
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

185,000 200M

TOP 1%154

6,900

10

Native Mobile Agents for Embedded Systems

Mohamed Ali Ibrahim and Philippe Mabilleau
University of Sherbrooke

Canada

1. Introduction

Mobile agent technology can be viewed as an extension, refinement, or replacement of the
traditional client-server paradigm (Dilyana & Petya, 2002). Client-server technology relies
on remote procedure calls running across a network. Taking advantage of local interactions,
the mobile agent can at any time decide to migrate from host to host in a network and to
which location. In this way, several benefits can be obtained, such as decreasing network
traffic, reducing dependency on network availability, and an increasing flexibility and
autonomy.

Since the emergence of the concept of mobile agent, many platforms have been developed to

facilitate the programming of mobile agent applications. Noteworthy is that these platforms

exclusively use an interpreted language (virtual machine) to support the heterogeneous

systems. The first language supporting the paradigm of mobile agents was Telescript

(Domel, 1996) followed by many others such Obliq (Cardelli, 1995), Safe-Tcl (Borenstein,

1994), etc. Because it is a widespread virtual machine, Java has become the language of

choice for distributed applications programming in diverse environments by allowing

independence from networks and operating systems.

Java provides a mechanism for serialization and dynamic class loading which are directly
used to implement agent migration in the platform such as JADE (Bellifemine et al., 2007),
and Aglets (Lange & Mitsru, 1998). The conceptual model of a Java-based mobile-agent
platform is shown in Fig. 1. However, Java and languages using virtual machines are too big
in terms of required memory space for many embedded systems. A key feature of
embedded systems is that they run on machines with limited resources. This limitation is
generally spatial (limited size) and energetic (restricted consumption). In order to solve this
problem, we propose a mobile agent platform conceived for homogeneous embedded
systems. Embedded systems perform predefined tasks and constraints that have to be
respected:

 Embedded systems addressing the strict need to avoid an additional cost;

 Computing power required just to meet the predefined task avoiding an additional cost
of the device and an excess consumption of energy;

 Keeping energy consumption as low as possible.

In order to meet the constraints mentioned above, we propose a mobile agent platform for
homogeneous embedded systems, called µC/MAS (Microcontroller/Mobile Agent System). In a

www.intechopen.com

Embedded Systems – High Performance Systems, Applications and Projects

196

homogeneous environment, not only the type of the operating system needs to be identical,
but also the processor type has to match. To our knowledge, this is the first attempt to
engineer a mobile agent platform on microcontrollers with memories (both RAM and ROM)
as small as one megabyte.

The applications targeted by this platform pertain to the field of pervasive computing and,
more particularly, to the "smart space" paradigm. In this context, mobile agents can move
between embedded systems implanted in physical objects of the smart space by taking into
account limited resources (memory, power consumption, bandwidth, and so on). Each agent
uses a native code and operates on homogeneous platforms. Thus, an agent can move only
towards a microcontroller having the same physical architecture and supported by the same
operating system.

Fig. 1. Java-Based Mobile-Agent Platform.

2. Concept agents

The definition of an agent raises numerous debates in both fundamental and applied
research. By simplifying as much as possible, there are on the one hand those who view
agents almost like human beings, and on the other hand are those who assimilate agents to
simple software. Ferber (Ferber, 1999) defines an agent as a physical or virtual entity which
has the following properties:

 is capable of acting in an environment;

 can communicate directly with other agents;

 is driven by a set of tendencies (in the form of individual objective or of a
satisfaction/survival function which it tries to optimize);

 possesses resources of its own;

 is capable of perceiving its environment (but to a limited extent);

 has only a partial representation of this environment (and perhaps none at all);

www.intechopen.com

Native Mobile Agents for Embedded Systems

197

 possesses skills and can offer services;

 may be able to reproduce itself;

 behavior tends towards satisfying its objective, taking account of the resources and
skills available to it and depending of its perception, its representation and the
communication it receives.

Fig. 2. Client-Server Model.

In contrast, many people consider an agent as an “entity authorized to act on behalf of
someone else.” According to such a definition an intelligent agent, a police officer, a
security guard or a sales agent belong to the same category. As a result, the distinction
between an intelligent agent and simple software is very fuzzy. Despite its limitations, this
view is a starting point for a definition that is realistic enough without being simplistic. We
can thus assert that an intelligent agent is a software entity that has specific attributes and
acts in order to perform certain tasks on behalf of another entity (another agent or person).
The problem now is to define the attributes appropriate for an agent and, on this point, the
debates are ferocious. The main characteristics of an agent are:

 Autonomy: agents operate without the direct intervention of humans or others, and
have some kind of control over their actions and internal state.

 Interactivity: agents interact with other agents and with humans.

 Responsiveness: agents perceive their environment which can be either the physical
world, a user via a GUI or the Internet or even all at once, and respond to changes that
occur.

 Intentional behavior: agents do not simply act in response to their environment, they
are able to perform goal-directed behavior and take initiatives where appropriate.

 Ability to learn: the agent is able to adapt to the needs of its user by analyzing its past
actions.

 Flexibility: the actions of an agent are not entirely predetermined; the agent is indeed
able to choose what actions it will choose and what order, depending on the external
environment.

 Self-starting: unlike traditional software, an agent can decide, according to the external
environment, when to initiate a specific action.

www.intechopen.com

Embedded Systems – High Performance Systems, Applications and Projects

198

 Mobility: some agents may be stationary as the traditional client-server shown in Fig. 2.
Agents reside either on the user's machine or on the server. Other agents may be
mobile, as shown in Fig. 3, i.e., they travel on the network. They can move from one
machine to another during their execution, carrying with them their execution
environment. These agents may meet other agents that can provide certain services, or
serve as a meeting point between different agents.

For some researchers, particularly those working in the field of artificial intelligence (AI),

the term “agent” has a stronger and more specific meaning. To these researchers, an agent is

a computer system that, in addition to the above properties, is conceived as having

properties that are most commonly attributed to humans. For example, it is common in

artificial intelligence to characterize an agent by purely mental concepts such as knowledge,

belief, intent or obligation. Some researchers have gone further and talk about emotional

agents. But at what point can one speak of intelligent an agent? Should it have some or all of

these attributes? The debate is endless, perhaps insoluble, and certainly without much

interest for the end user.

Fig. 3. Mobile Agent Model.

A mobile agent is generally defined as a computer entity capable of reasoning, use the

network infrastructure to run in remote locations, search and gather results, cooperate with

other agents and return to its original site after completing the assigned task. Its main

feature is the ability to travel in an autonomous way between multiple machines such as

presented in Fig. 4. In most systems, by virtue of the principle of autonomy, the agent

decides when and where to go. This agent can interact with other agents; provide services

and use of local resources.

www.intechopen.com

Native Mobile Agents for Embedded Systems

199

Fig. 4. Model of an Agent visiting two Servers.

2.1 Taxonomy of mobility

There are two degrees of mobility as shown in Fig. 5:

 Weak migration: code + current data.

 Strong migration: code + data + current execution state.

Weak migration is transferring the execution of the application from the source machine to a
destination machine, through interruption of the execution of the application on the source
site. Then the code and the current data from the application of the source site are
transferred to the destination site. Finally, arriving at the destination host, the mobile
application resumes execution from the beginning, while having the updated values of its
data.

In addition to information taken into account by weak migration (code + current data),
strong migration also takes into account the current execution state of the application. Thus,
an application with strong mobility that moves during its execution from a source site to a
destination site can resume its execution from the point where it left off on the start site. The
mobility of an application results in the interruption of the execution of the application on
the source site. Then the code, the current data used and the current state of the application
running on the source are transferred to the destination site. Finally, arriving at the
destination site, the mobile application continues execution where it left off on the start site.

www.intechopen.com

Embedded Systems – High Performance Systems, Applications and Projects

200

Fig. 5. Degrees of mobility.

3. Architecture of µC/MAS

In order to deploy an application based on mobile agents, it is necessary to have an

appropriate platform. There are three approaches for designing and implementing a

platform for mobile agents. The first is using a programming language that includes

instructions for mobile agents. The second approach is implementing mobile agents as

extensions of the operating system. Finally, the last approach builds the platform as a

specialized application that runs on top of an operating system.

µC/MAS is based on the extension of a real-time kernel by exploiting the similarity between

the tasks’ context switching and the agents’ mobility. The Fig. 6 shows a context switching

and a task migration from one node to another. The concept of task is fundamental in a real-

time kernel. The task execution is done sequentially: the instructions that compose it are

loaded into the processor and executed one after the other. A task is characterized at a given

time by the data, the stack, the heap, the value of the program counter, register contents, etc.

A program is a static entity like the contents of a file stored on a disk while a task is an

active entity with a program counter specifying the address of the next instruction to

execute and related resources. A task is dynamic as opposed to a program that is static.

A task is typically an infinite loop that must necessarily be in one of the following five basic

states as shown in Fig. 7 (Labrosse, 2002):

1. Dormant: the task resides in memory but is not available for scheduling
2. Ready: the task is waiting to be assigned to the CPU
3. Running: the task is one whose instructions are being executed by the CPU

www.intechopen.com

Native Mobile Agents for Embedded Systems

201

4. Waiting: the task is waiting for a signal or a resource to continue its execution.
5. Interrupted: the task is interrupted when an interrupt has occurred and the CPU is in

the process of servicing the interrupt.

Fig. 6. a) Context switching and b) a task migration from one node to another.

In the context of the µC/MAS, an agent is a task that is able to migrate from one node to
another. When an agent decides to migrate, it suspends execution of the current node, the
source node. Then, if the agent code is not already at the destination, it will be loaded from a
server. Next, the data representing the state of the agent are transferred from source node to
destination node. Once the agent reaches the destination node, it resumes execution where it
left off on the source node. The Fig. 8 shows the migration of various components of a
mobile agent.

www.intechopen.com

Embedded Systems – High Performance Systems, Applications and Projects

202

Fig. 7. Task states.

A real-time kernel provides two main functions: scheduling and context switching of tasks.
Scheduling determines the ready task having the highest priority. When a task of highest
priority is ready, the kernel saves the context of the current task (CPU registers) on the stack
to allow a possible resumption. The context of the new task is retrieved from the memory
area (the storage area, its stack) and execution resumes where it left off. Note that in a
multitasking environment as a real-time kernel, each task has its own stack as shown in Fig.
9.

The µC/MAS is based on the extension of context switching mechanism (suspension and

resumption) that exists in multitasking systems and especially in real-time kernels. From the

context switching to the agent migration, we exploit the similarity between the CPU

preemption by the real-time kernel and the agent mobility. This mechanism is integrated

into the features of a real-time kernel allowing mobile agent based software to be

implemented in the homogeneous embedded systems. The Fig. 10 shows the structure of the

µC/MAS.

The mobile agent system differs from the migration process system in the sense that the
agent moves at the time it chooses by means of a primitive while in a migration process, the
system will decides when and where to go. The agents of the µC/MAS use a native code (C
and Assembler) and can move as well in a wired network as in a wireless network. The
agents operate on homogeneous platforms. Consequently, a mobile agent can move only

www.intechopen.com

Native Mobile Agents for Embedded Systems

203

towards a microcontroller of same physical architecture as well as the same environment of
execution.

Fig. 8. Migration of various components of a mobile agent.

From the conceptual point of view, a mobile agent is a task that can autonomously migrate

from one machine to another. As described above, there are two types of migration: strong

migration and weak migration. The µC/MAS supports strong migration. There are very few

agents platforms which support the strong mobility. These platforms do not use a native

code. These platforms allow only weak migration: the mobile agent resumes execution from

the beginning when it reaches the destination.

3.1 Migration of agent

Migration allows the transfer of a running agent from one node to another through a

network. A platform supporting strong mobility must be able to capture and restore the

structure of the agent in memory. As shown in Fig. 11, this structure consists of the

following segments:

1. Stack: stores the function calls with their parameters and local variables. When a
function return, parameters and variables are popped.

2. Heap: reserved for dynamic memory allocation.
3. BSS (Block Started by Symbol): contains all global variables and static variables that are

initialized to zero.
4. Data: contains global and static variables used by the program that are initialized
5. Text: contains executable instructions.

www.intechopen.com

Embedded Systems – High Performance Systems, Applications and Projects

204

Free Stack

Space

Task Control Block

Memory

CPU

CPU Registers

Context

Task #2 Task #n

Used Stack

Space

Code

Flash Memory Flash Memory Flash Memory

Task #1

Code Code

RAM RAMRAM

RAMRAM RAM

Task Control Block Task Control Block

Used Stack

Space

Used Stack

Space

Task Priority

Program Counter

Stack Pointer

Task Priority

Program Counter

Stack Pointer

Task Priority

Program Counter

Stack Pointer

Task Priority

Program Counter

Stack Pointer

Free Stack

Space

Free Stack

Space

Fig. 9. Multiple tasks.

During migration in the source node, the task agent sends a transfer request containing its

name and the address of the destination where it wants to go. Once the destination system

accepts, the source system makes the following steps:

1. Capture of the current data. These are classified in two categories: the migrant data and
the non-migrant data. The captured migrant data are formatted to transport used. Then,
they are transferred towards the destination node.

2. Interruption of the task agent by generating a context switching. This saves the
execution context of the task agent on the stack.

3. Capture of the stack and the task control block (TCB). The latter is a data structure that
maintains the state of the task when it is preempted. When the task agent arrives at the
destination node, the task control block allows the task to resume execution exactly
where it left off.

www.intechopen.com

Native Mobile Agents for Embedded Systems

205

4. Format the stack and the task control block to transport used.
5. Transfer of the stack and the task control block.

Before an agent is accepted into a destination system, it must be authenticated. In µC/MAS
platform, the source node and destination node mutually authenticate by using passwords.
Once mutual authentication is performed, the destination system makes the following steps:

1. Receiving, decoding and restoring of migrant data.
2. Receiving of the stack and the task control block.
3. Decoding the stack and the task control block.
4. Restoration of the stack and the task control block.
5. Resume execution of the task agent.

The Fig. 12 shows the algorithm of task agent migration.

Fig. 10. Structure of the µC/MAS.

3.1.1 Directive migration and data types

Such as defined previously, an agent is a migrant task which could use local and/or global
variables. This raises the following question: is it necessary migrating all the variables with

www.intechopen.com

Embedded Systems – High Performance Systems, Applications and Projects

206

the task that it used in the source node? The answer is no because some variables could be
used by other tasks because they are not specific to the agent. In its life cycle, an agent uses
different data types. In order to manage migration, we classify the data into different
categories based on the classification of existing variables in C/C++. We may also apply this
classification to other languages. In C/C++, the variables are classified into different
categories according to how they are created and how they may be used. The different
aspects that can take variables constitute what is called their storage class. The storage class
of a variable allows specifying its life cycle and its place in memory.

Fig. 11. Structure of the task agent in memory.

In order to identify the data that migrate with the agent, we first classify local and global

variables. The local variables are created inside a block of instructions, in the case of the

µC/MAS in the task agent. However, global variables are declared outside of any block of

instructions in the zone of global declaration of the program. The local and global variables

have different life cycles and different scopes according to their locations in memory. The

variable scope is the program area in which it is accessible. The scope of global variables is

the program while the scope of local variables is the block of instructions in which they were

created.

The C/C++ has a range of storage classes for specifying the type of variables that you want
to use:

www.intechopen.com

Native Mobile Agents for Embedded Systems

207

 auto: the scope of an auto (automatic) variable is the function or block in which it is
defined. The variable exists in memory during execution of the function or block in
which it is defined. When all the instructions of the block are executed, the variable is
removed from memory and its value is automatically lost. If the block is executed again,
the variable is recreated. An auto variable has no initial default value.

 static: this storage class is used to create variables whose scope is the function or block
of instructions in progress, but, unlike the auto, the static variables are not destroyed
when the exit of this block. Every time that we enter this function or this block of
instructions, the static variables exist and have value to those they had before we left.
Their life cycle is that of the program, and they retain their values. If it is initialized at
its declaration, it will not be reset by a subsequent call. A file can be viewed as a block.
Thus, a static variable of a file cannot be accessed from another file. This is useful to
separate compilation.

 register variables obey the same rules as auto variables, but they are not always stored in
working memory. If the compiler can, it stores them in registers i.e. in memory areas
included in the processor. If no register is available, the variable will receive the auto
class. The & operator cannot be used on register variables. The advantage of having a
variable stored in a register is the reduction of access time to this variable compared to
the access time to a variable located in RAM. This can be useful when a variable is often
requested.

 volatile: this class of variable is used in the programming system. It indicates that a
variable can be changed in the background by another program (for example an
interruption by a thread, by another process, the operating system or by another
processor in a parallel machine). This requires reloading the variable every time the
system refers to a processor register, even if the variable is already stored in one of
these registers (which can happen if the compiler is asked to optimize the program).

 extern: this class is used to indicate that the variable can be defined in another file. It is
used in the context of separate compilation.

There are also modifiers that may apply to a variable in order to specify its constancy:

 const: this keyword is used to make the contents of a variable unchangeable. In a way,
the variable becomes a read-only variable. Warning, this variable is not necessarily a
constant: it can be modified either through another identifier, or by an external program
(such as volatile variables). When this keyword is applied to a structure, no structure
field is writable.

 mutable: only available in C++, this keyword is used only for members of structures. It
helps overcome the constancy of a possible structure for this member. Thus, a structure
field declared mutable can be modified even if the structure is declared const.

In order to declare a particular storage class, it is sufficient to place one of the following
keywords: auto, static, register, etc., before or after the variable. You can only use the not
contradictory storage classes. For example, register and extern are incompatible, as well as
register and volatile, and const and mutable. On the other hand, static and const, as well as const
and volatile, can be simultaneously used. Global variables that are defined without the const
keyword is processed by the compiler as variables of extern storage class by default. These
variables are accessible from any program files. However, this rule is not valid for the
variables defined with the const keyword. These variables are automatically declared static

www.intechopen.com

Embedded Systems – High Performance Systems, Applications and Projects

208

by the compiler, which means they are only available in the file in which they were
declared. In order to make them accessible to other files, it is imperative to declare the extern
keyword before defining them.

Fig. 12. Algorithm of task agent migration.

Second, we classify the local variables in automatic or dynamic. The area containing

automatic variables is managed by the stack. For dynamic variables, we must first allocate

memory using malloc() and subsequently liberate memory by using free(). The use of these

functions in a real-time embedded system is dangerous because it is not always possible to

obtain an area of contiguous memory due to the inherent fragmentation. The mechanism of

memory partition proposed by the real-time kernels such as μC/OS-II (Labrosse, 2002) and

µC/OS-III (Labrosse, 2010) provides alternatives to malloc() and free(). This mechanism

allows obtaining fixed-sized memory blocks from a partition made of a contiguous memory

area as illustrated in Fig. 13. Allocation and de-allocation of these memory blocks are done

in constant time and is deterministic. The partition is usually allocated statically (as an

www.intechopen.com

Native Mobile Agents for Embedded Systems

209

array), but can also be dynamically allocated without being freed (never used the free()

function). In an application, there may be multiple memory partitions as shown in Fig. 14.

However, each specific memory block must always be returned to the partition where it

originated. This type of memory management is not subject to fragmentation. Before using a

partition of memory blocks, you must first create it. This allows the kernel to get the

partition of memory blocks in order to manage their allocation and de-allocation. These

containing blocks of the dynamic variables of the tasks agent, we call migrant blocks of data.

Fig. 13. Memory partition (Labrosse, 2002).

The Fig. 15 presents a classification of data as a binary tree in which each branch indicates
the migration or not of these data with the agent:

1. Automatic local variables automatically migrate with the agent.
2. Dynamically allocated local variables migrate if the agent plans to use them during its

travel. In the source node, the memory blocks containing these variables must be
returned to their partition after use. The dynamically allocated local variables are stored in
the stack but the spaces pointed by these variables are stored in heap.

3. Dynamically allocated local variables do not migrate when the agent does not use in its
route. In the source node, the memory blocks containing these variables must be
returned to their partition after use.

4. Non-dynamically allocated global variables do not migrate with the agent because the
system has been designed to that effect in order to avoid that these variables would be
used by other tasks.

5. Dynamically allocated non-shared global variables migrate if the agent plans to use during
its travel. As in (2), the memory blocks containing these variables must be returned to
their partition once the migration is performed.

6. Dynamically allocated non-shared global variables do not migrate when the agent does not
use in its route. As in (3), the memory blocks containing these variables must be
returned to their partition once the migration is performed.

7. Dynamically allocated shared global variables do not migrate with the agent.

www.intechopen.com

Embedded Systems – High Performance Systems, Applications and Projects

210

3.1.2 Transfer format of the agent

The XML format in combination with the Intel HEX is used to transfer the task agent from
one node to another. As shown in Fig. 8, a mobile agent consists of a code, execution state
and current data. Note that the executable code of the agent does not undergo any
transformation. It is loaded into the flash memory as produced by the compiler. The
compiler used in this project produces an Intel HEX format object file.

The execution state of the agent is composed of the stack and task agent control block (Task
Control Block, TCB). The stack contains the local variables of the task agent. The Current
data are global variables specific to the task agent. The TCB is a data structure that is used by
the real-time kernel to maintain the execution state of the task agent when it is preempted
(Labrosse, 2002). The TCB contains the stack pointer, the priority of the task agent, the stack
size, etc.

Fig. 14. Multiple memory partitions (Labrosse, 2002).

During migration of a task agent, the memory space used by the stack of the source node is

not always available at the destination. We must therefore relocate the stack of each task as

it appears at the destination. For the same reasons as previously mentioned, we use again

the mechanism of the partitions to allocate the stack a memory space. In µC/MAS, we opt

for static allocations. This consists in fixing the number and size of partitions of memory

blocks. This approach has advantages in the context of embedded systems. Indeed, the use

of fixed blocks of memory allows the allocation and de-allocation of this in a unitary

manner, thus avoiding memory fragmentation. The number of memory blocks is directly

dependent on the number of agents on the node at any given time. The memory

requirements can be determined in advance depending on the structure and the number of

www.intechopen.com

Native Mobile Agents for Embedded Systems

211

agents circulating in the network. Thus, it becomes possible to produce a reliable mobile

agent platform for homogeneous embedded systems. The Fig. 16 shows the relocation of a

stack of tasks from one node to another.

Local

Data

Automatic

Global

Dynamically allocatedDynamically allocated Non-dynamically allocated

SharedNon-shared

Migrant
(1)

Migrant
(2)

Non-migrant
(3)

Non-migrant
(4)

Migrant
(5)

Non-migrant
(6)

Non-migrant
(7)

Fig. 15. Classification of data interacting with the agent.

XML presents the task agent (execution state and current data) as a document, and XML

parser manages this document. The parser structures the document and the way the

document is accessed and manipulated. It provides the following functionality: build

documents, navigate, add, modify, or delete elements and their content. Unlike the TCB, the

stack and the current data are first encoded in Intel HEX format before being incorporated

into the XML document. As described in [Intel Corporation, 1988], the Intel Hex file is an

ASCII text file that encodes and represents a binary file. Each line in an Intel HEX file

contains one HEX record. These HEX records are made up of hexadecimal numbers. Data

records appear as follows:

:10800000140000EA34F09FE534F09FE534F09FE57A. As shown in Fig. 17, the record is
decoded as follows:

1. starts every Intel HEX record.
2. is the number of data bytes in the record.
3. is the address where the data are to be located in memory.
4. is the record type 00 (a data record).

www.intechopen.com

Embedded Systems – High Performance Systems, Applications and Projects

212

5. is the data.
6. is the checksum of the record.

An Intel HEX file must end with the following record:

:00000001FF

The Fig. 18 shows a model of interconnection between a source node and destination node.

Fig. 16 Relocation of a task stack from one node to another.

Fig. 17 Intel HEX record.

www.intechopen.com

Native Mobile Agents for Embedded Systems

213

4. Implementation of µC/MAS

µC/MAS platform is based on the extension of a real-time kernel called μC/OS-II Kernel.
μC/OS-II is a portable, ROMable, scalable, preemptive, real-time deterministic multitasking
kernel for microprocessors, microcontrollers and DSPs. μC/OS-II manages up to 250
application tasks and provides the following services (Labrosse, 2002): semaphores, event
flags, mutual-exclusion semaphores that eliminate unbounded priority inversions, message
mailboxes and queues; task, time and timer management; and fixed sized memory block
management. μC/OS-II’s footprint can be scaled (between 5 Kbytes to 24 Kbytes) to only
contain the features required for a specific application. The execution time for most services
provided by μC/OS-II is both constant and deterministic; execution times do not depend on
the number of tasks running in the application. μC/OS-II comes with all the source code,
written in portable ANSI C. However, this kernel cannot support mobile agents without
modifications.

Fig. 18. Mobile Agents Platform Interconnection.

The choice of μC/OS-II is motivated by the need to use a small real-time kernel, because of
the limitations incurred by the computing resource constraints of the embedded system.
μC/OS-II has two major advantages: it requires not only a small memory but also it is open-
source software. Thus, we can extend its code to implement a mechanism to capture and
restore the task's state.

4.1 µC/MAS API

µC/MAS platform is implemented as an API. µC/MAS API is designed to integrate the
features of an existing real-time kernel, in the case of this platform, μC/OS-II but also of

www.intechopen.com

Embedded Systems – High Performance Systems, Applications and Projects

214

other similar types such as μC/OS-III and μClinux. It is primarily intended for very small
environments built around microcontrollers. Choice of kernel, i.e. μ/COS-II, should be
written in ANSI C and its source code must be available to allow access to mechanisms for
capturing and restoring the execution context that will be used by the mobile agents’
platform. While most of μC/OS-II is written in C, for portability, it is still necessary to write
some code in assembly language. For example, code for the context switching is written in
assembly language, as it is not possible to access CPU registers directly from C. The device
driver, code which initializes the hardware, also needs to be written in assembly language.
The platform API is built on a modular architecture that allows integration with other
services using a real-time kernel and different means of transport for agents. It includes the
following modules at the base of its integrability with these services:

 Capturing/restoring module that interfaces with the real-time kernel;

 Encoding/decoding that allows formatting the agent (data + current execution state)
according to the transport service;

 Module offers various transport services (TCP/IP, ZigBee, RFID, etc.) that provide the
interface with the means of transport. Transport can be used synchronously as in the
case of TCP/IP or ZigBee or asynchronously as in the case of using smart card storage
(RFID).

Fig. 19. Transfer format of the execution state.

The mechanism of migration of the agents takes place in the following way: When the agent
decides to migrate to another node, the execution thread (data and current state) of the task
is saved. The execution thread is transported to the destination node using the means of
transport (TCP/IP, ZigBee, RFID, etc.). At the destination node, a monitoring mechanism is
to listen and identify the transport used to receive the agents arrive. This mechanism is

www.intechopen.com

Native Mobile Agents for Embedded Systems

215

implemented by a task that is part of the µC/MAS platform. The incoming agent is used by
the task (for restoration) to create a new task that will host the execution thread of this
agent. Note that in the source node, the task migrant is deleted.

Fig. 20. Transfer format of migrant data blocks.

4.1.1 Capturing and restoring the execution context

In order to capture the execution context of a task agent, it is necessary to generate a context
switching. To do so, we implemented the primitive OSTaskMoveTo(). The latter is called
when the task agent decides to migrate to another node. Calling this primitive
OSTaskMoveTo() generates the context switching of the task agent. OSTaskMoveTo() requires
two additional arguments: DestNodeAddr and MediumType. The variable DestNodeAddr
contains an address in the mechanism of transport such as an IP address, a MAC (Media
Access Control address) to a Zigbee network, or an identifier of an RFID chip. The variable
MediumType is the type of transport protocol used: TCP/IP, Zigbee, RFID, etc. After the
context switching is done, the function OSTaskContextCapture() captures and encodes the
stack and task control block (TCB) of the agent in a suitable for transport format. In order to
capture the stack, the platform uses the value stored in the TCB (stack pointer) which is the
pointer to the top of the stack and the starting address of the stack. From this information
we can identify the stack space used to extract the addresses and data. Then, the addresses
and data from the stack and task control block are encoded in a format suitable for transfer.
For example, you can use a combination of two standards for data exchange: the Intel Hex
format for binary elements as the content of the stack and XML for structured data such as
the TCB. The Fig. 19 shows the transfer format of the execution state.

Once the execution context of the agent is encoded, OSTaskContextTransfert() is called for the
transfer to the destination node. This transfer is transparent to the user. However, to check
the status of the agent’s transfer, the user can use OSTaskTransfertStatus() which return one
of the following:

 OS_NO_ERR : the transfer of the agent is successful;

 OS_PRIO_INVALID: the priority associated with the agent is not available on the
destination node;

 OS_ADDR_INVALID: the destination address is not valid;

 OS_TASK_TIME_OUT: the destination node does not respond;

 OS_MIGR_ERR: An error occurred during the transfer operation.

In cases where the migration fails, the agent continues to run in the node where it is located.

www.intechopen.com

Embedded Systems – High Performance Systems, Applications and Projects

216

Fig. 21. Sequence using primitive OSMemBlocMove() and OSTaskMoveTo().

In the destination node, the data representing the execution context of the agent are received
by a monitoring task that acts as an agents’ server for the node. This task decodes and
restores the context of agents received and starts executing. The received data is decoded to
extract the stack and the task control block, and is restored to a new task to the destination
node. To do so, we modified OSTaskCreate() that is the task creation function of the real-time
kernel µC/OS-II in order to implement OSTaskAgentCreate(). This function uses
OSTaskContextRestore() that we designed to restore the execution context of the task agent.
The task of running the agent is recreated under the same conditions as the source node,
especially with the same memory card and the same executable code. The data in the stack
of the task agent are identical to those that were present on the source node. The task agent
then resumes execution where it left off on the source node.

Note that a task agent consists of an execution context and current data. For migration of
current data other than the stack, partitions of memory blocks offered by the µC/OS-II can
be extended to design transfer mechanisms. The Fig. 20 shows the transfer format of
migrant data blocks. When migrating a data block, the task agent uses the function
OSMemBlocMove(). This allows extracting data from the memory block to save and then
encode into a suitable transport format. The parameters of the function OSMemBlocMove()
are:

 DataBlocPtr pointing the data block to be transferred to the destination node;

 DestNodeAddr that contains the network address of the destination node;

 DestDataBlocAddr that returns the address of the data block in the destination node;

www.intechopen.com

Native Mobile Agents for Embedded Systems

217

 err that returns one of the following:

 OS_NO_ERR: the transfer of data block is successful migrants;

 OS_ADDR_INVALID: the destination address is not valid;

 OS_TASK_TIME_OUT: the destination node does not respond;

 OS_MIGR_ERR: An error occurred during the transfer operation.

The primitive OSMemBlocMove() calls the function OSMemBlocCapture(). This captures and

encodes the data block. Then, the data block must be deleted from the source node if the

transfer is successful. In the destination node, the block of migrant data is received by the

task that acts as an agents’ server for the node. This task decodes and restores the data block

in the same memory partition than the source node. To do so, it implements the function

OSMemBlocRestore() that we designed to restore the data blocks of the task agent. Restoring a

data block takes place according to the following sequence: (a) a data block of the same type

and same size as the source node is created in the destination node, (b) the data received

from the source node are copied to the newly created block, (c) the address of the block and

a code indicating that the restoration is successful are sent in the source node, (d) the source

node, the address of the received data block is copied to a local variable, in this case in

DestDataBlocAddr for later use in a possible migration of the task agent. The Fig. 21 shows a

sequence of primitives using OSMemBlocMove() and OSTaskMoveTo().

5. Evaluation of µC/MAS

In order to ensure the proper functioning of µC/MAS, we made certain numbers of the tests
on various networks.

5.1 Wired network

In order to build the wired network, we set up a system composed of two ARM7-based

microcontrollers (LPC-H2214/LPC-H2294) each one being connected with a PC. Each PC

serves as a code server as well as an interface displaying the results. As shown in Fig. 22, the

communication between PCs and microcontrollers is done via UART0 using the serial

communication protocol. The UART1 of the source node is connected directly to the UART1

of the destination node to communicate between the two microcontrollers.

In order to test µC/MAS platform on a wired network, we implemented a sample

application of a mobile agent that performs the following steps to test the platform on the

wired network:

1. The agent initializes a number of variables of different types (char, short, int, float,
double) in a node 1;

2. It performs operations on these variables and displays their contents, and then it moves
to a node 2.

3. The agent continues operations, displays the contents of variables and returns to the
starting node, node 1;

In this experiment, the agent performs different operations. For example, the agent performs
arithmetic operations such as addition, subtraction, etc. It also performs concatenation of
strings contained in variables from a remote node.

www.intechopen.com

Embedded Systems – High Performance Systems, Applications and Projects

218

This experience has allowed us to validate the strong migration. The agent interrupts its
own execution on the source node, and then the code is transferred from the server to the
destination node. Then, the data representing the state of the agent is transferred from the
source node to the destination node. Finally, when the agent arrived at the destination node,
it continues to run where it left off on the source node. The execution thread of this
experiment is displayed on the screen of the PC that is connected to the microcontroller of
each node.

Fig. 22 Model of the wired network.

5.2 Zigbee network

In order to build the Zigbee network, we set up a system composed of six nodes. Each
network node consists of:

1. ARM7-based microcontrollers (LPC-H2214/LPC-H2294);
2. Module X-bee;
3. PC to follow the thread of execution.

Fig. 23 Interconnection between XBee module and microcontroller (Digi International, 2009)

In order to test µC/MAS platform on the Zigbee network, we conducted a sample

application of mobile agent similar to the wired network. The difference between the two

experiences is the network communication infrastructure, the number of nodes used and the

number of laps completed by the agent. In this experiment, as previously mentioned, we

used six nodes. As shown in Fig. 23, the XBee module has a serial interface that connects

directly to a microcontroller.

www.intechopen.com

Native Mobile Agents for Embedded Systems

219

Furthermore, contrary to the previous experiment where the agent makes only a single
iteration, in this one the agent makes five times the tour of the six nodes. As the previous
experiment, this one allowed us to validate the strong mobility supported by this platform
of mobile agents. The Fig. 24 illustrates the model of the Zigbee network where a mobile
agent makes the tour of six nodes by beginning his route of the node 1.

Fig. 24 Mobile Agent on Zigbee network.

In both networks we have experimented, the transfer speed of the agent depends on the
communication link between the nodes. The Table 1 summarizes the quantitative evaluation
of the experience we have done on the wired network and the Zigbee network. In order to
calculate the transfer speed of a frame, we calculate the transfer rate of a bit. A frame is
composed of 8 bit data, 1 stop bit and 1 start bit. The LPC-H2214/ LPC-H2294 can operate
up to 60 MHz CPU frequency. For baud rate of 115,200 bps and CPU frequency of 60 MHz,
the calculation of the constant C is as follows: C = frequency / (baud rate x 16) = 60 x
106/(115200 x 16) = 32.552. This can be approximated to C = 32. The actual baud rate = 60 x
106/ (32 x 16) = 117187.5 bps. This gives a period of 8.53 microseconds. The transfer time of a
frame can be calculated as follows: the transfer time of a frame is 10 bits x 8.53 microseconds
= 85.3 microseconds. Thus, we can calculate the transfer time of the execution state in the
wired network like this: 34309 bytes x 85.3 microseconds = 2.926 seconds. This calculation
does not take into account a possible loss of frames.

 Wired network Zigbee network

Baud rate (bps) 115200 115200

CPU frequency (in MHz) 60 60

Used stack size (bytes) 1024 1024

Size of execution state in transfer format (in bytes) 3011 3011

Transfer time of execution state
in transfer format (in seconds)

1.41

2.88

Table 1. Quantitative evaluation of wired and Zigbee network.

www.intechopen.com

Embedded Systems – High Performance Systems, Applications and Projects

220

6. Conclusion

In this chapter, we presented the stages of the development of a mobile agent platform for
embedded systems. By utilizing a context switch mechanism which already exists in the
multitasking system, we have designed a mobile agent migration method and implemented
it inside a real-time kernel. We have also designed and implemented a transfer format and a
communication protocol stack for mobile agents’ migration on a wired or wireless network.
For the wireless network, the code of the agent was not transferred because of limited
bandwidth.

The advantage of our mobile agent migration method, in regard to the other projects, is that
it can be implemented in any multitask system, because we employ mechanisms that exist in
these systems. The main advantage of our platform of mobile agents is its small size, which
allows it to run on machines having a memory as small as one megabyte.

7. References

Bellifemine, F., Caire, G. & Greenwood, D. (2007) Developing Multi-Agent Systems with JADE
In: John Wiley & Sons Ltd, ISBN 978-0-470-05747-6, Chichester, England.

Borenstein, N. S. (1994) E-mail with a mind of its own: The Safe-Tcl language for enabled mail,
IFIP Transactions C (25):389–402.

Cardelli, L. (1995) A language with distributed scope, Annual Symposium on Principles of
Programming Languages, Proc. 22nd ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, San Francisco, CA, pp. 286 – 297.

Digi International (2009) Product Manual v1.xEx - 802.15.4 Protocol, XBee®/XBee-PRO® RF
Modules http://ftp1.digi.com/support/documentation/90000982_B.pdf (The last
time accessed, November 18, 2011)

Dilyana, S. & Petya, G. (2002) Building distributed applications with Java mobile agents,
International workshop NGNT, pp. 103 - 109

Domel, P. (1996) Mobile Telescript agents and the Web, In Digest of Papers, COMPCON ’96,
Technologies for the Information Superhighway, 41st IEEE Computer Society
International Conference, pp. 52–57, IEEE Computer Society Press.

Ferber, J. (1999) Multi-Agent Systems: An Introduction to Distributed Artificial Intelligence, In:
Addison Wesley Professional, ISBN 9780201360486.

Intel Corporation (1988) Hexadecimal Object File Format Specification,
 http://microsym.com/editor/assets/intelhex.pdf (The last time accessed, October

26, 2011).
Lange, D. B. & Mitsru, O. (1998) Programming and Deploying Java Mobile Agents Aglets, 1st

edition, In: Addison-Wesley Longman Publishing Co., Inc., ISBN 0201325829
Boston, MA, USA.

Lange, D. B. & Mitsru, O. (1998) Programming and Deploying Java Mobile Agents Aglets, 1st
edition, In: Addison-Wesley Longman Publishing Co., Inc., ISBN 0201325829
Boston, MA, USA.

Labrosse, J. J. (2002) Micro/OS-II The Real-Time Kernel, Second Edition, In: CMP Books, ISBN
1578201039, San Francisco, CA, USA.

http://micrium.com/page/products/rtos/os-ii (Last time accessed, October 26, 2011)
Labrosse, J. J. (2010) µC/OS-III: The Real-Time Kernel and the NXP LPC1700, In: Micriµm Press,

ISBN 9780982337554, Weston, FL, USA.

www.intechopen.com

Embedded Systems - High Performance Systems, Applications and

Projects

Edited by Dr. Kiyofumi Tanaka

ISBN 978-953-51-0350-9

Hard cover, 278 pages

Publisher InTech

Published online 16, March, 2012

Published in print edition March, 2012

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

Nowadays, embedded systems - computer systems that are embedded in various kinds of devices and play an

important role of specific control functions, have permeated various scenes of industry. Therefore, we can

hardly discuss our life or society from now onwards without referring to embedded systems. For wide-ranging

embedded systems to continue their growth, a number of high-quality fundamental and applied researches are

indispensable. This book contains 13 excellent chapters and addresses a wide spectrum of research topics of

embedded systems, including parallel computing, communication architecture, application-specific systems,

and embedded systems projects. Embedded systems can be made only after fusing miscellaneous

technologies together. Various technologies condensed in this book as well as in the complementary book

"Embedded Systems - Theory and Design Methodology", will be helpful to researchers and engineers around

the world.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Mohamed Ali Ibrahim and Philippe Mabilleau (2012). Native Mobile Agents for Embedded Systems, Embedded

Systems - High Performance Systems, Applications and Projects, Dr. Kiyofumi Tanaka (Ed.), ISBN: 978-953-

51-0350-9, InTech, Available from: http://www.intechopen.com/books/embedded-systems-high-performance-

systems-applications-and-projects/-native-mobile-agents-for-embedded-systems

© 2012 The Author(s). Licensee IntechOpen. This is an open access article

distributed under the terms of the Creative Commons Attribution 3.0

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.

