentation soils (Gentry, 

1990). 

The subsequent Mantel Tests were ran to evaluate the interdependency of the 

independent variables that we had chosen. Thus, we constructed distance matrices 

(differences between places for each variable), and we made comparisons between each 

pair of matrices to determine if the observed patterns in the ordination were correlated 

with geographic distances or with ecological factors. These correlations are an important 

step to identify general pattern variations, but they cannot estimate how important each 

variable is in relation to the effects of other ones. For this reason, from each distance 

matrix between variables, we first did Mantel Tests to evaluate the relation between the 

different variables and the floristic distance. We then identified the variables that better 

explained the floristic distance. We ran partial Mantel tests while holding the 

geographical distances constant to observe how much variation in the floristic distance 

was explained by it. The mantel Tests were made with Excel Mantel Stats (XLStats, 

Statistical Software for MS Excel), and the significance of Mantel coefficients was tested 

via permutation tests with 10000 iterations. 
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3. Results 

3.1 Family level comparisons 

We found a wide spread of the 26 localities in the ordination based on floristic similarities 

(Fig 2). The main ecological variables associated with the arrangement of sites were rainfall 

and temperature. In particular, we found that the two driest sites are located at the lower 

left corner of the ordination, and high values corresponded mainly to wet sites with short 

dry seasons. Therefore, the x axis of the ordination showed a high negative correlation with 

the number of dry months (Fig 2.b). Most sites in the upper right corner of the ordination 

corresponded to rainy Amazonian and Guyannan sites, relatively far from the Andean and 

Central American mountains. These regions usually have nutrient-poor soils; however, we 

did not find any significant correlation between ordination axes and soil traits (Table 1). The 

two sites with lowest values in the y-axis corresponded to hyper-humid forests in the Choco 

biogeographic region. 

We found that the distribution of sites in the ordination was highly correlated with how rich 

are particular plant families in species (Table 2.a). For instance, the sites where Annonaceae 

was highly speciose, were located in the upper right corner of the floristic ordination (Figure 

2c). We found a similar pattern for Lauraceae, Chrysobalanaceae, Clusiaceae and 

Sapotaceae. We also found that Bignoniaceae, Poaceae and Asteraceae were species rich 

families in the dry sites, showing a negative correlation with axis 1 (Table 2a). We also found 

a negative association between the number of species of Orchidaceae and Piperaceae and 

the axis 2 (Table 2a), mainly due to the richness in rainy forest in the Choco biogeographical 

region. 

 

 
a) 
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b) 

 
c) 

Fig. 2. NMS ordination of the 26 Neotropical localities, according to floristic affinities in 
terms of the number of species per family (a). In (b) the number of dry months for each site 
in the ordination is represented by the size of the triangle (a bigger size triangle indicates a 
longer dry season). The graphic also indicates the relation between the number of dry 
months and the two axes of the ordination. As an example, the number of species of the 
Annonaceae family is indicated in (c) again, by the size of the triangle. In this case the family 
is highly correlated with axis 2. 
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Even though we found that floristic dissimilarities among locations were correlated with 

ecological variables, we did not find that floristic affinities at the family level were 

associated with the geographical distances between them. Using Mantel tests, we obtained a 

significant association for three climatic variables (i.e. number of dry months, maximum 

temperature of the warmest month, and the mean day temperature; Table 3a).  We obtained 

the same results in Mantel tests, even when the geographical distances were held constant, 

again showing a small effect of the geographic distance, and the largest effect from the 

number of dry months. 

3.2 Genus level comparisons 

In the ordination of the 25 localities using their similarities in genera composition, we found 

an atypical composition for the Costa Rican locality of Guanacaste (Fig 3.a), which was 

characterized by an extended dry season (Fig 3.b). The distribution of sites in the ordination 

was highly correlated with some plant genera (Table 2.b). The most influential genera 

showed a positive correlation with axis 1, and correspond to species-rich genera that are 

well represented in Guanacaste as Desmodium (Fig 3.c), Hyptis, Ipomoea, Sida, Acacia, Capparis, 

Lonchocarpus and Mimosa (Table 2.b.). Eschweilera, Pouteria, Licania, in contrast, showed 

negative correlations with axis 1, while Trichomanes, Psychotria and Cassearia were highly 

correlated with axis 2. 

We found that floristic dissimilarities among the locations were correlated with macro 

ecological descriptors of the forests. Using Mantel tests, we found a significant correlation 

between the floristic and several climatic variables. In this case, the number of dry months 

again showed the highest correlation (e.g., Table 1b, Fig. 3b). The partial Mantel Tests 

showed that controlling for the geographic distance did not affect the effect of ecological 

variables. 

 
a) 
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b) 

 
c) 

Fig. 3. NMS ordination of the 25 Neotropical localities according to the number of species 

per genera (a), and (b) the relation between the number of dry months in the ordination 

from the floristic affinities, in terms of species richness per genera. A bigger size triangle 

indicates longer duration of the dry season, and the graphics indicate a relation between the 

number of dry months and the two ordination axis. One of the genera with the highest 

correlation with axis 1 is Desmodium and it is mostly present in Guanacaste (c). 
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 Axis 1 Axis 2 

 R R 

Annonaceae 0.552 0.844 

Lauraceae 0.562 0.753 

Chrysobalanaceae 0.252 0.627 

Clusiaceae 0.422 0.607 

Sapotaceae 0.619 0.523 

Bignoniaceae -0.619 0.011 

Cyperaceae -0.66 -0.002 

Poaceae -0.758 -0.392 

Orchidaceae -0.193 -0.626 

Piperaceae 0.167 -0.722 

Solanaceae -0.209 -0.759 

Asteraceae -0.456 -0.832 

a) 
 

 Axis 1 Axis 2 

 R R 

Desmodium 0.676 -0.358 

Hyptis 0.665 -0.321 

Ipomea 0.608 -0.416 

Acacia 0.604 -0.430 

Trichomanes -0.069 0.636 

Psychotria -0.094 0.542 

Solanum 0.592 -0.005 

Acalypha 0.590 -0.420 

Calliandra 0.590 -0.420 

Capparis 0.590 -0.420 

Cassia 0.590 -0.420 

Lonchocarpus 0.590 -0.420 

Mimosa 0.590 -0.420 

Sida 0.590 -0.420 

Piper 0.566 0.396 

Croton 0.555 -0.396 

Casearia -0.248 -0.639 

Pouteria -0.525 0.009 

Miconia -0.601 0.004 

Eschweilera -0.604 0.09 

Licania -0.796 -0.238 

b) 

Table 2. Most dominant families (a) and genera (b), that are correlated with the sites 
distribution of the ordination. 
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 r(AB) p-value 

Number of dry months 0.245 < 0.001 

Maximum To warmest month 0.179 0.002 

Mean diurnal temperature  0.170 0.003 

Distance to mountains 0.049 0.388 

Temperature seasonality  0.106 0.053 

Annual precipitation 0.077 0.166 

Geographical distance 0.069 0.208 

Total nitrogen density  0.016 0.768 

Field capacity -0.032 0.432 

PAWC -0.051 0.368 

a) 
 

 r(AB) p-value 

Number dry months 0.242 < 0.01 

Maximum To warmest month 0.340 < 0.01 

Geographical distance  0.269 < 0.01 

Seasonality in temperature 0.268 < 0.01 

Distance to mountains 0.210 < 0.01 

Annual precipitation 0.167 < 0.01 

Mean diurnal temperature  -0.032 0.437 

Total nitrogen density 0.050 0.223 

Field capacity -0.053 0.200 

PAWC -0.014 0.740 

b) 

Table 3. Results of the bivariate Mantel Tests of each variable vs floristic distance for families 

(a) and for genera (b). The highlighted variables were the ones with a significant value. 

4. Discussion 

Our quantitative results support Gentry’s ideas (1982, 1988, 1990) that floristic affinities in 

terms of species richness are determined mainly by ecological factors. Analyses at both the 

familial and generic levels showed significant correlations between ecological factors (i.e. 
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the number of dry months), and floristic affinities based on patterns of species richness. 

Interestingly, an analysis of plant diversity in Amazonia has also pointed to the duration of 

the dry season as the most important variable explaining maximum diversity (Ter Steege et 

al., 2003). It is possible that ecological variables related to temperature should have been 

important if highland forests were included, since temperature, altitude above sea level, and 

floristic affinities are well correlated (Gentry, 1988; 1995). Although the estimated amount of 

nitrogen in the soil was not highly correlated with floristic affinities in our analyses, we still 

think that nutrients in the soil may affect floristic composition. For instance, the fact that 

distance to young Andean and Central American mountains was correlated with the affinity 

of species richness within genera suggests that areas with similar sedimentation history 

(Latrubesse et al., 2010), show similar floristic composition. In addition, it is difficult to 

quantify soil nutrients at the spatial scale of florulas, and the spatial distribution of 

phosphorus, perhaps the most important nutrient in the soil for tropical plants, is not 

available at the spatial scales applied in this study.  

The main families driving their placement in the first axis of the ordination differ in their 

dispersal systems and habit types. For instance, the most negatively correlated families were 

Poaceae, Cyperaceae, Bignoniaceae and Asteraceae, all characterized by abiotic seed 

dispersal and herbaceous and vine habits (Heywood et al., 2007). In contrast, the most 

positively correlated families were Sapotaceae, Lauraceae, Annonaceae, represented by trees 

with fleshy fruits dispersed by animals. The second axis shows the same dichotomy, but 

includes additional families of fleshy fruited species (Chrysobalanaceae) and wind 

dispersed species (Orchidaceae), both commonly found in humid forests (Gentry, 1995). 

These results suggest that particular families have functional traits that make them well 

suited for particular ecological settings and may coexist in places where they have 

reproductive advantages in comparison to other plant strategies. In fact, it is well 

established that large seeds are common in tree species (Foster & Janson, 1985), because 

large seeds have establishment advantages under closed canopy forests. In contrast, herbs 

and shrubs tend to have small seeds and are frequently represented in savannas, forest 

edges, and open canopy forests (Laurance et al., 2002; Stevenson & Rodriguez, 2008). 

However, biogeographical history might also influence the patters just described, since the 

large seeded, animal dispersed families represented by trees might have diversified in 

central Amazonia (Gentry, 1982; Stropp et al., 2009). Therefore, analyses of the plant traits 

promoting the establishment under particular conditions should control for phylogenetic 

and biogeographic history. 

Similarly, at the genus level, the first axis of the ordination was negatively correlated with 

genera of large seeded animal dispersed seeds (Licania and Eschweilera), while it showed a 

high positive correlation with abiotically dispersed plants mainly represented by shrubs and 

vines (e.g., Hyptis, Ipomea, Acacia, Acalypha and Calliandra). However, it also includes genera 

dispersed by small animals such as birds and bats (Miconia, Solanum and Capparis), which 

are the most common seed dispersers in fragments and disturbed habitats (Pizo, 2004; 

Terborgh et al., 2008). The first axis was also positively correlated with the number of 

species of Desmodium, a genus dispersed in the fur of animals. These comparisons suggest 

that the patters of species richness might depend on ecological factors, such as the 

occurrence of dispersal agents and regeneration requirements. 
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The analyses at the genus level also showed a significant correlation between geographical 

distance and floristic affinity, as predicted by stochastic processes (Hubbell, 2001). 

Therefore, chance and mass-effects also play roles in the structure of plant communities in 

lowland Neotropical forests, and this effect seems to be more evident at low taxonomic 

scales. However, comparisons at the species level are more complicated, due to differences 

in the collection efforts and ambiguities in species determination, even though preliminary 

observations at the specific level also suggest a strong influence of ecological factors. For 

example, when the flora that we are more familiar with (Tinigua National Park, Stevenson et 

al., 2000) is compared to species lists of other Neotropical localities, we observed that the 

most similar sites correspond to western Amazonian localities with a dry period (i.e. Iquitos 

and Cocha Cashu). These sites are also very close to Tinigua in the generic ordination (Fig. 

2), and not far away, though mixed, with other sites in the familial analysis (Fig. 1). These 

results could be better explained by ecological factors than by stochastic or historic events. 

Tinigua, Iquitos, and Cocha Cashu have 2-3 mo. dry seasons, and the three sites have 

relatively fertile soils because they have a greater influence of sedimentation from Andean 

soils. However, patches of forest on white sands are also common in the Iquitos area (Fine et 

al., 2006). Moreover, some of the same species are dominant at these localities, for instance, 

Foster’s (1990) description of the floodplain at Cocha Cashu points to the dominance of 

Guarea guidonia and Cecropia membranacea in the early stages in riverine succession. These 

two species are not only the most important species in the flooded forests at Tinigua, but are 

also dominant in early succession processes (Stevenson et al., 2004), and Heliconia marginata 

dominates the understory in both places. Recent beaches are colonized mainly by Tessaria 

integrifolia and Gynerium sagitatum in both Cocha Cashu and Tinigua (Terborgh, 1983; 

Hirabuki et al., 1991). 

The high floristic similarity between Tinigua and Cocha Cashu does not support the refuge 

theory, suggested originally by Haffer (1969) for Neotropical birds, and applied by Prance 

(1982) to the distribution of plant taxa. This theory proposed that in periods of increased 

aridity during the Pleistocene, populations were split into small patches of forests (refuges), 

where speciation occurred, followed by re-colonization of the forest. Haffer suggested that 

the actual distribution of species should therefore reflect the location of Pleistocene refuges. 

At least four refuges have been proposed for the upper Amazon basin, with Tinigua and 

Cocha Cashu near to two different refuges. If the present distribution of plant species 

originated in different refuges, then the flora at Tinigua and Cocha Cashu should be very 

different given the proximity to different refuges and the large geographical distance 

between the two places, but that is not the case. Interestingly, intermediate places such as 

Amazonian Ecuador, where there is no dry season, differ from Tinigua and Cocha Cashu in 

floristic composition. Thus our results provide futher evidence against the refuge theory 

(Colinvaux, 2005). 

In summary, contrary to neutral theories, we can affirm that current and past macro-

ecological factors have played significant roles determining the patterns of species richness 

in Neotropical lowland forests. Our analyses showed a minor effect of stochastic factors, but 

significant at some levels (i.e. genus). Does this mean that Neotropical plant communities 

are structured by niche differences? Although we did not address this question here, we 

think that this is not necessarily the case. For example, the fact that families with high 
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representation of epiphytes dominate florulas in very humid sites does not imply that all 

species are partitioning the resources. On the contrary, the vast number of co-occurring 

species suggests that conditions are good enough to allow many species to coexist, in spite 

of using similar resources and ecological strategies (e.g., dispersal systems and 

establishment requirements). Thus, some degree of stochasticity in population dynamics 

and speciation patterns may occur nested within the controlling macro-ecological factors, as 

well as past ecological conditions (Stropp et al., 2009). Perhaps we should not be too worried 

about trying to understand how many species live in present-day tropical forests, since the 

fossil record shows that many more species can coexist under the appropriate climatic 

conditions (Jaramillo et al., 2006). 

5. Conclusion 

We compared information on 26 lowland Neotropical florulas, in order to assess which 

processes are correlated with the patterns of floristic similarities, based on plant species 

richness within families and genera. The results at the family level indicated that floristic 

similarity is significantly correlated with ecological factors (e.g., rainfall patterns, 

temperature and the distance to young mountains as a proxy of sedimentation processes), 

but is not correlated with geographical distance. At the genus level, again, ecological factors 

were highly correlated with floristic similarity. However, at this level geographical distance 

was also significantly correlated with floristic similarity. These quantitative results support 

Gentry’s theory which states that floristic affinities, in terms of patterns of species richness, 

are determined mainly by ecological factors. However, stochastic processes seem to play a 

minor but significant role, given that the most species rich genera were similar between 

close-by areas, as predicted by neutral models. Our findings and an accumulating body of 

evidence show that forest composition does change along environmental gradients (e.g., 

Bohlman et al., 2008; Coronado et al., 2009; Engelbrecht et al., 2007; Pitman et al., 2008: 

Tuomisto, 2006), in spite of the occurrence of widely distributed species along Neotropical 

forests (Bohlman et al., 2008; Condit et al., 2002). This emphasizes the relevance of protecting 

in areas of high human preference, because they are usually located in particular ecological 

settings and floristic composition. It is clear that human impacts, such as deforestation, have 

been prevalent in areas of high crop and livestock productivity (Madriñan et al. 2007), that 

include a set of unique native species. Therefore, a holistic approach for biodiversity 

conservation should provide the protection of forest in all ecological settings, including sites 

with high quality soils and productivity. 
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Correlation analysis among the 26 environmental and soil variables. Excluded variables that 

were associated with a correlation index of more than 0.6 are shown in grey. 
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