
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



6 

Automatic Visual Speech Recognition 

Alin Chiţu¹ and Léon J.M. Rothkrantz¹,² 
¹Delft University of Technology 
²Netherlands Defence Academy 

The Netherlands 

1. Introduction 

Lip reading was thought for many years to be specific to hearing impaired persons. 
Therefore, it was considered that lip reading is one possible solution to an abnormal 
situation. Even the name of the domain suggests that lip reading was considered to be a 
rather artificial way of communication because it associates lip reading with the written 
language which is a relatively new cultural phenomenon and is not an evolutionary 
inherent ability. Extensive lip reading research was primarily done in order to improve the 
teaching methodology for hearing impaired persons to increase their chances for integration 
in the society. Later on, the research done in human perception and more exactly in speech 
perception proved that lip reading is actively employed in different degrees by all humans 
irrespective to their hearing capacity. The most well know study in this respect was 
performed by Harry McGurk and John MacDonald in 1976. In their experiment the two 
researchers were trying to understand the perception of speech by children. Their finding, 
now called the McGurk effect, published in Nature (Mcgurk & Macdonald, 1976), was that if 
a person is presented a video sequence with a certain utterance (i.e. in their experiments 
utterance 'ga'), but in the same time the acoustics present a different utterance (i.e. in their 
experiments the sound 'ba'), in a large majority of cases the person will perceive a third 
utterance (i.e. in this case 'da'). Subsequent experiments showed that this is true as well for 
longer utterances and that is not a particularity of the visual and aural senses but also true 
for other perception functions. Therefore, lip reading is part of our multi-sensory speech 
perception process and could be better named visual speech recognition. Being an 
evolutionary acquired capacity, same as speech perception, some scientists consider the lip 
reading's neural mechanism the one that enables humans to achieve high literacy skills with 
relative easiness (van Atteveldt, 2006). 

Another source of confusion is the “lip” word, because it implies that the lips are the only 
part of the speaker face that transmit information about what is being said. The teeth, the 
tongue and the cavity were shown to be of great importance for lip reading by humans 
(Williams et al., 1998). Also other face elements were shown to be important during face to 
face communication; however, their exact influence is not completely elucidated. During 
experiments in which a gaze tracker was used to track the speaker's areas of attention 
during communication it was found that the human lip readers focus on four major areas: 
the mouth, the eyes and the centre of the face depending on the task and the noise level 
(Buchan et al., 2007). In normal situations the listener scans the mouth and the other areas 
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relatively equal periods of times. However, when the background noise increases, the centre 
of the face becomes the central point of attention. Most probably the peripheral vision 
becomes extremely active in these situations. When the task was set to the inference of the 
emotional load of the interlocutor, the listener's gaze started to be shifted towards the eyes 
since they convey more emotional related information. It is well accepted that the human lip 
readers make great use of the context in which the interaction takes place. This can be one of 
the reasons the human listener scans the entire face during the interaction. In (Hilder et al., 
2009) the authors found that when a human lip reader was presented with appearance 
information, compared with only mouth shapes, his performance increased considerably 
from 42.9% to 71.6%. 

We should realise that during face to face interaction a human engages in a complex process 
which involves various channels of information corresponding to our senses. In this way the 
speaker builds up the context using both verbal and non-verbal cues such as body gesture, 
facial expressions, prosody, and other physiological manifestations. Other information 
about the settings in which the communication takes place is used as well as the knowledge 
accumulated in time through experience. A human is a multi-modality, multi-sensory, 
multi-media fusing machine. 

The rest of the chapter is organized as follows: section 2 presents relevant research works in 
the area of lip reading. Section 3 presents the aspects related to building an automated lip 
reader. Section 4 details the characteristics of the facial model used during the visual 
analysis of the lip reading process. The next sections illustrate the results and discuss the 
conclusions of the algorithms presented in the chapter. 

2. State of the art in lip reading 

It is about three decades since automatic lip reading domain emerged in the scientific 

community. However, only starting from the 90s, and more sustained in the second half of 

the 90s, the subject started to become viable. Even today it still lags the speech recognition 

by some decades. Until some years ago the most impeding factor was the computational 

power of the computers. Nowadays it is the difficulty in finding the most suitable visual 

features that capture the information related with what is being spoken. Also it is the hard 

problem of accurately detecting and tracking the facial elements that convey speech related 

information. The automatic and robust detection and tracking of the face elements is still not 

entirely achieved by the current technology. As in other similar visual pattern recognition 

applications, the two monsters “illumination variations” and “occlusions” are still alive and 

menacing. A special case of occlusion is in this case generated by the posture of the speaker. 

Therefore, any study concerning lip reading deals with the overwhelming task of manually 
or in the best case semi-automatically processing the data corpus. The data corpora for lip 
reading are still very small due to partially the storage and bandwidth limitations and other 
recording related settings, but much more limiting due to the overwhelming task of 
processing and preparing the data for experiments. Because of these issues, each data corpus 
is created for a stated recognition task. The lip reading experiments to this date are limited 
to isolated or connected random words, isolated or connected digits, isolated or connected 
letters. Some of the reported performance is listed below. However, it is very important to 
keep in mind that, because the data corpus used influences in great respect the performance 
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of the lip reader, a comparison among the experiments is not always possible. When the 
corpora are about the same, then the comparison of the different feature types and feature 
extraction techniques becomes feasible. It can still give an impression on the state of the art 
in lip reading. 

The task of isolated letters was among the first analysed by Petajan et al. (Petajan et al., 1988) 
back in 1998. The authors report the correct recognition close to 90%. However, based on the 
AVletters data corpus, Matthews et al. (Matthews et al., 1996) reports only a 50% recognition 
rate. Li et al. (Li et al., 1995) reports a perfect recognition 100% on the same task, but two 
years later in (Li et al., 1997) only 90% recognition. The second most popular task is digit 
recognition either in isolation or as connected strings. Based on the TULIPS1 data corpus, 
which only contains the first four digits, Luettin et al. (Luettin et al., 1996) and Luettin and 
Thacker (Luettin & Thacker, 1997) reported 83.3% and 88.5% recognition rates, respectively. 
Arsic and Thiran (Arsic & Thiran, 2006) report on the same data corpus 81.25% and 89.6% 
depending on the feature extraction method. Other experiments with the digit recognition 
task are: Potamianos et al. (Potamianos et al., 1998) reported 95.7%, Dupont and Luettin 
(Dupont & Luettin, 2000) reported 59.7%, Wojdel reported in his thesis (Wojdel, 2003) 91.1% 
correct recognition and 81.1% accuracy, Patamianos et al. (Potamianos et al., 2004) reported 
63% and Perez et al. (Prez et al., 2005) 47%. Lucey and Potamianos (Lucey & Potamianos, 
2006) reported 74.6% recognition rate for the isolated digits task. Potamianos et al. 
(Potamianos1998a) report 64.5% recognition rate for the connected letter task. For the 
isolated word task Nefian et al. (Nefian et al., 2002) report 66.9%, Zhang et al. (Zhang et al., 
2002) report 42%, Kumar et al. (Kumar et al., 2007) report 42.3%. We can conclude that there 
is still a large variation in the performances obtained, and there is still no convergence 
visible since the newer studies do not necessarily show an increase in accuracy. This is, to 
our opinion, clearly a sign of the immaturity of the lip reading domain. Also, as can be 
observed in the listing above, there are yet no results of experiments with continuous 
speech. Patamianos et al. (Potamianos et al., 2004) report an extremely low result on the 
continuous speech task, namely 12%. The lip reading domain is still young and there are 
many limiting factors that need to be conquered. Therefore, the experiments in lip reading 
are still dealing with relatively easy tasks. However, the promising results in these tasks 
give us hopes that larger experiments are possible. As the domain becomes more popular, 
the number of data corpora will increase and with a better cooperation among scientists it 
will be possible to better compare the achievements. However, there are objective factors 
which limit the performance of the lip readers. Nevertheless, as shown in many studies, lip 
reading can be successfully used in conjunction with speech for an enhanced speech 
recognition system. 

3. Building an automatic lip reader: Overview 

Building a lip reader is in many ways similar to building any automatic system which 

performs an autonomous role in its environment. The first decision needed to be made 

before starting the construction of the system is with respect to the role of the system and 

with respect to the environment where the system will be deployed. After establishing, in 

pattern recognition jargon, the recognition task, building the system consists of four 

separate stages: data acquisition, data parametrization, model training and model testing. 

Figure 1 describes the general process of building a lip reader. These activities are 
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performed in cycles, the larger the cycle the less frequent its corresponding process is 

performed. 

The data acquisition process should ensure that the resulting corpus correctly describes the 
distribution of the possible states of the modelled process. The importance of the data 
parametrization is twofold; it should extract only the relevant information from the data and 
it should reduce the dimensionality of the feature space, therefore increasing the tractability 
of the problem. Training and testing are dependent on the mathematical models chosen for 
inference. These range from plain heuristics to complex probabilistic graphical models. The 
training process should solve two problems: identify the structure of the models such as the 
number of parameters and their relation, and compute the values of the models' parameters. 

Training and testing is usually performed in a cycle which will fine tune the structure of the 
models and the values of the weights in the model. However, the data parametrization step 
is the one that is most of the time investigated, since there are many ways to extract suitable 
information for the process under study. Choosing the right parametrization is not 
straightforward and usually a trial and error sequence of experiments is started. 

 

Fig. 1. The activity sequence for building a lip reader 

A lip reader and in general a speech recogniser is built for a particular target language. The 
recognition task, namely the size of the vocabulary and the type of utterances accepted, are 
paramount for the entire design of the system. For instance if for a small vocabulary (i.e. a 
few tens of words) one model can be used to recognise one entire word, for larger 
vocabularies it is more suitable to build sub-word models, i.e., to directly recognise sub-
words and build the words and sentences using dictionaries and grammar networks. 

So far, the most successful approach for speech recognition, and therefore also applied to lip 
reading, is the Bayesian approach. In the Bayesian approach, the recognition problem can be 
formulated as follows: given a set of possible words and an observation sequence 

 1 2, , , nO O O O   the solution of the recognition problem is the word that maximizes the 

probability ( | )P W O . Based on the Bayesian rule we can write:    | ( )
|  

( )

P O W P W
P W O

P O
 , 

where ( | )P O W  is the likelihood of the observation given the word W and P (W), usually 

called the language model, represents the probability of the word W. The problem can be 

thus rewritten as:     ˆ | ,WW argmax P O W P W  where W is the recognized word. In the 

above equation the denominator ( )P O  has been deleted since it does not influence the 

solution. Therefore, the recognition problem is reduced to building a language model P(W) 

and a word model  |  P O W for each legal word. 
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3.1 On building a data corpus for lip reading: A comparison 

In order to evaluate the results of different solutions to a certain problem, the data corpora 
used should be shared between researchers or otherwise there should exist a set of 
guidelines for building a corpus that all datasets should comply with. In the case when a 
data corpus is build with the intention to be made public, a greater level of reusability is 
required. In all cases, the first and probably the most important step in building a data 
corpus is to carefully state the targeted applications of the system that will be trained using 
the dataset. Some of the most cited data corpora for lip reading are: TULIPS1 (Movellan, 
1995), AVletters (Matthews et al., 1996), AVOZES (Goecke & Millar, 2004), CUAVE 
(Patterson et al., 2002), DAVID (Chibelushi et al., 1996), ViaVoice (Neti et al., 2000), 
DUTAVSC (Wojdel et al., 2002), AVICAR (Lee et al., 2004), AT&T (Potamianos et al., 1997), 
CMU (Zhang et al., 2002), XM2VTSDB (Messer et al., 1999), M2VTS (Pigeon & Vandendorpe, 
1997) and LIUM-AVS (Daubias & Deleglise, 2003). With the exception of M2VTS which is in 
French, XM2VTSDB which is in four languages and DUTAVSC which is in Dutch the rest 
are only in English (Table 1). Since the target language for our research was Dutch, we had 
only one option, namely the DUTAVSC (Delft University of Technology Audio-Visual 
Speech Corpus). For reasons that will be explained in the next paragraphs, we decided to 
build our own data corpus. This corpus was build as an extension to the DUTAVSC and is 
called NDUTAVSC (Chitu & Rothkrantz, 2009) which stands for “New Delft University of 
Technology Audio-Visual Speech Corpus”. 

Some aspects related to the data set preparation are as follows: 

 The complexity of audio data recording is much smaller than of the video recordings. 
Therefore, all datasets store the audio signal with sufficiently high accuracy, namely 
using a sample rate of 22 kHz to 48 kHz and a sample size of 16 bits. Therefore, the 
quality of the audio data is not subject to storage accuracy but from the perspective of 
recording environment. There are two approaches to the recordings environment: 
specific and neutral. In the first case the database is built with a very narrow application 
domain in mind such as speech recognition in the car. In this case the recording 
environment matches the conditions of the environment where the system will be 
deployed. This approach can guarantee that the particularities of the target 
environment are closely matched. The downside of this approach is that the resulting 
corpus is too much dedicated to the problem domain and suffers from over training, 
and offers little generalization. In the second approach the dataset can be recorded in 
controlled, noise free environment. The advantage of this approach is the possibility to 
adapt the corpus to a specific environment in a post process. Therefore, a data corpus of 
this kind can be used for virtually any number of applications. The specific noise can be 
simulated or recorded in the required conditions and later superimposed on the clear 
audio data. 

 In the case of video data recording there is a larger number of important factors that 
control the success of the resulting data corpus. Hence, not only the environment, but 
also the equipment used for recording and other settings is actively influencing the final 
result. In the case of the environment the classification made for audio holds for video 
as well. The environment where the recordings are made is important since it can 
determine the illumination of the scene, and the background of the speakers. In the case 
of a controlled environment the speakers background is usually monochrome so that by 
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using a “colour keying” technique the speaker can be placed in different locations 
inducing in this way some degree of visual noise. However, the illumination conditions 
of different environment are not as easily applied to the clean recordings, since the 3D 
information is not available anymore. In controlled environments the light is reflected 
by special panels which cast the light uniformly, reducing the artefacts on the speaker's 
faces. 

 The equipment used for recording plays a major role, because the resolution and the 
sample rate is still a heavy burden. Hence, the resolution of the recordings ranges from 
100x75 pixels in Tulips1 and 80x60 pixels in AVletters datasets to 720x576 pixels in 
AVOZES and CUAVE datasets. The same improvement in quality is also observed in 
colour fidelity. 

 The frame rate of the existing data corpora is conforming to one of the colour encoding 
systems used in broadcast television systems. Therefore, the video is recorded at 24Hz, 
25Hz, 29.97Hz of 30Hz depending on the place in the world where the recordings are 
made. The data corpus used for the current research was recorded at 100Hz. 

 The Region Of Interest (ROI) is important as well. For lip reading only the lower half of 
the face is important. However, in case context information is required, a larger area 
might be needed. Most of the datasets show, however, a passport like image of the 
speaker. In our opinion, at least for increasing the performance of the parametrization 
process a smaller ROI is more advantageous. Of course a ROI that is too narrow adds 
high constraints on the performances of the video camera used and it might be argued 
that this is not the case in real life where the resulting system will be used. Recording 
only the mouth area as is done in the Tulips1 data set is a tough goal to achieve in an 
uncontrolled environment. However, by using a face detection algorithm combined 
with a face tracking algorithm we could automatically focus and zoom in on the face of 
the speaker. A small ROI facilitates acquiring a much greater detail of the area of 
interest, in our case the mouth area, while keeping the resolution and, therefore, the 
bandwidth needs in manageable limits. 

Figure 2 shows some examples from six available data corpora. The differences among the 
examples in this figure are clearly visible, with the exception of the DUTAVSC corpus, all 
other corpora reserve a small number of pixels for the mouth area. Table 2 gives the sizes of 
the mouth bounding box in all six samples. This low level of detail makes the detection and 
tracking of the lips much more difficult. Any parametrization that considers a description of 
the shape of the mouth will be heavily influenced by image degradation. In the paper  

 

Fig. 2. The resolution of the ROI in some data corpora available for lip reading 
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(Potamianos et al., 1998) the authors report that the degradation of the video signal by the 
image compression algorithm by the addition of white noise does not influence the lip 
reading performance unless the Signal to Noise Ratio(SNR) falls under some threshold: 50% 
and 15%, respectively. These findings are reported when the features used are a linear 
transformation of the intensities in the images, namely discrete wavelet transform. 

 

Table 1. Characteristics of data corpora. 

 

Table 2. Resolution of the mouth area in six known corpora for lip reading.  

3.1.1 Language quality 

By its nature lip reading requires, irrespective of the other qualities, that the data corpus has 
a good coverage of the language and task vocabulary. Therefore, in the case of a word based 
recognizer all the words in the vocabulary need to be present in the corpus. In the case of a 
sub-word recognizer every sub-word item needs to be present in the corpus in all existing 
contexts. Therefore, the co-articulatory effects appear with a reasonable frequency. 
However, due to the amount of work necessary and the storage and bandwidth required 
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most of the data corpora only consider small recognition tasks and small language corpus. 
Most frequently the data corpora focus on the digits and letters of the language considered. 
These are recorded either isolated, or in short sequences, or as in DUTAVSC in spelling of 
words. Some corpora even only consider nonsense combinations of vowels(V) and 
consonants(C) (e.g. DAVID considers VCVCVC sequences, AVOZES repetitions of “ba” and 
“eo” constructions, AT&T CVC sequences). The continuous speech case is only considered 
in AVOZES which contains only 3 phonetically balanced sentences, in AVICAR which 
contains ten sentences from the TIMIT (Garofolo, 1988) speech data corpus, XM2VTSDB and 
M2VTS which contains one random sentence and DUTAVSC which contains 80 phonetically 
rich sentences. The DUTAVSC is by far the most rich data corpus. The NDUTAVSC corpus 
which was built as an extension of DUTAVSC contains more than 2000 unique rich 
sentences. However, none of the existing corpora can match the language coverage offered 
by the data corpora used for speech recognition which can easily have a vocabulary of 100k 
words (e.g. the Polyphone corpus (Boogaart et al., 1994) contains more than one million 
words recorded and a vocabulary of 150k words). 

3.2 Feature vectors definition 

There are many approaches to data parametrization, but with respect to the feature vectors 
definition they all fit in three broad classes: texture based features, geometric based features, 
and combination of texture and geometric features. A good overview of most of the feature 
extraction methods can be found in (Potamianos et al., 2004). In the first class the feature 
vectors are composed of pixels' intensities values or a transformation of them in some 
smaller feature space. The main function of the projection is to reduce the dimensionality of 
the feature space while preserving as much as possible the most relevant speech related 
information. Principal Component Analysis (PCA) is one of the first choices, and therefore 
very popular, and was used in many studies e.g. (Bregler et al., 1993); (Bregler & Konig, 
1994); (Duchnowski et al., 1994); (Li et al., 1995); (Tomlinson et al., 1996); (Chiou & Hwang, 
1997); (Gray et al., 1997); (Li et al., 1997); (Luettin & Thacker, 1997); (Potamianos et al., 1998); 
(Dupont & Luettin, 2000); (Hong et al., 2006). The feature definition is based on the notion of 
eigenfaces or eigenlips which represent the eigenvectors of the training sets. An alternative 
to PCA, very common as well, is Discrete Cosine Transform (DCT) such as in (Duchnowski 
et al., 1995); (Prez et al., 2005); (Hong et al., 2006); (Lucey & Potamianos, 2006). Linear 
Discriminant Analysis (LDA), Maximum Likelihood Data Rotation (MLLT), Discrete 
Wavelet Transform, Discrete Walsh Transform (Potamianos et al., 1998) are other methods 
that fit in this class and were used for lip reading. Virtually, any other method, usually 
borrowed from the data compression domain, which results in a lower dimensionality of the 
feature vectors can be applied for data parametrization in the lip reading domain. Local 
Binary Patterns (LBP) is just another technique, borrowed from the texture segmentation 
domain, and shows promising results for lip reading as well (Morn & Pinto-Elas, 2007); 
(Zhao et al., 2007); (Kricke et al., 2008). LBP was developed by Timo Ojala and Matti 
Pietikainen and presented in (Ojala & Pietikainen, 1997). A special place in this class is taken 
by the feature vectors that are based on Optical Flow Analysis (OFA) (Mase & Pentland, 
1991); (Martin, 1995); (Gray et al., 1997); (Fleet et al., 2000); (Iwano et al., 2001); (Tamura et 
al., 2002); (Furui, 2003); (Yoshinaga et al., 2003); (Yoshinaga et al., 2004); (Tamura et al., 
2004); (Chitu et al., 2007); (Chitu & Rothkrantz, 2009). The optical flow is defined as “the 
apparent velocity field in an image”. This definition closely matches the affirmation of 
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Bregler and Konig in their 1994 paper (Bregler & Konig, 1994): “The real information in 
lipreading lies in the temporal change of lip positions, rather than the absolute lip shape”. 
The OFA can be used as well as a measure of the overall movement and be employed for 
onset/offset detection. The main advantage of this approach is that it can be easily 
automated, since it requires only the definition of the Region Of Interest (ROI). The ROI can 
be considered the bounding box of the face or the bounding box of the mouth, thus 
requiring some object detection and tracking algorithm. A good example is the face 
detection algorithm developed by Viola and Jones in (Viola & Jones, 2001). The main 
disadvantage of this type of features is that the a-priory information about lip reading is not 
inherently used in the process of feature extraction. Therefore, there is minimum control 
over the information contained in the resulting feature vectors, on whether this information 
is relevant for lip reading or not. The exceptions can be the OPA and LBP where the analysis 
is usually performed in carefully chosen regions around the mouth. We defined the set of 
features based on OFA and analyzed the performance of the lip reading system trained on 
our data corpus. The features from the second class share the belief that in order to 
accurately capture the most relevant features, with respect to lip reading, a careful 
description of the contour of the speaker's mouth is needed. The feature extraction proceeds 
in two steps; first a number of key points are detected and based on these points the mouth 
contour is recovered, and second the feature vectors are defined based on the shape of the 
mouth. The detection of the key points is performed based on colour segmentation 
techniques that identify pixels that are on the lips. Thereafter, the contour of the lips is 
usually extracted by imposing a lip model to the detected points. These methods are using 
the so called “smart snakes” (Lievin et al., 1999); (Luettin & Thacker, 1997); (Salazar et al., 
2007), or as called in (Eveno et al., 2004) “jumping snakes”, or later on Active Shape Models 
(ASM) (Luettin et al., 1996); (Prez et al., 2005); (Morn & Pinto-Elas, 2007) or Active Contour 
Models (ACM). Any other parametric model can be used here. The lips' contour is usually 
detected as a result of an iterative process which searches to minimise the error between the 
real contour and the approximation of the contour the parametric model allows for. The 
actual feature vectors are defined in the second step. The feature vectors fall into two 
categories here: model based features and mouth high level features. In the first category the 
feature vectors contain directly the parameters of the models used for describing the mouth 
contour. In the second category the feature vectors contain measurable quantities, which are 
meaningful to humans. The most used high level features are mouth height, mouth width, 
contour perimeter, aperture height, aperture width, aperture area, mouth area, aperture 
angle and other relations among these (e.g. the ratio between the width and the height) 
(Chitu & Rothkrantz, 2009); (Goecke et al., 2000a, 2000b); (Kumar et al., 2007); (Matthews et 
al., 2002); (Yoshinaga et al., 2004). 

In our research we used Statistical Lip Geometry Estimation (LGE) which is a feature 

extraction method introduced by Wojdel and Rothkrantz (Wojdel & Rothkrantz, 2000). This 

method is special because it is a model free approach for describing the shape of the lips. It 

strongly depends, however, on the performance of the image segmentation technique used 

to detect the pixels which belong to the lips. The third class consists of feature vectors that 

contain both geometric and texture features. The features from each category are usually 

concatenated in a larger feature vector. For instance (Dupont & Luettin, 2000) and (Luettin et 

al., 1996) combine ASM with PCA features and (Chiou & Hwang, 1997) combines snake 

features with PCA. It was shown that the tongue, teeth and cavity have great influence on 
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lip reading (Williams et al., 1998), therefore, the addition of these appearance related 

elements has significant influence on the performance of lip reading (Chitu et al., 2007). A 

special example is the so called Active Appearance Models (AAM) (Cootes et al., 1998) 

which combines the ASM method with texture based information to accurately detect the 

shape of the mouth or the face. The searching algorithm is iteratively adjusting the shape 

such that to minimise the error between the generated shape and the real shape. The core of 

AAM is PCA which is applied three times, on the shape space, on the texture space and on 

the combined space of shape and texture. The AAM based features can either consist of 

AAM model parameters in which case we have a combined geometric and texture feature 

vector, or of high level features computed based on the shape generated in which case we 

have a geometric feature vector. The lip reading results based on high level feature vectors 

which are computed starting from the lips' shape generated based on AAM are given in this 

chapter. 

3.3 Lip reading primitives 

This section introduces the visemes which are the lip reading counterparts of the phonemes.  

3.3.1 Phonemes 

In any spoken language a phoneme is the smallest segmental unit of sound which generates 

a meaningful contrast between utterances. Thus a phoneme is a group of slightly different 

sounds which are all perceived to have the same function by speakers of the language or 

dialect in question. An example of a phoneme is the group of /p/ sounds in the words pit 

spin and tip. Even though these /p/ sounds are formed differently and are slightly different 

sounds they belong to the same phoneme in English because for an English speaker 

interchanging the sounds will not change the meaning of the word, however strange the 

word will sound. The phones, or sounds, that make up a phoneme are called allophones. A 

speech recognizer can be built at word level or at sub-word level. While for a small 

vocabulary recognition task a word level system might be preferred, for large vocabulary, 

continuous speech task systems the phonemes are used as building blocks. Therefore, each 

phoneme in the target language corresponds to a recognition model in the speech 

recognizer. 

In the Dutch language, approximately 40 distinguishable phonemes are defined. However, 

there can be slight differences among different phoneme and phoneme sets as a 

consequence of the target dialect and definition of accepted words. In the present research 

we used the phoneme set defined in (Damhuis et al., 1994). One problem is generated, for 

instance, by the neologisms. These words are divided in two classes: the ones that are 

already established into the language (e.g. the words of French origin) and have a stable 

pronunciation but which contain phonemes that are still under-represented in the language 

and a second class of very new words (e.g. the International English words from various 

technical and economical background) which bring a set of new phonemes that have no 

correspondence in Dutch. Table 3 shows the phonemes of the Dutch language as used in the 

Polyphone corpus. The phonemes are given in International Phonetic Alphabet (IPA), 

Speech Assessment Methods Phonetic Alphabet (SAMPA), and HTK notations, respectively.  
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3.3.2 From phonemes to visemes 

Even though the definition of the concept of phoneme crosses the boundary of the auditory 
realm, and therefore is not bound to any sensory modality, the term “viseme” is used as the 
counter part of phoneme in the visual modality. The term was introduced by Fisher in 
(Fisher, 1968). 

The visemes have a similar definition with the phonemes, namely, a viseme is a set of 
indistinguishable phonemes; indistinguishable phonemes from the point of view of the 
visual information available and not as in the phonemes case from the point of view of their 
meaning. There are two direct consequences of this definition. Firstly, there is no exact 
method of deciding the number and composition of the viseme classes; this is actually done 
either by a theoretical discussion of auditory-visual lip reading of phonemes or by 
modelling the human ability of recognizing the phonemes in the absence of the auditory 
stimulus, therefore, by modelling the degree of confusion of phonemes in the visual 
modality. Secondly, since there is no one-to-one mapping between the phonetic 
transcription of an utterance and the corresponding visual transcription, the separability of 
utterances in the visual modality decreases, which decreases the theoretical performance of 
a lip reader. The dependence of the visemes on the phonemes can be thought of as one 
reason why a new term was needed.  

Unlike for English, to date there is only a limited number of publications which deal with 
the definition of visemes in Dutch; this is an almost complete list of them: (Breeuwer, 1985), 
(Corthals , 1984), (Eggermont, 1964), (van Son et al., 1994), (Visser et al., 1999) and (Beun, 
1996). The papers (van Son et al., 1994) and (Beun, 1996) cited in (Wojdel, 2003), are the only 
examples, at least to the author's knowledge, where the classification of the viseme sets is 
done by elicitation of the human confusion matrices of phonemes. The authors of (van Son 
et al., 1994) found in their experiments that the Dutch lip readers are only able to recognize 
four consonantal and four vocalic visemes. 

3.3.3 Modelling the visemes using HMM 

As a sub-word based speech recogniser, the building blocks of our lip reader are the visemes 

of the Dutch language. Therefore, one HMM corresponds to one viseme. To the set of 

visemes are added two special models, namely sp for “short pause” and sil for “silence”. 

The sp model is used for recognition of the short pause between words, while sil is used for 

the silence moments before and after the utterance. Depending on the recognition task, some 

visemes do not appear at all in the expected utterances and are, therefore, excluded from the 

study. This is the case for the digit and letter tasks. 

The set of visemes which appear in the digit recognition task are listed in Table 4 and the set 

of visemes which appear in the letter recognition task are listed in Table 5. The visemes “at” 

and “a” are only present in the digit set, while the visemes “aa” and “pbm” are only present 

in the letter set. 

The topology of the models used for modelling the visemes, usually used for phoneme-
based speech recognition as well, is a 3-state left-right with no skips as shown in Figure 3. 
For implementation reasons, HTK requires that the models start and end with a non 
emitting node that facilitate the generation of recognition networks. A recognition network 
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consists of a string of linked models which are used during recognition by matching to the 
input utterance. 

 

Table 3. Polyphone's Dutch phoneme set: consonants. 

 

Table 4. The viseme set in HTK working notation for the digit recognition task. 

 

Table 5. The viseme set in HTK working notation for the letter recognition task. 
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In Figure 3 the numbers on the arcs represent the initial transition probabilities, set before 
training. Under the emitting states there is a generic drawing of the distribution of the 
feature vectors which is approximated by a mixture of Gaussian distributions. The 
modelling of the two silence models are introduced in the next section. 

 

Fig. 3. The models used for modelling the visemes. The topology is 5-State Left-Right with 
three emitting states. The arcs are annotated with transition probabilities 

3.3.4 Silence and pause models 

It is not possible to build a continuous speech recognizer without including a model for 

silence. However, there are two types of silence, the ones between the words and the ones 

that appear in the beginning of the utterance and at the end of the utterance. The silence 

model that covers the entering and exit time of the utterances can be modelled using the 

same topology as for viseme models (i.e. 3-state left-right topology). However, in order to 

make the model more robust by allowing the states to absorb more non verbal mouth 

movement, the silence model is modified so that a backwards transition from state 4 to 

state 2 is accepted. The model for short pause is build starting from the model for [sil]. 

The short pause model is a so called tee-model and has a single emitting state which is 

tied to the central state of the [sp] model. This means that the central state of the [sil] 

model and the emitting state of the [sp] model share the same Gaussian mixture and 

therefore are trained using the same data. Parameter tying is very often used in speech 

recognition for the cases when there is not sufficient data for training models for similar 

entities. The topology used for the two silence models is shown in Figure 4. The silence 

models defined above are the same as the ones used for speech recognition. However, 

there is a big difference between the concept of silence in speech recognition and the 

concept of silence in lip reading. Consequently, the noise can have a more robust 

definition. For instance, in the case of visual speech the speaker can move his mouth for 

non verbal reasons (e.g. to moisture his lips, or to exteriorise the emotional status by 

showing a facial expression). The noise sources are more diverse for lip reading. Even 

though the silence model has an extra backward arc which should, in principle, also 

accommodate for noise in the training data, we found out in our experiments that the 

silence model defined in this way did not perform at the same level as in the case of 

speech. As we will see later in the results sections, sometimes the insertion rate was 

unexpectedly large. This can also be due to poorly trained silence models. 
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Fig. 4. The models used for modelling the silence 

3.3.5 Modelling the low level context using Tri-visemes 

In order to model the context at the level of the visemes, each viseme is considered in all the 
possible contexts. Only a one step context is considered, namely for each viseme only the left 
and the right possible visemes are considered, therefore, the name of the new entity is tri-
viseme. The notation for tri-visemes is lf-vis+rt, where “vis” is the viseme in question, “lf” is 
the left context and “rt” is right context. For instance the word nul with the viseme 
transcription gkx oyu l will generate the following tri-visemes: gkx+oyu, gkx-oyu+l and 
oyu-l. The context of each viseme can be build at word level, also called word internal, or at 
the level of utterance called word external. In the first case, for finding all possible contexts 
of a viseme, only the words in the vocabulary are considered, while in the second case also 
the possible combinations of words can build the context. It should be noted that sometimes 
bi-visemes (i.e. viseme context containing only the left or the right viseme) are also 
generated. For each tri-viseme, a new model will be build which makes the number of 
models explode, making the data requirements for training a tri-viseme based recognizer 
many times larger. The major problem with the tri-visemes is that some contexts can appear 
only once (or a very small number of times) in the training data, or can even be absent from 
the training data, as in the case of trans-word boundary contexts. To solve this problem the 
parameter tying technique is used. The clustering of possible similar contexts can be made 
either by a data-driven approach, or by the use of decision trees. Even after the parameter 
tying, there can still be tri-viseme models which are undertrained. 

3.4 Gaussian mixtures 

The HMM approach considers that each of the emitting states in the model will be described 
by a continuous density distribution. This distribution is approximated in HTK by a mixture 
of Gaussian distributions. Building of the models in HTK starts by using only one Gaussian 
distribution. In the refining step the number of Gaussian mixtures is increased iteratively by 
1 or 2 units until the optimum number of components is obtained. By monitoring the 
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performance change, the optimum number of mixtures can be found. During our 
experiments we iteratively increased the number of mixtures by one until a maximum of 32 
mixtures. The “magic” number 32 was found sufficiently big to cover the optimum number 
of mixtures in all the experiments. 

4. Facial model for lip reading 

The AAM algorithm iteratively searches for the best fit of a model defined by a set of 
landmarks and the image being processed. Based on a-priori knowledge about the shape of the 
object, the set of landmarks is defined such that it optimally describes the object. In our case we 
required that the points selected describe the shape of the mouth in detail, especially capturing 
the speech related aspects. Therefore, the final model should exactly segment the lips in all 
moments during speech. After experimenting with different models and analysing the results, 
followed by long discussions, we decided to use a model composed of 29 points, distributed 
around the mouth, chin and nose. This model is shown in Figure 5. 

For training a model, a number of two to four hundred images was manually processed. In 

order to obtain reliable results the images were selected such that they cover all the variance 

in the data. This was achieved in an iterative process. We first started with a random 

selection of a few tens of images which were used to build a first model. This model was 

used for processing until the performance of the model decreased below some visually 

assessed threshold. The images that were badly processed were added in the training set 

and a new model was obtained. This process continued until the performance of the model 

stabilized. In the end we trained a number of models for each speaker in the dataset. For 

speakers that recorded multiple sessions we trained one model per session. 

 

Fig. 5. The AAM model 

Even though the process is fairly automated, this was an extremely laborious work, since the 
corpus contains more than 4.3 million frames, and was split among various people. Each 
assistant was asked to train a model and supervise the processing of the rest of the frames. 
Splitting the data among different people makes it more difficult to guaranty the uniformity 
over the entire corpus of the end result. Therefore, to assure uniformity of the processing we 
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used a strict definition of the landmarks. We defined as well constraints that acted on pairs 
of landmarks. The rest of this section gives the definition used for the landmarks. Before 
going to the next paragraphs, we should introduce some anatomical elements on which the 
definition of the landmarks depends.  

4.1 AAM results on the training data 

The AAM process is very fast and very accurate given that a good training set was selected. 
We combined the AAM searching scheme with the Viola&Jones mouth detection algorithm, 
which made the selection of a very good location for the initial guess possible. This has 
speeded up the search process to real time performance. The mouth detection was used only 
in the first few frames of the recording. In the subsequent frames the initial guess used was 
the result of the processing in the previous frame. This approach was very successful both in 
speeding up the search scheme and improving the accuracy of the detection. Figure 6 shows 
the first six most important components in PCA terminology. The mean shape and texture 
model is shown on the centre row. The top row shows for each mode the resulting object 
after an adjustment by two standard deviations is applied to on the corresponding mode. 
The bottom row shows the result when the adjustment is negative. The first two modes 
seem to have more control over the vertical and horizontal movement of the mouth, while 
mode four seems to control the presence of the tongue. However, there is no strict 
separation between the information controlled by each mode, at least not easily discernable 
by visual inspection. This model was trained on a set of 440 images, selected in an iterative 
process. All three models (i.e. appearance, shape and combined models) were truncated at 
95% level. Based on the 95% level truncation, the final combined model had 38 parameters, 
while the shape model had 11 parameters and the texture model had 120 parameters. The 
first six modes in the combined model cover 78.65%. However, in the case of the shape 
models the first two modes already cover 82.53% of the total variation, while the first six 
cover 91.83% of the variation.  

 

Fig. 6. Combined shape and appearance statistical model. The images show from left to right 
the first six most important components in PCA terminology. These modes account for 
78.65% of the total variation. Centre row: Mean shape and appearance. Top row: Mean 
shape and appearance +2σ. Bottom row: Mean shape and appearance -2σ 
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4.2 Defining the feature vectors 

The first approach towards lip reading and other similar problems was to use as visual 
features directly the AAM parameters. The other approach is to use the final results of the 
method, namely the co-ordinates of the landmarks as assigned by the algorithm for the current 
image. In our research we adopted this latter approach. Based on the position of the landmarks 
we defined seven high level geometric features. The features are computed as the Euclidean 
distances and areas between the certain key points that describe the shape of the mouth, 
namely mouth height and width, mouth aperture width and height, mouth area, aperture area 
and the nose to chin distance. The features are graphically described in Figure 7. 

4.3 Visual validation of the feature vectors 

Figure 8 shows the plots of the feature vectors computed for a random recording of the 
letter F having the viseme transcription [eeh fvw]. In this case the onset and offset moments 
of the utterance are clearly visible around the frame 75 and the frame 200 of the video 
recording, respectively. The onset of the viseme [eeh] is around the frame 80, while the onset 
of the viseme [fvw] is seen around frame 160. The actual shape of the mouth can be seen in 
the images shown below the graphs, which are extracted from the video sequence. 

 

Fig. 7. The high level geometric features: 1) Outer lip width, 2) Outer lip height, 3) Inner lip 
width, 4) Inner lip height; 5) Chin to nose distance, 6) Outer lip area, 7) Inner lip area 

Figure 9 shows the plots of the feature vectors for seven letters of the alphabet and the digit 
< 8 > ([a gkx td]). We see that the variability of the features is very high which makes them 
suitable for the recognition task at hand. We can also remark that, for instance, even though 
the viseme [aa] is present in the transcription of all letters, A([aa]), H([h aa]) and K([gkx aa]) 
we can clearly see that there is a slight difference between them with respect to the duration 
in each instance. This is best visible in the curve showing the height of the mouth, which 
shows that the duration of the viseme is shorter in the utterance of the letter K and H than in 
the case of the letter A. 

An interesting result was obtained when visually inspecting the curves described by the 
feature vectors for all the visemes. By simple visual inspection we found that we could 
easily distinguish between some of the visemes, which proved that the feature set captures 
much of the speech related information. Table 6 summarises our findings in this respect. For 
a simple recognition task such as for instance the recognition of isolated visemes, or even the 
recognition of isolated digits, based on this table we could use a static classifier such as 
Support Vector Machines (SVM) (Ganapathiraju, 2002). However, for these types of 
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classifiers the features need to be global features because they cannot handle time series. 
Therefore, the generalisation to longer and of variable length utterances is not possible. 

 

Fig. 8. The seven features plotted for one recording for the letter F transcribed using the 
visemes: eeh and fvw 

 

Table 6. Feature patterns per viseme: +) peak -) valley -+) increase +-) decrease. 

4.4 AAM as ROI detection algorithm 

It is worth mentioning that AAM can be used as well as a preprocess for defining a more 
accurate ROI. Therefore, the ROI defined using a mouth detection algorithm is further 
improved using the AAM. A more accurate ROI makes the data parametrization process 
more robust, because the background is better removed and, therefore, there is less noise in 
the input data.  

5. Lip reading results 

The method presented in this section produces for each frame in the corpus a vector with 
seven entries: mouth width, mouth height, aperture width, aperture height, mouth area, 
aperture area and the distance between the nose and the chin. We trained and tuned a lip 
reader based on the HMMs approach for each recognition task. In a similar approach, we 
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considered both the case with simple static features (i.e. seven geometric features) and the 
case when the feature space was enriched with dynamic information consisting of deltas 
and accelerations (i.e. making 21-dimensional vectors). We trained systems based on mono-
visemes as well as context aware tri-viseme systems. We used a Gaussian mixture 
arrangement to better describe the feature space and we performed a 10-fold validation in 
order to increase the confidence in the observed results. The best results obtained were WRR 
90.32% with word accuracy 84.27% for the CD recognition task. In this case, 75% of the 
sequences was recognized correctly. Figure 10 shows the plot of the performance of the best 
recognizer as a function of the number of Gaussian mixtures used. 

 

Fig. 9. Feature values plotted for the letters A ([aa]), H ([h aa]), K ([gkx aa]) and Q ([gkx 
oyu]), I ([ie]), O ([oyu]), IJ ([ei]) and 8 ([a gkx td]). The vectors are scaled using the time 
variance and centred around their mean 
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Fig. 10. The WRR and Acc results for CD recognition task as a function of the number of 
mixtures. The X axis gives the number of mixtures and the Y axis shows the results 
obtained. The feature vectors consisted of geometric features computed based on the AAM 
shape corroborated with their corresponding deltas and accelerations. The HMM models 
consisted of intra-word tri-visemes 

 

Fig. 11. The confusion matrices obtained by the best systems in the CD and CL tasks at the 
viseme level, respectively. a) the confusion matrix for CD task in the best case. b) the 
confusion matrix for CL task in the best case. c) the mean, over the mixture number, 
confusion matrix for the CD task. d) the mean, over the mixture number, confusion matrix 
for the CL task 
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For the GU recognition task we observed a 56% WRR. Using an N-Best approach with five 
most probable outcomes did not improve the result, which suggests the system is fairly 
robust. The 10-fold validation showed an 80.27% mean WRR with a 6% standard deviation, 
the minimum performance being 74.80% WRR. This shows some instability, however, the 
minimum is still a very good result. We also tested the results of the recognition at viseme 
level (i.e. before using the language model to build the corresponding words). This is useful 
for analysing the degree of confusion between different visemes. Figure 11 shows the 
confusion matrix for the best case. The mean confusion matrices computed over the mixture 
number is also displayed. We can remark in these figures that the degree of confusion is 
relatively small. However, the confusion is greater for visemes defined by larger phoneme 
sets. This is the case especially for the visemes [oyu] and [gkx] which are very often a source 
of confusion. 

6. Conclusion 

We introduced in this chapter an AAM based approach for lip reading. The AAM method is 
in our opinion a valuable tool for lip reading, both as a data parametrization method but 
also as a ROI detection technique. The method can be very robust and has a good 
generalization for unseen faces, however, the training process can be very long for 
satisfactory results to be obtained. Nevertheless, the shape obtained from the search scheme 
can be used as a starting point for testing other feature types, since it can always function as 
background elimination stencil. Based on the shape computed using the AAM searching 
scheme, we defined a set of high level geometric features. Based on these features we built 
different lip readers with very good results. These results validate the findings reported in 
the literature which showed that the width and the height of the mouth largely capture the 
content of the spoken utterance (Wojdel, 2003). This also justifies why a simple mouth 
model for lips synchronization based only on varying the mouth opening synchronous with 
the sound output is so convincing. We did not include in the feature vectors used in this 
chapter any information that describes the presence of the teeth, tongue or other elements of 
the mouth. This information was shown in the literature but also in our other experiments to 
be very important for lip reading. We expect that this is the case in the current settings as 
well. However, we did not include this information here because we wanted to have a clear 
understanding of the factors that influence the observed results.  
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