
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



14 

Unsteady Differentiation of Aerodynamic 
Coefficients: Methodology and Application 

Carlo Necci and Nicola Ceresola 
Alenia Aeronautica SpA 

Italy 

1. Introduction 

The evaluation of aerodynamic forces and of the relevant coefficients is a fundamental task 

in aircraft design. A number of numerical methods have been investigated and some of 

them, the most reliable and cost effective, are daily applied in the Aerospace field for design, 

development and research purposes. Conversely, not so many methods have been 

considered reliable enough for computing aerodynamic derivatives, which are fundamental 

to evaluate sensitivities to aerodynamic or shape parameters. Despite the efforts deployed 

by former researchers, the basic mathematical complexity to evaluate derivatives strongly 

limits the application of several methods. Numerical differentiation is surely a task widely 

studied and most of the schemes which have been developed are based on the finite 

differences method. Finite differences are flexible and easily applicable, but they are just an 

algebraic transposition of the Taylor series expansion, and as such they are an 

approximation. As a matter of fact, the attempt to apply the mathematical theory of 

differentiation to computer programs has to be handled differently.  Furthermore, while 

steady derivatives allow quantifying different sensitivities when flying in steady condition, 

dynamic derivatives are supposed to provide useful information on what happens in 

unsteady condition, but this introduces the extra complexity of the time dependency. It is 

hence again evident that the need of a solid mathematical basis is crucial when dealing with 

these kinds of problems. 

A possible approach is the experimental use of physical models in wind tunnels; data 

acquired while simulating different steady flight conditions can be interpolated to compute 

steady derivatives. While unsteady derivatives can be quantified by both mathematically 

handling steady values or moving the model in the wind tunnel and then managing the data 

streams that have been acquired. The drawback of this method is its high cost, especially 

when complex motions are tested. Furthermore, experimental work is complex, since setup 

and test implementation require a wide experience both in preparing the system setup and 

in understanding results. An extensive work has been done so far in this field; some 

references (Almosnino, 1994; Altun & Iyigun, 2004; Anderson & Newmann, 1999; Anderson 

et al., 1984; Guglieri & Quagliotti, 1993; Guglieri et al., 1993; Murphy & Klein, 2001) can give 

just an idea of the huge effort so far deployed. 

But in the latest years numerical approaches have been extensively developed and 

employed to fulfil the same results in a cheaper and faster way. The simplest algebraic way 
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to evaluate derivatives is, as said, the use of finite differences (Anderson et al., 1984) which 

simply requires evaluating the function of interest at two or more nearby states. This 

method can also be used as a validation technique and it is attractive since it does not 

require any modifications to existing source codes but it has the drawback to be sensitive to 

cancellation errors. It is important using a small step size to approximate the mathematical 

derivative, but the issue of subtractive cancellation of the terms in the numerator will 

always be experienced. An alternative to this is the Complex Variable Differentiation 

method (CVD), suggested by Anderson and other Authors (Anderson et al., 1999). 

Conceptually, CVD uses a series expansion of functions and a complex perturbation of 

terms, so in effect splitting up real and imaginary parts of the relevant function. For the first 

derivative, this method does not require subtracting the values computed in different 

points, so avoiding errors connected to cancellation; it has been successfully tested in 

computation of aero-structure sensitivity derivatives (Newmann et al., 1998) and works 

adequately. But it has the drawback to double the memory required for computation, since 

for each function both the real and the corresponding complex component have to be 

managed; runtime cost increases by a factor close to three.  

Another possibility consists in using codes based on panel method. This method bases its 

applicability on the conceptual simplicity of panels but it showed to be unreliable in some 

particular conditions (Almosnino, 1994).  In 2004 Green published a good work (Green et al., 

2004) focused on the possibility to computationally separate dynamic and stability 

derivatives, which during the experimental testing are measured in combination. Their 

study was furthermore interesting for the introduction of the automatic differentiation 

technique, shortly identified as AD. This was the beginning for a new branch of numerical 

research, which gave remarkable results. In Europe, the French researcher Laurent Hascoet 

carried out a study that finally was formalised in a public paper (Hascoet, 2005) focused on 

parallelisation and differentiation techniques based on a strong mathematical background 

and algebraic adherence to the rules of mathematical analysis.  The work was then 

formalised in a more extended research context when the French ‘Institute National de 

Recherche en Informatique et en Automatique’ (INRIA) developed a tool (Tapenade) 

completely devoted to differentiation of Fortran source codes (Hascoet & Pascual, 2004).  

Industrial applications of Tapenade were carried out across Europe by different Aerospace 

Companies; it was showed that the AD approach can be applied for both aircraft 

sensitivities studies and for shape optimisation (Selmin, 2004). It was proved that the AD 

method was effective for differentiating both the only CFD solver and the complete 

computation chain (shape parameters + solver). Comparisons were carried out at numerical 

level and results were than compared again with finite differences computations; the 

outcomes were more than satisfactory.  
In 2009 another work was published by the Authors et Al. (Necci, et al., 2009); its goal was to 
demonstrate the practical applicability of AD to industrial problems dealing with complex 
configurations. It was shown that automatic differentiation could be successfully used not 
only for research purposes but also to carry out a design activity on complex industrial 
configurations. Progress has been made from that point on and AD capabilities have been 
extended to compute stability and control dynamic derivatives for civil and fighter aircrafts. 
This paper deals with this. A first conceptual comparison between AD and other methods 
will be provided in order to explain AD peculiarities; then a deeper study of the AD 
numerical technology will be carried out. Finally some results will be given. 
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2. Automatic differentiation concept 

Automatic differentiation is based on concepts which are extensively described in Ref. [10] 
and [11]. To summarise, let nX  be a vector argument and   m XFY  a 
corresponding vector function. Equation  nmm xxxFF ,...,, 21  expresses the idea to have 
m  functions depending on n  variables. A computer program P able to evaluate Y can only 
evaluate simple functions; so we have to split up mF  into several sub-functions kf , each one 
implemented by a corresponding instruction kI . Function F  will then be given by the 
composition 11 ... fffF pp    and the corresponding source code has to be a sequence 
like  pIIIP ;...;; 21 . As a mathematical limitation, all the functions which are implemented 
in the code functions have to be differentiable, despite some exceptions (e.g. the square 
root); however, in general, functions implemented by arithmetic operations are indeed 
differentiable. The automatic differentiation tool evaluates derivatives by using the chain 
rule, i.e. it applies the following mathematical concept: 

        
  

J

pppp XfXfXfXF 0
'

12
'

11
''

...   (1) 

Here  1 kkk XfX  is the value of a generic sub-function and XX 0
 is its first value. J is 

clearly the Jacobean of F. Using the concept expressed by equation (1), derivatives can be 
translated back into a sequence of instructions '

kI , the instructions will be coded and 
inserted back into a copy of the control program P. This new set of instructions, added to P, 
yields to program P’, which now embeds instructions both for primitive and for derivative 
functions. Conceptually, the automatic differentiation works on some basic assumptions; 
firstly, P is considered simply as a run-time sequence of instructions and the AD tool 
differentiates this sequence. Secondly, each sequence is a composition of vector functions, 
each one assumed differentiable. Since each function is differentiable, we have the 
theoretical basis to differentiate according to the fundamental rule of mathematical analysis: 
we have to work not only on the sequence of functions but also on each single function. 
Furthermore one has to observe that the generic function  nmm xxxFF ,...,, 21  depends 
on n  terms, so differentiation of a single function imposes computing n  derivatives. 
Applying this concept to a vector function it is evident that equation (1) is a Jacobean and, as 
such, it requires multiplying matrices with matrices. This opens another issue: what is the 
best strategy to reduce the computational cost? Direct (tangent) or backwards (reverse) 
modes stem from this issue.  
Physically, often we just need evaluating the sensibility of a quantity over a design 
parameter; an example is the sensibility of lift coefficient with respect to the angle of attack 

 LC   or lateral force sensitivity to sideslip angle  YC  . For an aerodynamic coefficient, this 
means taking into account just its component related to a given aerodynamic parameter. 
Mathematically, this requires projecting a function (a total derivative) onto a given direction 
(a design parameter), as conceptually shown in Fig. 1. 
Since our basis has n  components, a generic directional derivative is the projection of the 
total derivative  '

F X  along one component of the basis. Formally, we have to evaluate: 

        
.

' ' '
1 1 2 1 0...p p p p

J

f X f X f X X       
.

'
F X X

  (2) 
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Fig. 1. Generic reference basis. 

 '
F X  is a  m n  matrix and the most efficient way to evaluate the quantity given in (2) is 

from right to left; this requires multiplying a matrix by a vector. We have to start the 

differentiation from the first instruction  '
1 0f X  in the source code and then we have to 

progress on, until the last instruction is reached. This approach makes things easier from the 

point of view of program coding, as it allows merging the original source code with the lines 

of differenced functions immediately after each corresponding primitive instruction. Such a 

concept is the basis of direct (or tangent) differentiation. 

Conversely, in optimization processes or inverse problems, it is required minimising a 

generic cost function with respect to a number of design parameters; a physical example of 

this can be the minimisation of drag index with respect to the angle of attack, to Mach 

number and to a number of shape parameters. This imposes the differentiation of a function 

with respect to a number of parameters and then to weight each component with a 

dedicated coefficient. Mathematically, this implies transforming  Y F X  vector into a row 

(using transposition) and then multiplying this row by a weight vector  mF , which clearly 

has to be an input. Formally, the product becomes   T
F X F  and its gradient is   'T

F X F ; 

transposing '
F  means transposing the product ' ' ' '

1 1...p pF f f f     and, remembering that

 T T T  A B B A , we have: 

   T
p

TTT
pp

T ffffff ''
2

'
1

'
1

'
1

''
......  F  (3) 

from which: 

      ' ' '
1 0 2 1 1...

T

T T T T
p p

J

f X f X f X F


      


'F
F F

X   (4) 

Here  T n m'
F  is the transposed Jacobean. Even in this case computation is more efficient 

from right to left; we can progress using a matrix by vector product, computationally 

cheaper than a matrix by matrix computation. In this second case, computation starts 

differencing the last thp  function and then going back to first function. The definition of 

backwards (or inverse) differentiation is due to this. 
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A general rule, easy to remember when choosing the best differentiation method comes from 
the following observation; the less number of rows in the multiplying vectors ( X  or F ) the 
less will be the operations. For direct mode, short X  corresponds to small n , thus direct mode 
can be computationally effective when differencing a number of functions with respect to a 
few parameters. Conversely, for backwards mode, short F  correspond to small m , and this 
means a few functions to differentiate; it is attractive when differencing with respect to a 
number of parameters, i.e. in case of optimisation problems. 

3. Numerical approach 

By taking into account a generic solution depending on the position vector, normal vectors 
and boundary conditions, the sensitivity of a generic aerodynamic solution with respect to a 
parameter   can be expressed as (Ref. [13]): 

 
b

ij i
b

ij i   

     
  

     

η ηU U x U U

x η η
 (5) 

If the automatic differentiation tool is used in order to evaluate the quantities expressed in 
(5), it will generate the total derivative with respect to the specified design parameter. But 
we use the automatic differentiation to evaluate the sensitivity to just some parameters, so 
the tool has to be tuned according to real needs, i.e. it has to compute just some derivatives, 
not the total derivative. For this reason, the differentiation procedure has to take into 
account the following issues: 

 when computing the sensitivity with respect to a single parameter, the relevant 
parameter   has to be set to ‘one’ before entering the differentiation routines and all 

other parameters have to be set to ‘zero’; this can be done directly into the code or using 
an external input file; 

 in order to reduce computational costs, differentiation should be applied just after the 
primitive solution has converged, so to avoid computing also the iterations related to 
derivatives. In this way the application of differenced functions to a converged solution 
will imply only one further computation run. 

However, despite the conceptual simplicity and elegance of such an optimized approach, 
the real implementation of automatic differentiation is very challenging from the software 
engineering side, especially for complex industrial tools. 
The solver that includes differentiated functions, here defined ‘augmented’, will be 
discussed preliminary for the static differentiation, so limiting the action to its steady loop; 
dynamic differentiation will follow and will extend the action to the transient loop. Three 
different structures of the augmented algorithm will be studied; all of them will include 
some preliminary steps, i.e. the acquisition of initial values, check of grid metrics and 
acquisition of initial solution. These steps will not be subject to any differentiation, since just 
the core of computation has to be differenced and not all the modules of the solver. After 
these three steps, some differences among the structures will be discussed. 
In structure 1 (Fig. 2), after some initial checks, the parameter with respect to which we want 
to differentiate is set to unity. Then the augmented algorithm is engaged and both primitive 
and differenced parameters are computed. This configuration is structurally simple but it 
requires computing derivatives for all iterations while the primitive solution is still reaching 
its convergence. 
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Fig. 2. Structure 1 

 

 

Fig. 3. Structure 2 

 

 

Fig. 4. Structure 3 
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This increases the runtime cost without any real benefit, unless the user is interested in 

studying the iterative evolution of derivatives. Structure 2 (Fig. 3) shows a variant; derivatives 

are computed just after the primitive solution has converged; only one extra run is required. 

Differentiation is paid with a minimal increase of computational cost and numerical efficiency 

has clearly increased. At this point, we can look at the problem from another point of view; we 

can remember that the AD tool provides the capability to differentiate a function with respect 

to one or more parameters. Surely, differencing with respect to several parameters involves a 

higher complexity of the augmented software because of the higher number of added 

instructions but, conceptually, structures 1 and 2 can be used indifferently to differentiate with 

respect to one or more parameters. An alternative structure of the augmented solver, suitable 

for differencing with respect to many parameters, is shown in structure 3 (Fig. 4). In this last 

case, a number of differentiation blocks can be cascaded, and each block computes the 

derivatives with respect to one only parameter. Then, iteratively, all the blocks can be engaged 

in sequence. It is necessary looping the cycle in such a way to reset to ‘one’ the correct i  

parameter before calling each block. The benefit comes from the capability to evaluate all the 

derivatives with respect to i  with just one extra iteration for each parameter, like in Structure 

2. Compared to structure 2, structure 3 has an advantage and a disadvantage. The advantage is 

that structure 2 manages a larger module involving several derivatives, and the use of only 

one block makes it easier linking such a block with the solver. The disadvantage is that if the 

user needs rearranging the differentiation with respect to one parameter, for any particular 

purpose, the use of structure 2 makes the work very hard. Structure 3 is simply a modular 

approach, which requires more initial work to integrate each differentiation module in the 

overall structure but that guarantees a higher flexibility in case of further reworking. It is 

evident that structure 3 has a practical difficulty; while in structures 1 and 2 the software has to 

be optimized for just one large block of augmented variables, in structure 3 more sub-blocks 

are involved, so optimization is longer and more complex. In this case, the modularity of the 

primitive code and software engineering skills of the user make the difference.  Once the 

structure has been decided, a practical possibility from the software point of view is that all 

parameters that have to be set to 1. Then these can be read from an input file; then all 

different blocks, linked together with the relevant declaration files, are called by the 

program. These and a number of possible variants can be explored; it is just important to say 

that, whatever the user wants to do, he needs a complete control of the software. This means 

that the automatic differentiation technology cannot be applied to commercial tools, which 

are closed applications. 
Moving now from static to dynamic differentiation, the only difference is in the type of 

parameters; static differentiation involves incidence angle, sideslip angle or geometric 

functions while dynamic differentiation involves roll, pitch and yaw velocities, i.e. it involves 

the time. Because of the dynamic nature of these parameters, AD impacts now the transient 

loop of the software. But in this case the good modularity of the solver that has been used in 

Alenia Aeronautica has shown its benefits, since the AD procedure has been used without any 

real problem and according to the rules described for the static differentiation. 

4. Numerical applications and dynamic computing procedure 

The results described in this section have been achieved using the tangent mode 

differentiation. Using the following expression: 
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B
H



dH  (6) 

we indicate with  , , , , ,
T

L D Y l m nC C C C C CH  the aerodynamic coefficients vector and with 

 , ,p q rB  the design variables vector.  
Because of the structure of the solver that has been used, the numerical sequence for 
computing a derivative requires three different steps: 
1. the computation of a primitive steady solution (PS1); 
2. the computation of a primitive unsteady solution (PS2); 
3. the computation of the differentiated solution (DS). 
Two tests cases have been investigated, a NACA0012 airfoil studied in viscid condition and 
a complete configuration, the DLR-F12, studied in inviscid condition. This second test case 
has been the real test bench, since the results that have been achieved have been compared 
with those collected by other Partners involved in the SIMSAC programme.  

4.1 NACA0012 airfoil 
NACA0012 has been studied for 0.4M   and Re 6.2 06e  . The grid is a C-type, 66880 

nodes and 24924 elements, generated by an Alenia proprietary mesh generator. The skin has 
been meshed by placing 160 nodes on the upper and lower surfaces; the wake has been 
similarly meshed, by placing 50 nodes after the trailing edge. The skin mesh has then been 
extended in the outwards normal direction; the boundary layer has been filled up by 
building 57 parallel layers in the region between the skin and the area where the 99% of the 
freestream velocity is reached. Then, 200 more layers have been used in the farfield. 
Dimensions of the grid are as follows: 

0.15000 02; 0.16000 02x e e       

0.0000 00; 0.10000 01y e e       

0.15056 02; 0.15055 02z e e       

The mesh around both leading and trailing edges has been built by setting the initial spacing 
layer to 0.1e-02 chord units. Starting from the first layer, a geometrical progression has then 
been used; setting a growth factor 1.208, the mesh has been expanded in the normal 
outwards direction, until the final layer of the farfield has been reached. The airfoil chord 
length has been set to unity. The three-dimensions solver has been applied on this two-
dimensions mesh by simply redefining the grid itself; the two-dimensions mesh has been 
generated on a vertical plane, which has then been doubled onto a second parallel plane. 
The two planes have then been joined together, so generating a three-dimensional structure. 
Fig. 5 shows how the two-dimensions mesh has been converted in three-dimensions.  
As said earlier, the first step of the computation process has been the achievement of a stable 

primitive steady solution, for M=0.4 and =2°; 15000 iterations have been used to completely 
minimise residuals and to reach an excellent solution. After this, two different dynamic 
analyses have been carried out, one involving some variable frequencies of oscillation and 
another involving some variable angles of attack. The laminar Prandtl number has been set to 
0.72 and the turbulent to 0.90. CFL number has been set to 2.0 and no residual averaging has 
been necessary. The steady computation has required about 448 seconds on a parallel 
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Quadrics machine, while unsteady runs almost doubled this value. Thirty-two processors have 
been used, 28 for computing purposes and 4 for data traffic management. 
 

 

Fig. 5. Internal mesh – conversion to three-dimensions. 

4.1.1 Variable frequency 
The analysis for variable frequencies has required computing a number of primitive steady 
solutions, one for each frequency in the (used) range 0.025 0.1rad s rad s  . For the sake 
of clarity, we can say that here we will just describe and discuss some details related to the 
numerical test case 0.4, 2 , 0.025M rad s     , remembering that the used process has 
been exactly the same for all the frequencies. After computing a stable primitive steady 
solution, the dynamic solver has been engaged. A pitch range 1     has been imposed 
about the initial angle of attack and a forced oscillation has been applied. The rotation centre 
has been placed at 4x c  and, in order to minimise the numerical transient due to the 
initial steady solution (PS1), three complete oscillations have been run. For each oscillation, 
96 iterations have been computed for a total amount of 288 iterations; each one of these 
iterations required 200 sub-iterations to converge. Fig. 6 shows a graphical example. 
Along the X axis is reported the number of iterations, while on y axis are shown both the 
corresponding values of the lift coefficient and of the angle of attack. It is evident that each 
time the local angle of attack increases, a corresponding increase of the lift coefficient is 
experienced as well. In order to show that each point in Fig. 6 corresponds to a converged 
value of the iteration process, Fig. 7 focuses the evolution of the solution for the lift 
coefficient during the very first step of the first oscillation. It is just the case to mention that 
this particular case has been chosen because the first unsteady iteration run after the initial 
(steady) solution is the most impacted from the numerical stability point of view. We can see 
that, when the sub-iteration process starts, the value of the lift coefficient is close to 0.24, 
which is the value provided by the steady solution PS1. After this, the unsteady 
computation begins and a slight fluctuation is experienced. Anyway, after about 150 sub-
iterations, a convergence is reached. This last fact confirmed that the choice of 200 sub-
iterations was successful, since the numerical fluctuation was almost completely eliminated. 
In order to prove this last sentence with numerical evidence, Table 1 provides maximum 
and minimum values for Cl during the forced three oscillations, as well as the relevant 
percentage fluctuations. 
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Fig. 6. NACA0012 oscillation evolution for  0.4, 2 , 1 , 0.025yM rad s          . 

 

 

Fig. 7. NACA0012 - Lift coefficient evolution for unsteady computation 

 

 

 Cl min Cl max % Fluctuation 

Oscillation 1 - Sub-Iteration 1-100 2.4283e-01 2.6130e-01 7.068% 

Oscillation 1 - Sub-Iteration 101-200 2.4302e-01 2.4787e-01 1.956% 

Oscillation 2 - Sub-Iteration 1-100 2.4213e-01 2.5384e-01 4.613% 

Oscillation 2 - Sub-Iteration 101-200 2.4356e-01 2.4376e-01 0.082% 

Oscillation 3 - Sub-Iteration 1-100 2.4212e-01 2.5382e-01 4.609% 

Oscillation 3 - Sub-Iteration 101-200 2.4356e-01 2.4375e-01 0.077% 
 

Table 1. Cl convergence - values and errors 

The table is arranged in such a way to allow an analysis for groups of sub-iterations. Each 
one of the three oscillations is split up in two phases; the first one focuses on sub-iterations 1 

 sradM y 025.0,1,2,4.0  
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to 100 while the second focuses on sub-iterations 101 to 200. During oscillation 1, Cl values 
in the first phase range from 2.4283e-01 to 2.6130e-01 and the relevant percentage fluctuation 
is 7.068%; values in the second phase range from 2.4302e-01 to 2.4787e-01 and the 
corresponding percentage fluctuation drops down to 1.956%. This means that, at the end of 
oscillation 1, the solution has almost converged. Going on and computing the same values 
for oscillations 2 and 3, all percentage variations in the first phases become even smaller 
(4.613% and 4.609%) and almost disappear during the second phases (0.082% and 0.077%). 
This proofs that the unsteady solution PS2 has completely converged at the end of the third 
cycle. Stated this, we can study the evolution of our differenced solutions; in particular, it is 
interesting comparing the results provided by the augmented solver with those computed 
by using the finite differences method. Fig. 8 deals with this and it still provides information 
for the case 0.4, 2 , 0.025M      . 

 

 

Fig. 8. Comparison between automatic differentiation and finite differences Clq derivatives 

 0.4, 2 , 1 , 0.025yM rad s         . 

Finite differences have been computed by remembering that, from the analytical point of 
view, we have: 

     


UqcCCUcCC mmll q
2,2



 (7) 

Moving now from differential values to finite values, these expressions can be rewritten as: 

     


UqcCCUcCC mmll q
2,2



 (8) 

The curve related to finite differences fluctuates because of the fluctuating values of lC , 

computed by using the primitive solver. Conversely, the AD curve is much more stable; 

after an initial transient, the curve becomes almost steady and quickly converges. Table 2 

shows both values and percentage errors between the two curves; it is evident that errors do 

vary mainly because of the finite differences fluctuations, while automatic differentiation 

numerical values show a good steadiness. 
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Time-step Clq FD Clq AD Error % 

0 3.43E+00 2.76E+01 -704.96% 

20 3.18E+00 2.37E+00 25.52% 

40 3.52E+00 2.81E+00 20.18% 

60 3.53E+00 3.05E+00 13.61% 

80 3.20E+00 3.33E+00 -3.97% 

100 3.02E+00 3.25E+00 -7.59% 

120 3.25E+00 3.23E+00 0.74% 

140 3.56E+00 3.19E+00 10.51% 

160 3.48E+00 3.19E+00 8.55% 

180 3.13E+00 3.22E+00 -2.68% 

200 3.03E+00 3.25E+00 -7.09% 

220 3.26E+00 3.25E+00 0.21% 

240 3.58E+00 3.24E+00 9.68% 

260 3.42E+00 3.26E+00 4.77% 

280 3.08E+00 3.27E+00 -6.04% 

Table 2. Clq comparison - AD vs FD - values and errors M=0.4, =2.0°, =1°, y=0.025 
rad/s 

Similar considerations can be repeated for
qmC  (Fig. 2). In this case percentage errors are 

initially very high but convergence is fast and the error becomes smaller than 5% 

 

 

 

Fig. 9. Comparison between automatic differentiation and finite differences Cmq derivatives 

 0.4, 2 , 1 , 0.025yM rad s         . 
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The following figures (Fig. 10 and 11), show the values of derivatives for the same flight 

condition, but with an oscillation frequency 0.05  . 

 

 

Fig. 10. Comparison between automatic differentiation and finite differences Clq derivatives

 0.4, 2 , 1 , 0.050yM rad s         . 

 

 

Fig. 11. Comparison between automatic differentiation and finite differences Cmq 

derivatives  0.4, 2 , 1 , 0.050yM rad s          

The overall progression of results is good, despite some local peaks. As a general behaviour 

the automatic differentiation provides results much more stable, because of its direct 

computation method based on a mathematical management of functions and not on a latter 

data handling with FD. Anyway some initial fluctuations have to be expected also in 

automatic differentiation, since anyway the relevant derivatives are managed by the 

augmented solver as normal functions which need some time to converge. 

Finally, figures Fig. 12 and 13 show the evolution of , ,lq dq mqC C C  as functions of frequencies.  
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Fig. 12. Automatic differentiation Clq vs frequency progression  0.4, 2 , 1M         

The relevant interpolating second order curves have been reported, as well as the least 

squares values computed as follows: 

   


 
n

i
iADi xfyR

1

 (9) 

The value of  value is computed by using the AD, while is computed by using 
the tendency function. 
 
 

 

Fig. 13. AD Cmq vs frequency progression  0.4, 2 , 1M        . 

It is shown that all curves can be reduced to polynomials; however the physical evolution is 

well modelled by polynomials just in some cases, e.g. for Clq and Cmq, while in other cases 

(Cdq) such a reduction cannot be really accepted since curves are not smoothed and a 

polynomial reduction is only an algebraic manipulation  

i ADy   if x
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4.1.2 Variable incidence 
The same approach described for studying the variable frequency has been applied to 
variable angles of attack. The most challenging dynamic behaviour is for 0.1  , so some 
curves (Fig. 14-17) and tables are here discussed for such a frequency. The angle of attack 
ranges from 5   to 8   . 

 
 

 

Fig. 14. Comparison between automatic differentiation and finite differences Clq derivatives 

 sradM y 100.0,1,5,4.0  
 

 
 

 

Fig. 15. Comparison between automatic differentiation and finite differences Cmq 

derivatives  0.4, 5 , 1 , 0.100yM rad s         . 

For , the values of percentage errors for  show a strong variability, due to the high 
frequency. However, when the solution is stabilised, the percentage error between AD and 

5  
ql

C
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FD derivatives is not higher than 4.16 % (time-step 240) and in some points it is close to 0%. 
For , the error reached after stabilisation is 2.03% (time step 260) so showing to be even 
more stable than . Repeating the same analysis for , both  and  show a 
similar behaviour and anyway the percentage error between the two methods (AD and FD) 
is acceptable. 
 

 
 

Fig. 16. Comparison between automatic differentiation and finite differences Clq derivatives 

 0.4, 8 , 1 , 0.100yM rad s          

 

 
 

Fig. 17. Comparison between automatic differentiation and finite differences Cmq 

derivatives  0.4, 8 , 1 , 0.100yM rad s         . 

qmC

ql
C 8  

ql
C

qmC
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Finally, Fig. 18 to Fig. 20 show the evolutions of , ,lq dq mqC C C  as functions of the angle of 

attach, ranging in the interval  2 ; 8      . The evolutions are well smoothened and their 

regularity is evident. 

 

 

 
 

Fig. 18. Automatic differentiation Clq vs Alpha  0.4, 1 , 0.100yM rad s       

 
 
 

 
 
 

Fig. 19. Automatic differentiation Cdq vs Alpha  0.4, 1 , 0.100yM rad s      . 
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Fig. 20. Automatic differentiation Cmq vs Alpha  0.4, 1 , 0.100yM rad s      . 

4.2 F12 
The second sequence of tests has been carried out on the DLR-F12 configuration, working in 
inviscid condition at 0.202M    70u m s . As already said, F12 has been one of the test 
benches used in SimSAC; within such a context, DLR and Cerfacs/ONERA generated two 
sets of meshes, unstructured and structured respectively, to be used by Partners in order to 
have a common computing basis. The Euler grid used by Alenia was the unstructured full 
configuration, 3802374 nodes, and 25263927 segments. The dimensions of the grid are the 
following: 

 4.951 02 7.048 02e x e       

 5.998 02 5.998 02e y e       

 6.034 02 5.969 02e z e       

Figure 21 show two views of the overall mesh. 
 
 

 

Fig. 21. F12 overall mesh. 
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An extensive numerical testing has been carried out by running 15000 iterations to reach the 
primitive steady solution PS1. After this, the unsteady solution has been computed by 
engaging the AD solver and running it for 15000 more iterations. 

Computation has been run considering normal environmental conditions; in particular, the 

solver has been set to simulate a flight at 1 , 25 , 70p Atm T C u m s    . Numerical data 

have been compared to those acquired during the wind tunnel testing; the German-Dutch 

Wind Tunnels premise DNW-NWB, sited in Braunschweig, has been used for the 

acquisition of experimental data. Static testing included ┙- and ┚-sweeps. Figures 22 to 24 

show the evolutions of computed lift, pitch moment and drag coefficients as functions of the 

angle of attack, compared to the experimental values. It is evident a large data spread, from 

different Partners, for angles of attack up to 8°, especially for pitch moment and drag. This is 

mainly due to the different numerical approaches used by different Partners. Fig. 25 to Fig. 27 

show roll, pitch and yaw moments as functions of sideslip angle; in these cases, the data 

spread is evident just for pitch, while for roll and yaw moments data are much more similar 

with each other despite different numerical approaches. Figure 28 shows the sensitivity to 

the angle of attack; it is evident that, for an angle of attack 0°, the numerical result exactly 

overlaps the experimental one. This is the last result, computed in static condition, showed 

here. Figures 29 and 30 report dynamic sensitivities with respect to the pitch rate in the 

longitudinal plane, respectively for lift and pitch moment. Even in this case different 

numerical approaches lead to a wide range of results for the same configuration. Dynamic 

derivatives with respect to roll and yaw rates are shown in figures 31 to 36. Numerical data 

are in the latest cases much closer to experimental values and their spread is reduced to a 

minimum. 
 
 
 
 
 

 
 
 
 
 

Fig. 22. CL Comparison – Numerical vs. Experimental Results. 
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Fig. 23. CM Comparison – Numerical vs. Experimental Results. 

 

 

Fig. 24. CD Comparison – Numerical vs. Experimental Results. 

 
 

 

Fig. 25. Cl Comparison – Numerical vs. Experimental Results. 
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Fig. 26. Cm Comparison – Numerical vs. Experimental Results. 

 

 

Fig. 27. Cn Comparison – Numerical vs. Experimental Results. 

 

 

Fig. 28. CL Comparison – Numerical vs. Experimental Results. 
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Fig. 29. CLq+CLdot Comparison – Numerical vs. Experimental Results. 

 

 

Fig. 30. CMq+CMdot Comparison – Numerical vs. Experimental Results. 

 

 

Fig. 31. Cyp Comparison – Numerical vs. Experimental Results. 
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Fig. 32. Clp Comparison – Numerical vs. Experimental Results. 

 

 

Fig. 33. Cnp Comparison – Numerical vs. Experimental Results. 

 

 

Fig. 34. Cyr Comparison – Numerical vs. Experimental Results. 

www.intechopen.com



 
Applied Computational Fluid Dynamics 318 

 

Fig. 35. Clr Comparison – Numerical vs. Experimental Results. 

 
 

 

Fig. 36. Cnr Comparison – Numerical vs. Experimental Results. 

5. Machine in use 

All the runs have been carried out on a Quadrics multi-processor platform. The CPU is the 

AuthenticAMD working at 2594MHz. The system is made up of 7 computational nodes +1 

node dedicated to the file system access. Each node has 4 processors. The physical memory 

of each node is 3943 MB and the virtual one is 8189 MB. 

6. Conclusion 

Automatic differentiation in static and dynamic condition has shown to be reliable for 

industrial application. Even if a comparison with the FD technique may be enough to 

qualify the AD approach, the final and definitive confirmation comes from the comparison 

with experimental data. According to what has been achieved, one can say that: 
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 AD is reliable; 

 Alenia Aeronautica approach is reliable; 

 AD provides a good alternative to the methods used by other Companies or Research 
Centres. 

Following another work of the Authors (Ref. [12]) it is confirmed that a software 
reengineering activity is necessary after having generated the augmented code. This implies 
a cost in terms of time and deployed effort, for optimizing the augmented code lines, 
memory allocations and splitting the code in several components. Time saving achieved 
with AD is indeed remarkable if compared to other classical means to evaluate derivatives, 
and it provides an evaluation of the exact derivatives avoiding problems related to mesh 
refinement. Static and dynamic differencing procedures are clear enough to allow a daily 
use of AD features in the daily industrial activities. An extensive testing is now ongoing at 
Alenia premises in Turin in order to investigate: 

 a faster procedure to obtain dynamic derivatives, avoiding three different computing 
phases; 

 the application of AD for computing derivatives of higher order;  

 the extension of AD to turbulence. 
Further experiments related to the shape optimization, mesh adaptation and consequent 
resizing are currently in progress and are very promising. 
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