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1. Introduction 

In order to perform an accurate study of the climate inside a greenhouse, it is necessary to 

use models based on heat and mass transfer (Rico-García et al., 2008). Mathematical models 

based on mass and energy balances assume a homogeneous greenhouse environment. These 

models generate a set of nonlinear ordinary differential equations without an analytical 

solution. However, a more detailed monitoring of the environment inside the greenhouses 

reflects a two-dimensional and three-dimensional variability of climatic variables. 

Recently, this problem has been tackled using the fundamental equations of fluid 

dynamics. The set of numerical methods applied in order to solve those equations are called 

Computational Fluid Dynamics (CFD). Computational Fluid Dynamics (CFD) provides a 

numerical solution from an energy balance of a controlled volume, which in comparison 

with other methods and expensive technologies allows an efficient study of the climate 

inside the greenhouse. CFD techniques consider the values of the independent variables as 

primary unknowns in a finite number of places inside the domain, and then a set of 

algebraic equations are derived from the fundamental equations applied to the domain and 

can be solved by pre-establish algorithms.  

In spite of, the greenhouse is a very complex bio-system, in which there are several physical, 

chemical and biological interacting process and phenomena, during the last decade, due to 

the development of computer simulation tools and the increase in computational processing 

power, it is possible to develop numerical models for the greenhouse environment such as 

more accurate models for transport phenomena and energy exchange inside the greenhouse. 

As a consequence, these studies have led improvements in the design of greenhouses 

(Norton et al., 2007). 

According to Boulard et al. (2002), CFD is a branch of fluid mechanics that uses numerical 

methods and algorithms to solve and analyze problems involving fluids flow. Therefore, it 

is possible with the use of computers to perform millions of calculations to simulate the 

interaction of liquids and gases with surfaces defined by the boundary conditions. In recent 

studies the modeling of air flow, CFD has deepened to test their effectiveness in 

relationships of climatic factors (Bournet and Boulard, 2010). Computational parametric 
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studies on greenhouse structures can help to the identification of design factors that affect 

greenhouse ventilation under specific climatic conditions (Romero-Gómez et al, 2008; 

Romero-Gómez et al., 2010).  

In the last years, many studies have used CFD to investigate the climatic conditions inside 

greenhouses. CFD has been able to increase the degree of realism by taking into account 

insect-proof screens and simulation of the crop effect, considering it as a porous medium, 

among others in 3D models. The results have been able to improve our understanding of the 

phenomenon of greenhouse ventilation. Therefore, this chapter discusses significant recent 

studies to understand how the use of CFD has evolved. 

2. Fundamental CFD equations and methodology 

2.1 Finite element models using CFD 
Computational fluid dynamics is based on the governing fluid dynamics equations 

(continuity, momentum and energy). The set of equations obtained directly from the volume 

or fixed element in space is known as "conservative form" Euler type. The equations 

obtained directly from the volume or movement with the fluid element are called "non-

conservative form” Lagrange type (Anderson, 1995). 

2.2 Substantial derivative 
The substantial derivative physically is the exchange rate of any substance that moves with 

a fluid element. It consists of two parts, where the first part is called the local derivative, 

which means the rate of change over time in a fixed point. The second part is called the 

convective derivative, which physically is the exchange rate due to movement of the fluid 

from one point to another in the field of fluid, where the fluid properties are spatially 

different. The resulting material can be applied to any field variable fluid, for example: 

velocity(u), pressure (p) or temperature (T) (Anderson, 1995). 
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1. Continuity equation 
2. Momentum equation (a non-conservative) 
3. Components in x, y and z 
4. Energy equation (a non-conservative) 
The fundamental CFD equations form a coupled system of nonlinear partial differential 

equations. So far no analytical solution has been found. It is commonly assumed that the 

fluid is an ideal gas where the intermolecular forces can be neglected. For an ideal gas, the 

state equation is: 

 p RT  (5) 

Where R is the specific gas constant. For a calorically ideal gas we have: 

 ,e CvT  (6) 

Where Cv is the specific heat at constant volume (Rodríguez, 2006, Norton et al, 2007). 

2.3 CFD procedure applied to the greenhouse environment 
Domain setting and grid generation are the first steps in the CFD modeling process. This 

implies the choice of a computational domain that is large enough to correctly assess the 

main mechanisms that occur in the system and to avoid interference with artificial 

Boundaries (Bournet and Boulard, 2010). The CFD modeling process encompasses three 

stages: preprocessing, solution and post-processing.  

The preprocessing is the most time-consuming activity because of mesh generation that is 

the basis for an accurate simulation, does require heavy calculations. Therefore, keeping an 

adequate strategy should allow reliability in the calculations and physically consistent 

results. The meshing process is based on a serie of activities that can be summarized as 

follows:  

a. Geometry definition (Figure 1) 
b. Geometry decomposition  
c. Computational mesh generation (Figure 2), refining, giggling, quality 
d. Functional and quality meshing  
e. Definition of the boundary conditions and  
f. Export mesh 
One of the most important problems currently in CFD modeling of the greenhouse 

environment is the time-consuming for a simulation to converge, due to the high number of 

cells that come from the process of meshing. Thus, for many years was chosen to model only 
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in two dimensions (2D) (Flores-Velázquez, 2010). However, air distribution inner 

greenhouse has a third-dimensional (3D) pattern, for that, nowadays 3D CFD models are 

more commonly developed. According to Bournet and Boulard (2010) the calculation 

process is an iterative procedure that requires the definition of convergence criteria, and the 

user of the CFD codes must to decide on an appropriate level of convergence, of the 

solution. Generally, 10−4 of the value of a variable at all of the nodes is used. Faster 

convergence may also be reached by optimizing the grid shape or by assuming the 

Boussinesq model as density dependent rather than by setting up the problem on the basis 

of the ideal gas theory. However, this choice may not be applicable in the case of large 

thermal gradients and may also overlook the influence of temperature on air viscosity. 

 
 

 
 
 

   
 

 
 
 

Fig. 1. Geometry generation for a greenhouse. 
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Fig. 2. Computational mesh generation for a greenhouse (Flores-Velázquez, 2010). 

The presence of turbulence in a fluid is indicated by the fluctuating velocity components 
and the quantities carried out by the flow, even when the boundary conditions for the 
problem under study are kept constant. These fluctuations determine the difference between 
laminar flow and turbulent flow (Figure 3). For most situations, ventilation (effect of 
temperature, wind or both) measurements and visualization experiments have 
demonstrated the turbulent air flow inside and outside the greenhouse. Therefore, the 
phenomenon of turbulence must be taken into account (Norton et al. 2007). 
 
 

 

Fig. 3. Velocity vectors on a multi-hood greenhouse of four spans. CFD model considers 
anti-insect mesh vents (Rico-García, 2008). 
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If inertial effects are large enough with respect to viscous effects, then the flow can be 
turbulent. Turbulence means that the instantaneous velocity varies at each point of the 
flow field. The turbulent nature of the velocity can be explained considering that the rate 
consists of the sum of two components, a main component (stable) and a fluctuating 
component. Depending on Reynolds number, laminar or turbulent flow can be modeled. 
For instance, most turbulence models, such as standard k-ε Model, and Re-Normalized 
Group Turbulence Model (RNG), to name a few (Rico-García, 2008). 
The post-processing stage allows the user to visualize and search for the solution. Figures 

contours, vectors and graphs can be obtained from analyzing the solution. It is remarkable 

that figures allow us to observe the full distribution of temperature, speed, pressure and 

so on the whole flow field (Figure 4). 

 
 

  
 
 

 

 

 

Fig. 4. Wind velocity (m s-1) and temperature (K) representative post processing 
characteristics at different greenhouses sceneries (Flores-Velázquez, 2010)  

As soon as a CDF model has been tested, the computational greenhouse environment can 

become a powerful climate analysis tool. Nowadays, it is possible to visualize, for instance, 

the wind distribution along the greenhouse when the income windows are up or down, and 

also the consequent temperature profiles, among many other possibilities (Figure 5). Even 

though, in the last decade research on wind behavior inside the greenhouse has been 

enormous, still, as a fundamental part of the greenhouse environment modeling process, it 

is necessary to take into consideration the physical verification in order to provide accuracy 

on the results obtained by numerical simulation (Flores-Velázquez, 2010). Scale models, 

water and wind tunnels and direct measurements of the climatic variables are some of the 
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main options for verification of the CFD models of the greenhouse climate (Flores-

Velázquez, et al., 2011). 

 

 

 

 

Fig. 5. Comparison of wind speed (m s-1) (1) and profiles of air temperature (K) (2) in the 
greenhouse with and without the projection of the rectangular window. Wind speed 
exterior 4 m s-1, soil heat flux 315 W m-2 (Flores-Velázquez, 2010). 

3. Approaches used in the application of CFD to the greenhouse environment 

CFD modeling is used to design facilities that provide suitable climatic conditions for the 

crops. According to Sase (2006), within a mild climate, appropriate design and control of 

ventilation are required to ensure effective cooling and uniformity of the environment. It is 

possible to design an optimal greenhouse by calculating its area, volume and vents area as 

well as the material properties of the roof (Impron et al., 2007). Rico-García et al. (2006), 

comparing two different greenhouses, showed the importance of its geometry and found 

that the ventilation rate for a greenhouse with larger vertical roof and windows was better 

than a multi-span greenhouse. Omer (2009) describes several designs of low energy 

greenhouses. In agreement with Baeza et al. (2008), design changes in the greenhouse, such 

as size and shape of vents, can improve air movement in the area of crops. Bakker et al. 

(2008) investigated energy balance, and determined that the amount of energy used per unit 

of output is defined by improvements in energy conversion, environmental control to 

reduce energy consumption and efficiency of agricultural production. In a study of outdoor 
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areas using the turbulence model Reynolds-averaged Navier-Stokes equations (RANS), van 

Hoff (2010) found that small geometric modifications can increase the ventilation rate up to 

43%. The performance of ventilation in enclosed spaces is affected by the flow of outside air, 

type of cover, height of the installation and the ventilation opening (Kim et al., 2010). 

Computational parametric studies on greenhouse structures can help to identify design 

factors that affect greenhouse ventilation under specific climatic conditions (Romero-Gómez 

et al., 2008; Romero-Gómez et al., 2010; Flores-Velázquez et al., 2008). 

3.1 Windward and leeward wind directions 
The wind direction outside the greenhouse is an important factor in defining the flow of air 

and climate inside the greenhouse system. The boundary conditions of wind speed 

distribution are deduced from experimental data and wind direction with respect to the 

longitudinal axis of the greenhouse, which can range from 0 ° to 90 °. Roy and Boulard 

(2005) simulated the impact of wind at 45 ° and 90 °, showing the influence of wind 

direction in the air velocity, temperature and humidity distributions inside the greenhouse; 

a similar result was found by Campen (2003). Rico-García et al. (2006) also showed that a 

greenhouse with larger vertical roof windows works better with a windward condition, 

whereas the multi-span greenhouse works better with a leeward condition. Therefore, wind 

direction affects the degree of ventilation. In a experiment carried out  by Khaoua et al. 

(2006), four different openings of roof vents obtained ventilation rates from 9 to 26.5 air 

exchanges per hour for the windward and 3.7 to 12.5 on the leeward wind condition, 

respectively, which can maintain acceptable and uniform climate conditions for particular 

cases where the wind is perpendicular to the main axis of the greenhouse. Overhead 

ventilation to the windward and leeward directions represents a reduction in the ventilation 

rate by 25% to 45%, compared with only opening to the windward direction (Bournet et al., 

2007). Openings to the windward direction generate the highest rate of ventilation; however, 

the greatest homogeneity of the temperature and wind speed arises from combining 

windward and leeward roof vents (Bournet and Khaoua, 2007).  
Kacira et al. (2008) showed that the air temperature inside the greenhouse was higher on the 
windward side than on the leeward side when roof vents were used. Wind speed had a 
linear influence on air exchange rates, while the wind direction did not affect them. 
Majdoubi et al. (2009) observed a strong wind air current above a tomato canopy that was 
fed by a windward side vent and a slow air stream flowing within the tomato canopy space. 
The first third of the greenhouse, until the end of the leeward side, was characterized by a 
combination of wind and buoyancy forces, with warmer and more humid inside air that 
was removed through upper roof vents. There may be a conflict between increasing 
ventilation and improving uniformity because there is little information on air movement 
affecting the cooling efficiency and the uniformity of the environment (Sase, 2006). 
According to Rico-García (2008) the relationship between the thermal gradient and 
ventilation of gases shows a linear behavior, while the relationship between the combined 
effect of temperature and wind greenhouse ventilation presents a piecewise linear 
behavior. The wind pattern in a greenhouse is strongly affected not only by the outside 
wind velocity but also by the number of greenhouse spans (Flores-Velázquez, 2010). It was 
found recently, that as  the greenhouse has three or four spans roof windows orientation is 
independent, however, when the greenhouse has five or more spans, side ventilation is 
dominant over the roof ventilation (Figure 6). 
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By increasing the surface of the front windows, opening windows and increasing roof 

capacity exhaust fans can ventilate properly larger greenhouses (Figure 7). It is important to 

calibrate the fan power, but also to determine a representative inlet area (Flores-Velázquez 

et al., 2009; Flores-Velázquez, 2010).  

 

 

 

 

 
A) Roof windows windward open 

 

 
B) Roof windows leeward open 

 

 
C) Roof and side windows windward open 

 

 
D) Roof and side windows leeward open 

 

 
 

Fig. 6. Wind velocity interior vectors with 5 m s-1 wind velocity outside the greenhouse, on 
four open windows sceneries tested. 
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Fig. 7. Wind velocity vectors in a inlet area and outside fans in a three span greenhouse 
(Flores-Velazquez, 2010) 

3.2 Heat exchange tube and natural ventilation 
Rouboa and Monteiro (2007) simulated, by using a CFD model, the effects on temperature 

and wind speed of the introduction of hot water pipes along a greenhouse on nighttime 

conditions, under three scenarios: natural convection heating (case A), artificial heat pipes 

(case B) and artificial heat pipes and natural ventilation (case C) by using the turbulence 

model. Re-Normalization Group (RNG) observed an average increase in air temperature to 

2.2 ° C, 6.7 ° C and 3.5 ° C; the turbulence was lower for case A, slightly increasing with the 

heating system for case B and higher for case C, due to the effect of natural ventilation. 

3.3 Forced ventilation 
The study of fluid dynamics in ventilation systems application provides elements of natural 

ventilation. A numerical investigation by Rousseau (2008) on a prototype air-forced unit for 

crop growth chambers obtained simulations that show a nonlinear relationship between 

airflow rate and opening vents, showing the mixing zone. Dayan et al. (2004) developed 

another simplified model to demonstrate the calculation of plant temperature when 

applying forced ventilation for climate control in greenhouses. The use of a device air flow 

deflector below the roof vents proved to increase air exchange in the area of cultivation 

effectively. According to the CFD simulations, the combination of the side vent dual 

configuration has little effect on overall air exchange; nonetheless it increases air movement 

in the crops and homogenizes temperatures (Baeza et al., 2008). Another investigation by 

Hughes and Abdul (2010) took into account the effect of the external angle of the ventilation 
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device (wind vent) louvers against the internal pressure and velocity to optimize the device 

performance. The optimum angle was 35 ° to 40 ° with a wind velocity of 4.5 ms-1. Forced 

ventilation is an excellent option to abate the high temperature, but mainly in small 

greenhouses as fans are designed properly (Figure 8). As the length of the greenhouse 

increases, the overhead natural ventilation becomes a positive and more important 

complement to mechanical ventilation (Flores-Velazquez, 2010; Flores-Velázquez et al., 

2011). 
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Fig. 8. Three spans mechanically ventilated greenhouse, power fan 25 Pa, Heat flux 
convection 315 W, top view 2 m high. 

3.4 Fog-cooling system 
According to Sase (2006), in a fog-cooled greenhouse in combination with natural ventilation, 
air cooled by fogging above the plants is likely to go down. Kim et al. (2007) developed a CFD 
model to simulate air temperature and relative humidity distribution in a greenhouse with 
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fog-cooling systems, regardless of the presence of plants. Air temperatures and simulated 
measures ranged from 0.1 ° to 1.4 ° C and relative humidity differences were 0.3-6.0%. The 
results showed that the best cooling system performance occurs when fog nozzles are within 
2.3 meters of the floor and 1.9 m of the side walls with a uniform spacing of 3.7 m and the best 
location for the injectors is at the entrance of the side openings of the greenhouse.  

3.5 Eave cladding type 
In order to understand the air mixing properties of the installation, Norton et al. (2010b) 
studied airflow and buoyancy, determining the relationship between eave openings and 
resistance to airflow and indoor air mixing for ventilation. They quantified the domain 
based on the effect of opening conditions, eave cladding type, porosity and height and 
found that the porosity of the eave opening cladding system significantly increases the 
efficiency of ventilation. They developed another CFD model incorporating shipping space 
and the cladding of the eave under conditions of opening and modifying its height, to 
determine the effects and characteristics of ventilation inside. It was found that the cladding 
of the eave influences the efficiency of ventilation and thermal comfort. They also found that 
the strength and the height of the eave determine whether it opens to leeward, acting as an 
air inlet (Norton et al., 2010c). 

3.6 Screens and vents 
Recent research using CFD models includes further refinement in adaptive meshing areas, 
in order to maintain a high level of accuracy during modeling making the simulations more 
reliable (Norton and Sun, 2006). Screens reduce ventilation rate by 33%, according to a study 
carried out by Kittas et al. (2005). In agreement with Harmanto et al. (2006), using different 
screen’s sizes over the vent opening has a significant effect, reducing 50% to 35% mesh 40, 
78 and 52 and giving rise to a temperature gradient of 1 to 3 ° C with a mesh of 52 as 
optimal for a tropical greenhouse. Majdoubi et al. (2007) found that insect-proof screens 
significantly reduced airflow, increasing thermal gradients inside the greenhouse by 46%. 
Using a wind tunnel with screens of different porosity (0.62, 0.52 and 0.4), Teitel et al. 
(2008a) showed that a screen inclined by airflow reduces drag compared to a flow 
perpendicular to the screen, allowing an increase of 15-30% and 25% in the upper 
compared with a flat screen. Also, Teitel et al. (2009) found that higher speed screens are 
inclined at 45 ° and decreased to 135 ° tilt.  
Ali et al. (2009) investigated the effect of roof vents on the temperature and coefficient of 
heat transfer in naturally ventilated facilities. Better flow patterns and heat transfer from the 
heated ceiling are observed when the front opening is located closest to the ceiling and the 
rear opening is located closest to the center. The increase of temperature and humidity as a 
result of insect-proof screens is particularly evident in the vicinity of the crop canopy 
(Majdobi et al., 2009). Also it was found that a larger roof vent area can greatly enhance 
ventilation, while the extension of an insect-proof screen on side walls hardly changes the 
air exchange rate (Romero-Gómez et al, 2008; Romero-Gómez et al, 2010). 
In hot regions a common practice is the substitution of the plastic cover of the greenhouse 
by a screen cover. This structure is called a screenhouse or a shadehouse. Although the 
climate control is rather difficult in such structure, it is an interesting and important system 
for growing crops. In some respect a screenhouse is better than a greenhouse as it is 
required to avoid hot air temperatures during specific hours of a day or a season, which is 
feasible because of the roof ventilation lets a higher air exchange (Figure 9). 
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Fig. 9. Y-component wind velocities showing the wind exchange by the roof at entrance of a 
screenhouse (Flores-Velazquez, et al., 2008). 

When several screen porosities are located on side/roof screenhouses a similar behavior is 
observed, regardless the kind of screen, and a strong reduction of the wind velocity is 
predicted as the crop effect is taken into account to simulate the CFD model of the 
screenhouse (Figure 10). 
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(a)     (b) 

Fig. 10. Comparison of wind velocities between screenhouses with the same screen (S1 and 
S2) and screen on the side (S1) and screen on the roof (S2). (a) With crop effect simulated. (b) 
Without crop effect simulated.  
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3.7 Solar radiation and temperature 
Some studies have used solar radiation and transpiration models based on the heat and 
water balances of the crop, to investigate the distributions of air temperature and humidity 
and also the interactions between the crop and the air, in addition to the airflow distribution 
(Sase, 2006). According to Tablada (2005), the factor of solar protection plays a crucial role in 
maintaining stable thermal conditions indoors, even if the outside air temperature is higher. 
The slightly higher air speed on the top floor is insignificant in view of reducing the 
negative effect of the solar radiation over the roof and facade. The temperature of the 
greenhouse cover is an essential parameter needed for any analysis of energy transferred in 
the greenhouse. A sub-model developed by Impron et al. (2007) calculated the transmission 
of radiation through the greenhouse, including the reduction of NIR transmission through 
the roof. Tong et al. (2009) developed a numerical model to determine time-dependent 
temperature distributions based on hourly measured data for solar radiation, indoor air, soil 
and outside temperature, taking into account variable solar radiation and natural convection 
inside the greenhouse during the winter in northern China. 

3.8 Temperature and air exchange 
The effect of solar and thermal radiation is often taken into account by setting specific wall 

or heat fluxes at the physical boundaries of the greenhouse. Radiation transfer within the 

crop itself is still the major concern since it determines the two main physiological crop 

processes: transpiration and photosynthesis. This challenge is now launched and will 

probably receive more attention within the next few years (Bournet and Boulard, 2010). 

Pontikakos et al. (2006) analyzed data obtained from a CFD model, and showed that the 

external boundary temperature is a critical parameter in the pattern of internal greenhouse 

temperatures and that for specific external temperatures and wind directions, airspeed 

becomes the crucial parameter. According to Molina et al. (2006), opening vents affect the air 

flow, the ventilation rate and the air temperature distribution in a greenhouse; where the 

mean air temperature at the middle varied from 28.2 to 32.9ºC with an outside air 

temperature of 26ºC, there were regions inside the greenhouse that were 13ºC warmer than 

the outside air. Nebbali et al. (2006) used a semi-analytical method to determine the ground 

temperature profile from weather parameters and other characteristics, to help in evaluating 

heat flux exchange between the surface and the air. Rico-García et al. (2008) showed that 

ventilation in greenhouses due to the temperature effect produces high air exchange rates; 

however, those air patterns occur near the openings, causing almost no air exchange in the 

central zone of the greenhouse due to a stagnant effect that reduces the wind effect 

throughout the greenhouse. In agreement with the results of Majdoubi et al. (2009), 

convection and radiation are the dominant forms of heat transfer. The measurements show 

that the difference between the air temperature inside and outside the greenhouse is 

strongly linked to solar radiation and secondly to wind speed. However, Chow and Hold 

(2010) obtained the following conclusions from studying buoyancy forces from thermal 

gradients: 

a. Thermal radiation without air involvement changes air temperature distribution by 
radiating upper zone thermal energy in the wall towards the lower zone wall, which 
then affects air temperature through conduction and convection; 

b. The inclusion of air absorption increases the effect of radioactive thermal redistribution 
by allowing air to absorb and radiate heat, reducing temperature gradients further; 
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c. Thermal boundary conditions and heat loads affect the predicted absolute temperature 
bounds, but do not affect the temperature distribution. 

Radiation conditions play an important role in redistributing heat. Atmospheric conditions, 
especially relative humidity, are important for the calculation of radiation and heat transfer. 
Flores-Velázquez (2010) recently found that without overhead natural ventilation, it is 
possible to find linear relationships between temperature increase and the length of the 
greenhouse respectively, and the fan power that determines the slope of the regression line. 

3.9 Turbulence and buoyancy 
As computing power has increased the complexity and sophistication of CFD models also 
have increased. According to Norton and Sun (2006), the standard k-ε turbulence model 
commonly used in CFD models for greenhouses, in some cases provides inadequate results, 
and the choice of turbulence models must be based on the phenomena involved in the 
simulation. Different turbulence models give rise to differences in speed, temperature and 
humidity patterns, confirming the importance of choosing the model that most closely 
matches the actual conditions of turbulence (Roy and Boulard, 2005). Teitel and Tanny 
(2005) showed that the output of the turbulent heat flux is mainly due to cold air entering 
the greenhouse, which produces hot and cold eddies coming in and out the greenhouse. Roy 
and Boulard (2005) showed that the effects of wind direction on climate parameters inside 
the greenhouse are usually simulated by using different turbulence models available, to 
determine the energy balance between the flow of perspiration and the flow of radiation. 
Under ventilation parameters based on Bernoulli's theorem, Majdoubi et al. (2007), showed 
that bad ventilation performance is not a result of the low value of the greenhouse 
wind−related ventilation efficiency coefficient, but rather, that the low rate of discharge due 
to pressure drop in air flow is generated both by the use of anti-insect screens with small 
openings as an obstruction due to the orientation of the rows of crops. Moreover, Rouboa 
and Monteiro (2007) note that the RNG turbulence model is best suited to simulate 
microclimates in arc-shaped greenhouses. 
According to Baxevanou et al. (2007), the circulation of air buoyancy effect shows the 
importance of internal temperature gradients, forced convection resulting from natural 
ventilation predominates. Rico-García et al. (2008) found that applying temperatures as the 
main driven forces for the buoyancy effect provides a simple way to study ventilation and 
inner air patterns. Vera et al. (2010a) observed that differences in temperature and 
ventilation rates strongly influence the movement of air, pushing it through openings where 
space is colder, while creating rising air currents when it is hot. Majdoubi et al. (2009) 
showed that the buoyancy forces induced by air temperature and increased humidity result 
in loops of air between the crop and the roof windows, which in turn tend to accelerate the 
pace of removal of heat and water vapor, enhancing indoor climate. Fidaros et al. (2010) 
studied turbulence in Greek greenhouses and found that external temperature variation is 
very important because internal temperature is determined by convection induced by the 
input current. The housing area had a higher circulation in the center of the greenhouse near 
the deck and in the corners of the ground, where the effect of the input current is weak. 
Defraeye et al. (2010) used a RANS turbulence model in CFD simulations to evaluate heat 
transfer by forced convection at the surface of a cube immersed in a turbulent boundary 
layer for applications in the atmospheric boundary layer (ABL), where wind speed is not 
disturbed at a height of 10 m. In a study of airfoil wakes, three turbulence models were 
simulated by Roberts and Cui (2010); the Reynolds Stress Model (RSM) is superior over the 
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k-ε model, and when a time-dependent solution is necessary, Large Eddy Simulation (LES) 
is the desired option. However, LES does require the airfoil geometry to be included in the 
domain because it performs poorly when given only inlet velocities, turbulence kinetic 
energy and eddy dissipation at the trailing edge of the airfoil. According to Bournet and 
Boulard (2010), although they have been used for a long time in both the agriculture and 
environment studies, less empirical approaches to turbulence based on the use of LES have 
never been applied to greenhouse climate modeling and might perhaps be used to look for a 
solution to this complex situation. 
Inside buildings, it is difficult to maintain a thermally stratified space with low ceilings, such 
as in offices and houses. Vera et al. (2010b) studied buoyancy in enclosed spaces, drawing 
the following conclusions: 
a. Rising air currents and the exchange of humidity are closely related to the temperature 

difference between the lower and upper space. Low temperature in the upper space 
promotes the exchange of humidity and air flow through the opening; the hotter you 
are, the greater the restriction of air and humidity transport. 

b. The existence of upward air currents when the space is warmer than the bottom is 
caused by local conditions such as non-uniform temperature distributions in the upper 
space and convective warm currents of the base and the humidity source. 

c. Compared with conditions without mechanical ventilation, ventilation severely restricts 
the flow of air through the opening. 

The main difficulty in the choice of the model is that greenhouse systems cover a range of 
length and velocity scales that generally require different modeling approaches (Bournet 
and Boulard (2010).  

3.10 Incorporation crop effects and crop modeling 
The effect of plants on greenhouse ventilation has also been studied in the past. For instance; 
Bournet et al. (2007), based on studies by Nederhoff (1985) and Lee and Short (1998), 
assumed that a crop of 90 cm high and low density decreases between 12 and 15% 
greenhouse ventilation. Dayan et al. (2004) built a representative model of a greenhouse for 
three vertical segments, horizontally oriented to the directions of energy and vapor transfer 
between the segments containing plants, considering the external weather. They concluded 
that Representative Plant Temperatures (RPTs) can be calculated instead of measured. Roy 
and Boulard (2005) developed a 3D CFD model for the characterization of climatic 
conditions in a greenhouse, incorporating five rows of ripe tomatoes as a porous medium 
where the buoyancy, heat and moisture transfer between the crop and air flow inside were 
considered. The heat and moisture transfer coefficients are deduced from the characteristics 
of the laminar boundary layer of the leaf, which are calculated with the velocity of flow in 
the crop. Khaoua et al. (2006) found that under external conditions of 1 ms-1 air velocity and 
30° of temperature, wind speed at crops’ height varies according to the modalities of 
ventilation from the windward 0.1 and 0.5 ms-1 for the leeward side, while temperature 
differences ranged from 2.0 to 6.1 ° C. In a study with tomatoes, Majdoubi et al. (2007) found 
that crop rows oriented perpendicular to air movement reduce the rate of airflow through 
the cultivation in a greenhouse by 50%. According to Baeza et al. (2008), a greenhouse with 
natural ventilation efficiency must combine an enough number of air changes to remove 
excess of heat, with good circulation of air through the crop. The effect of the crop was 
evaluated by Impron et al. (2007) using a sub-model to determine its effects on ventilation, 
the properties of the cover, and crop transpiration. In agreement with Kruger and Pretorius 
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(2007), the temperature and velocity at the plant level are influenced by the arrangement 
and number of windows. A study carried out by Sapounas et al. (2007) simulated a tomato 
crop as a porous medium, taking into account the addition of buoyancy to develop a model 
of the pressure drop of air flow due to the crop. The model depended on the area leaf stage 
of growth and cultivation, under the RANS turbulence model together with the RNG k-ε 
turbulence model. The results, validated with experimental measurements obtained at 1.2 m 
inside the canopy; show that the evaporative cooling system is effective with numerical 
parameters, providing a useful tool to improve system efficiency. A study performed by 
Roy et al. (2008) on leaf level through an experimental setup based on Münger cells 
measured the temperature, relative humidity and different heat flows to the leaves of 
soybeans, obtaining minimum stomatal resistance values ranging from 66 to 200 sm-1. 
Teitel et al. (2008b) built a small-scale model and found that wind direction significantly 
affects the ventilation rate and temperature distribution in crops. A study by von Elsner et 
al. (2008) on the effect of near-infrared (NIR) reflecting pigments in microclimate and plant 
growth found that a temperature drop up to 4 ° C in a young crop is the result of a 18% 
reduction in the transmission of global radiation in spring. At the same time, during the 
rainy season, minimizing transpiration differences in temperature and shading reduces 
water requirements in the plants, and they observed parthenocarpic fruit rot and yield-
reducing crop. In a tunnel-type greenhouse, a tomato crop was modeled by Bartzanas et al. 
(2008) by designing a porous medium, where they emphasize the influence of the heating 
system on greenhouse microclimate. The climatic behavior of the rows of the tomato crop is 
taken into account using external user defined functions (Baxevanou et al., 2007). According 
to Majdoubi et al. (2009), reorienting crop rows in simple ways improved climatic 
conditions. Endalew et al. (2009) performed CFD modeling of a plant with leaves and 
branches of the canopy, using turbulent energy equations in porous sub-domains created 
around the branches. Fidaros et al. (2010) simulated a greenhouse tomato crop as a porous 
medium so as to model radiation transport by discrete ordinates (DO). According to Teitel et 
al. (2010a), when applying the porous medium approach, the Forchheimer equation is often 
used, which gives rise to  erroneous results with respect to the pressure drop through 
screens. An alternative way to calculate it through several panels of porous media used to 
simulate screens with realistic geometries. Moreover, the crop exerts a mechanical strain 
(drag force) on the flow just above but also interacts through the transpiration process with 
the temperature and humidity distributions (Bournet and Boulard, 2010). A simple model of 
transpiration of a crop was developed by Sun et al. (2010), who related it to the 
characteristics of ventilation in a greenhouse in eastern China, obtaining a good 
approximation. In general, there have been enormous efforts devoted to the analysis of 
ventilation in greenhouses (Norton, 2007); each new study provides new elements not only 
in the movement of air in the greenhouse but also in the forms it takes due to interactions 
occurring in the environment, such as position, shape and size of windows, and (one of the 
most important), the presence of a crop (Flores-Velázquez, 2010). 

3.11 Humidity 
Roy and Boulard (2005) simulated wind directions of 0 °, 45 ° and 90 ° with respect to the 
orientation of the greenhouse ridge to determine wind speed, temperature and humidity 
distributions inside the greenhouse, getting a good approximation for the humidity. In 
agreement with Demrati et al. (2007), models allow estimation, with better accuracy, of 
water requirements for a banana crop under cover and improved water saving in regions 
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where water is the main limiting factor for agriculture. Roy et al. (2008) studied moisture on 
the surface of leaves at low light levels; crop transpiration and air flow were integrated into 
a single parameter model of leaf stomatal response to air flow and radiation. Campen (2008) 
showed that climate through a ventilation system is more homogeneous and the control is 
more efficient than with the conventional method of steam extraction. Dehumidifiers and 
cooling reduce the overall difference in humidity between the middle and lower areas of a 
greenhouse, as demonstrated by Kim (2008) using a 3D model could identify the 
heterogeneous distribution of relative humidity in a greenhouse. According to Majdobi et al. 
(2009), an increase in air temperature precedes a more moderate increase in specific 
humidity. 

4. Main results of CFD models in greenhouses 

Many CFD studies are focused on defining the conditions for a suitable environment. There 
has been less work on automation and control variables. Investigations that seek for a 
greater understanding of the interactions among climatic variables are increasing. Studies 
such as those of Hooff, 2010; Teittel, 2010 and Fidaros, 2010, evaluating geometries, have 
increased in the last year. Figure 11 shows the frequency of climatic variables studied during 
the period from the year 2005 to 2009 in the studies of CFD models in greenhouses. 
 

 

Fig. 11. Frequency of climatic variables analyzed by CFD models  applied to greenhoses. 

Most studies show multi-variable relationships, of which temperature and air flow are 
predominant. Humidity has been linked to temperature, while there are still few CO2 
distribution models. Solar radiation is the subject of investigations that evaluate housing, 
and is also related to the temperature in simulations with a greater degree of realism. 

Studies to determine the influence of windward and leeward wind direction indicate that 
roof vents are of great importance for air renewal, where aperture settings that maximize the 
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number of air renewals are obtained only with windows open to the windward roof 
(Bournet et al., 2007; Kacira, 2008 and Majdoui, 2009). However, the combination of openings 
to the windward and leeward sides homogenizes the temperature inside the greenhouse better 
(Bournet and Khaoua, 2007). There have been many studies to determine a kind of optimal 
geometric design of greenhouses that encourage improvements in weather conditions and the 
use of new technologies such as monitoring systems in real time, allowing improvements in 
automation using Web technology (Pontikakos, 2005). Other studies have focused on the 
evaluation of misting systems (Kim et al., 2007; Gázquez et al. 2008), forced ventilation (Dayan 
et al., 2004, Baeza et al., 2008 and Hughes and Abdul 2010) looking for energy savings. As 
simulation technology and computing power have improved, accuracy and realism in research 
based on CFD models, has increased as well, by defining more detailed models and by the use 
of textures that define the materials of the facilities. 
The use of insect-proof screens in commercial greenhouses is very important as a means of 
crop protection; even though they reduce natural ventilation, by this, there have been many 
research efforts to reduce its negative influence (Kittas et al., 2005; Harmanto et al., 2006; 
Majdoubi et al., 2007; Teitel et al., 2008a). These studies tested different designs in size of the 
box and tilt and determined the most affected areas within the greenhouse, where the use of 
porous media allowed its CFD simulation. 
Several studies have investigated the influence of solar radiation on temperature and 
relative humidity (Tablada et al., 2005; Impron et al., 2007, Tong et al., 2009), and the result in 
crop response (Baxevanou et al., 2007). Other studies evaluated the use of pigments (Elsner 
et al., 2008) taking into account the convection, and thermal gradients.  
Most of the recent studies developed 3D CFD models, some of which reported the use of 
models of turbulence and buoyancy, which appear more often during the past two years 
(Fidaros, 2010; Defraeye, 2010; Norton, 2010; Majdoubi, 2009). By taking into account 
turbulence, CDF models can make simulations more accurate, in turn increasing the 
processing and memory requirements for computing resources. Norton and Sun (2006) and 
Roy and Boulard (2005) discuss the importance of choosing the turbulence model that best 
meets the conditions of the study. Moreover, the concept of buoyancy appears frequently in 
order to incorporate the effects of growing space on the air flow and temperature gradients 
into the models (Figure 12). 
Many studies consider the growing space, some of which are designed to measure 
phenomena based on their influence on the development and crop yield. Other studies are 
focused on the influence of crops on the other elements, such as temperature, relative 
humidity, CO2 concentration and air flow, where  it is necessary to model the space 
occupied by the crop by using porous media approach (Fidaros et al ., 2010). Other 
investigations measure biological phenomena such as evapotranspiration and 
Photosynthetically Active solar Radiation (PAR) by using indirect measures of climatic 
variables (Baxevanou, 2007; Sun, 2008). However, some studies do not mention an 
experimental phase aimed at validating the numerical model. In studies of air flow, the 
experimental methods mostly used are scaled models and unidirectional anemometry; the 
tracer gas technique is used less often, as well as three-dimensional anemometry, which is 
considerably more expensive. Studies that have used new methods to assess ventilation 
systems, such as those by Lu (2009), Molina (2010), Endalew (2009), van Henten (2008), 
Mikulka (2010) and Defraeye (2010), have been increasing in the past three years. The main 
question is the validation of these studies because they mainly concern to real scale 
greenhouses, whereas the measurements and characterizations have merely been done on 
scale models. 
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Fig. 12. Degree of realism and accuracy in the CFD models for greenhouse climate. 

CFD modeling is an area of knowledge that in recent years has developed enormously 
through the development of software and hardware, which has contributed to research on 
natural ventilation a greater understanding of the interactions between the variables that 
make up the climate inside greenhouses. In the past five years, CFD simulation has become 
increasingly realistic and detailed, obtaining more accurate solutions. However, their use 
requires depth and extensive knowledge of climatic variables, fluid dynamics and 
turbulence. Simulating more accurately requires more processing power, so research tends 
to use CFD models together with other tools. Further studies are required to incorporate 
more realistic crops beyond a porous medium, taking into account the role of gas exchange, 
which is necessary for an understanding of the physiology and phenology of crops. There is 
still a need to develop high-precision systems in greenhouses, and CFD is a powerful tool 
for defining parameters with high precision, in order to control better the greenhouse 
environment. 

5. Validation procedures for CFD models of greenhouse environment 

5.1 Models and experimental validation 
According to Sase (2006), recent progresses in CFD techniques have accelerated a more 
detailed analysis of air movement in combination with verification tests. However, studies 
in this area are required in order to address the detailed design of each element involved in 
the greenhouse climate, highlighting the difficulty involved in the analysis of air movement 
inside a greenhouse (Flores-Velázquez, 2010). The quality of the CFD models predictions is 
often evaluated from the agreement with experimental data. Nevertheless, no standard 
procedure exists yet in order to properly assess the accuracy of the simulations, and the type 
of comparison often differs from one study to the next (Bournet and Boulard, 2010). Figure 
13 summarizes the main approaches used in the recent past to validate the CFD models of 
the greenhouse environment. 
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Fig. 13. Frequency of validation procedures used in CFD models applied to greenhouses. 

The use of porous media models to simulate the pressure drop across flow boundaries, such 

as insect screens and fences, is very popular and must be validated experimentally. New 

technologies such as particle image velocimetry have worked properly to complement 

predictions; field solutions may include biological responses increasing the realism of the 

simulations (Norton et al., 2007). According to Rouboa and Monteiro (2007), improvements 

could be achieved by incorporating nighttime transpiration and optimizing the size of the 

mesh elements to lower computation time. Recent progress offers the opportunity to build a 

grid that fits the physical boundaries of the structures studied much more realistically than a 

Cartesian structured grid, which closely follow the contour of the solid boundaries. 

However, they require verification of the meshing quality to obtain accurate data and an 

appropriate computational convergence (Bournet and Boulard, 2010).  

5.2 Statistical models 
The statistical models developed by Pontikakos et al. (2006) are less computationally 

expensive than the original CFD model, and therefore, they could be used for real-time 

estimates of temperature and flow rate in a greenhouse.  

5.3 Model types 
In a small-scale model developed by Teitel et al. (2008b), wind direction significantly 

affected the ventilation rate and temperature distribution in crops. Chen et al. (2010) 

evaluated seven types of models (analytical, empirical, experimental small-scale, pilot-scale, 

multi-area network and CFD to predict the ventilation rate in crops, obtaining the following 

conclusions: 

a. The analysis of the model can give an overall assessment of a ventilation system if flow 
can be approximated to obtain a solution. 
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b. The empirical model has similar abilities to the model of analysis, but develops a 
database. 

c. The small-scale model can be useful to examine the complex problems of ventilation if a 
similarity of flow can be maintained between the model and reality. 

d. The large-scale model is the most reliable in predicting the efficiency of ventilation, but 
is expensive and time consuming. 

e. The multi-zone model is a useful tool for the design of the ventilation of an entire 
building, but cannot provide detailed flow information in a room. 

f. The zone model can be useful when a user has prior knowledge of the flow in a room. 
g. The CFD model provides more detailed information on the performance of ventilation 

and is the most sophisticated. 
However, the model must be validated by corresponding experimental data and the user 
must have depth knowledge of fluid mechanics and numerical technique. Therefore, the 
choice of an appropriate model depends on the problem to be solved. 

5.4 Finite Element vs. Finite Volume 
In a study by Molina et al. (2010), on the effectiveness of the Finite Element Method (FEM) 
and Finite Volume Method (FVM) for two-dimensional incompressible turbulent flow in 
ventilation rates, it was found that the FEM requires twice the computation time and 10 
times more memory storage than FVM. FVM software (ANSYS/FLUENT v 6.3.) is the most 
frequently used CFD package in ventilation research, and only few papers using FEM 
software (ANSYS/FLOTRAN v. 11.0) have been published. CFD simulations have been 
compared to experimental data for 12 cases corresponding to three greenhouse types. The 
experimental greenhouses were chosen to represent a large range of ventilation situations: 
buoyancy effect in a mono-span greenhouse with adiabatic walls, as well as buoyancy and 
wind effect in a multi-span greenhouse and ventilation. 

6. Looking into the future 

Advances in telecommunications such as wireless networking and Internet technology (TCP 
/ IP) facilitate the monitoring of environmental conditions in greenhouses. Pontikakos et al. 
(2005) designed a Web-based application for real-time predictive modeling of temperature 
and air velocity patterns, which consists of a user interface, interpolation process data 
generated by CFD and an output interface.  
A lighting systems model with different optical properties was developed by Mikulka et al. 
(2010) who shows various settings for the R-FEM method in the CFX environment.  
CFD ventilation space still tends to be a slow process today, while the computation time for 
the ventilation system and control simulation strategy is negligible. Sun and Wang (2010) 
found that the test method is more effective than the simplified numerical models, which 
require more powerful computers. Stavrakakis et al. (2010) concluded that Artificial Neural 
Networks coupled with CFD models are a powerful computational tool to evaluate the 
energy savings of various architectural designs. 
Currently, CFD studies that mainly considered natural ventilation, increasing the realism of 
simulations by adding features such as the modeling of the crop inside greenhouse. 
However, it is still necessary to model crop physiological processes such as respiration and 
transpiration that define the terms of CO2 and relative humidity mainly in crop space (De la 
Torre-Gea and Rico-García, 2010). 
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