
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



5 

Laser-Driven Table-Top X-Ray FEL 

Kazuhisa Nakajima1,2,3 et al.* 
1Shanghai Institute of Optics and Fine Mechanics,  

Chinese Academy of Sciences, Shanghai, 
2High Energy Accelerator Research Organization, Tsukuba, 

3Shanghai Jiao Tong University, Shanghai, 
1,3China 

2Japan 

1. Introduction 

Synchrotron radiation sources nowadays benefit a wide range of fundamental sciences - 

from physics and chemistry to material science and life sciences as a result of a dramatic 

increase in the brilliance of photons emitted by relativistic electrons when bent in the 

magnetic field of synchrotron accelerators. A trend will tend toward the X-ray free electron 

laser (FEL) that will produce high-intensity ultrashort coherent X-ray radiations with 

unprecedented brilliance as kilometer-scale linear accelerator-based FELs are being 

commissioned to explore new research area that is inaccessible to date, for instance 

femtosecond dynamic process of chemical reactions, materials and biomolecules at the 

atomic level (Gerstner, 2011). Such large-scale tool could be built on a table top if high-

quality electrons with small energy spread and divergence are accelerated up to the GeV 

range in a centimetre-scale length (Grüner et al., 2007; Nakajima et al., 1996; Nakajima, 2008, 

2011). It is prospectively conceived that a compact source producing high-energy high-

quality electron beams from laser plasma accelerators (LPAs) will provide an essential tool 

for many applications, such as THz and X-ray synchrotron radiation sources and a unique 

medical therapy as well as inherent high-energy accelerators for fundamental sciences 

(Malka et al., 2008).  

The present achievements of the laser wakefield accelerator performance on the beam 

properties such as GeV-class energy (Leemans et al., 2006; Clayton et al., 2010; Lu et al., 

2011), 1%-level energy spread (Kameshima et al., 2008; Rechatin et al., 2009), a few mm-
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mrad emittance (Karsch et al., 2007), 1-fs-level bunch with a 3-4 kA peak current (Lundh et 

al., 2011), and good stability and controllability (Hafz et al., 2008; Osterhoff et al., 2008) of 

the beam production allow us to downsize a large-scale X-ray synchrotron radiation source 

and FEL to a table-top scale including laser drivers and radiation shields. The undulator 

radiation from laser-plasma accelerated electron beams has been first demonstrated at the 

wavelength of rad 740 nm  and the estimated peak brilliance of the order of 166.5 10  

photons/s/mrad2/mm2 /0.1% bandwidth driven by the electron beam from a 2-mm-gas jet 

with the beam energy 64 MeVbE  , the relative energy spread / 5.5%bE E   (FWHM) and 

total charge 28 pCbQ  , which is produced by a 5 TW 85 fs laser pulse at the plasma 

density 19 32 10  cmpn   (Schlenvoigt, 2008). The soft X-ray undulator radiation has been 

also successfully demonstrated at the wavelength rad 18 nm  and the estimated peak 

brilliance of the order of 171.3 10 photons/s/mrad2/mm2/0.1% bandwidth radiated by 

electrons with 207 MeVbE  , / 6%bE E   (FWHM) and 30 pCbQ  from a 15-mm-

hydrogen-fill gas cell driven by a 20 TW 37 fs laser pulse at 18 38 10  cmpn   (Fuchs, 2009). 

With extremely small energy spread and peak current high enough to generate self-

amplified spontaneous emission so-called SASE (Bonifacio, 1984), a photon flux of the 

undulator radiation can be amplified by several orders of magnitude to levels of brilliance 

comparable to current large-scale X-ray FELs (Nakajima, 2008).  

Here we consider feasibility of a compact hard X-ray FEL capable of reaching a wavelength 

of 0.1 nmX  , which requires the electron beam energy of the multi-GeV range in case of a 

modest undulator period of the order of a few centimeters. One of prominent features of 

laser-plasma accelerators is to produce 1-fs-level bunch duration, which is unreachable by 

means of the conventional accelerator technologies. The X-ray FELs rely on SASE, where the 

coherent radiation builds up in a single pass from the spontaneous (incoherent) undulator 

radiation. In an undulator the radiation field interacts with electrons snaking their way 

when overtaking them so that electrons are resonantly modulated into small groups (micro-

bunches) separated by a radiation wavelength and emit coherent radiation with a 

wavelength equal to the micro-bunch period length. This process requires an extremely 

high-current beam with small energy spread and emittance in addition to a long precisely 

manufactured undulator. Therefore the conventional accelerator-based FELs need a long 

section of the multi-stage bunch compressor called as a ‘chicane’ that compresses a bunch 

from an initial bunch length of a few picoseconds to the order of 100 fs to increase the 

current density of the electron beam up to the order of kilo-ampere level before injected to 

the undulator, whereas the laser-plasma accelerator based FELs would have no need of any 

bunch compressor. Although the present LPAs need further improvements in the beam 

properties such as energy, current, qualities and operating stability, the beam current of 100 

kA level (i.e. 100 pC electron charge within 1 fs bunch duration) allows a drastic reduction 

to the undulator length of several meters for reaching the saturation of the FEL 

amplification. In addition to inherently compact laser and plasma accelerator, a whole FEL 

system will be operational on the table-top scale. The realization of laser-driven compact 

table-top X-ray FELs will benefit science and industry over a broad range by providing new 

tools enabling the leading-edge research in small facilities, such as universities and 

hospitals. 
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2. Laser-plasma accelerators 

2.1 Laser wakefields in the linear regime 

In underdense plasma an ultraintense laser pulse excites a large-amplitude plasma wave 

with frequency 

 

24 p
p

e n

m


   (1) 

and electric field of the order of 

  0 18 3
96 GV /m

10 cm

p pmc n
E

e





 
 

  (2) 

for the electron rest energy 2mc  and plasma density pn due to the ponderomotive force 

expelling plasma electrons out of the laser pulse and the space charge force of immovable 

plasma ions restoring expelled electrons on the back of the ion column remaining behind the 

laser pulse. Since the phase velocity of the plasma wave is approximately equal to the group 

velocity of the laser pulse 

 

2
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   (3) 

for the laser frequency L  and the accelerating field of ~ 100 GV/m for the plasma density ~ 

1018 cm-3, electrons trapped into the plasma wave are likely to be accelerated up to ~ 1 GeV 

energy in a 1-cm plasma. In the linear and quasilinear regime with the normalized laser 

intensity 
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where LI is the laser intensity and 2L Lc   is the laser wavelength, the wake potential   

is obtained from a simple-harmonic equation (Esarey et al., 1996) 

  
2

2 2 2 2
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1
,

2
p pk k mc a r 
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  


 (5) 

where pz v t   , p pk c  and     2, ,a r eA r mc   is the normalized vector potential 

of the laser pulse. The wake potential is given by 

      
2

2, sin ,
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    
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m c k
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Thus the axial and radial electric fields are calculated by 
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 (7) 

Considering a temporally Gaussian laser pulse with 1 e  half-width L , of which the 

ponderomotive potential is given by 
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 (8) 

the wake potential is 
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where  C  and  S  are defined as 
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and 
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respectively, and 
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is the complex error function. Using Eq. (7), the axial and radial electric fields are 
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and 
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respectively. Behind the laser pulse at L  , taking into account   2C    and 

  0S   , the wakefields are approximately given by 
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and 
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For 2p Lk   , the maximum amplitude of the axial field becomes 

    
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As shown in Eq. (15) and (16), the radial electric field shifts a phase by 2 with respect to 

the axial field and radial dependence of the wakefields is determined by the radial 

component  U r  of the ponderomotive potential. For a Gaussian laser pulse with linear 

polarization, the ponderomotive potential is given by 
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where Lr is the laser spot radius at focus, 2 21L Rw r z z   is the spot radius at z and 
2

R L Lz r  is the Rayleigh length for the laser wavelength L . Assuming that the laser 

pulse propagates the plasma at a constant spot size Lw r  in a matched plasma waveguide, 

the ponderomotive potential of the Gaussian mode is 
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Thus the normalized radial potential is defined as 
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For the Gaussian mode, the axial and radial fields Eq. (15) and (16) are 
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and 

  
2 22

2 2
0 2 2

2
, exp sin

4

p L
r p L p

L L

kr r
eE r a mc k k

r r


   

 
    
 
 

. (22) 

For a Gaussian pulse, the maximum accelerating field is 
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   at 0r   for 2p Lk   , (23) 

and the maximum radial field is 
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Consider the radial potential profile described by super-Gaussian functions as 
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, (25) 

where 2n   (Sverto, 1998). A Gaussian profile corresponds to 2n  . Substituting Eq. (25) 

into Eq. (15) and (16), the axial and radial wakefieds for a super-Gaussian potential are 
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and 
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The maximum accelerating field maxzE at 0r   is given by Eq. (23) and the maximum radial 

field is 
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 for 2p Lk   . (28) 

The peak laser power with the normalized vector potential 0a  is calculated as 
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where 2L Lk   is the laser wave number and  z  is the Gamma function. For a 

Gaussian pulse 2n  , the peak power is calculated as 
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and for a super-Gaussian pulse 4n  , the peak power is 
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2.2 Electron acceleration in the quasilinear wakefield 

In Eq. (21), for a given plasma density, the maximum field is 2
max 0 00.38zE a E  at the 

resonant condition 2Lpk   , while for a given pulse duration, the maximum field is 
2

max 0 00.33zE a E at the resonant condition 2Lpk   . Changing both plasma density and 

laser pulse duration, the optimum condition turns out 1Lpk    i. e. the FWHM pulse length 

 2 ln 2 0.265LL pc    , (32) 

for which the maximum field is 
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In this condition, the laser pulse length is shorter enough than a half plasma wavelength so 

that a transverse field at the tail of the laser pulse is negligible in the accelerating phase of 

the first wakefield. The net accelerating field zE  that accelerates the bunch containing the 

charge b bQ eN , where bN  is the number of electrons in the bunch, is determined by the 

beam loading that means the energy absorbed per unit length, 
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where 2 2/er e mc is the classical electron radius and 
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is the beam loading efficiency that is the fraction of the plasma wave energy absorbed by 

particles of the bunch with the rms radius r. In the beam-loaded field max1 bz zE E  , the 

loaded charge is given by 
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where  2 2 24c L e Ln m e r      is the critical plasma density and 2
0 0/ 0.35 1z bE E a   

for 1Lpk   . Since the loaded charge depends on the accelerating field and the bunch 

radius, it will be determined by considering the required accelerating gradient and the 
transverse beam dynamics. 
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The electron linac with 10 GeV-class beam energy can be composed of a high-quality beam 

injection stage with beam energy of the order of 100 MeV in a mm-scale length and a high-

gradient acceleration stage with meter-scale length. Ideally, the stage length stageL  is limited 

by the pump depletion length pdL  for which the total field energy is equal to half the initial 

laser energy. For a Gaussian laser pulse with the pulse length 1p Lk   , the pump depletion 

length is given by 
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 . (37) 

In laser wakefield accelerators, accelerated electrons eventually overrun the acceleration 

phase to the deceleration phase, of which the velocity is roughly equal to the group velocity 

of the laser pulse. In the linear wakefield regime, the dephasing length dpL  where the 

electrons undergo both focusing and acceleration is approximately given by 
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  (38) 

In the condition for the dephasing length less than the pump depletion length dp pdL L , the 

normalized vector potential should be 0 1.5a  . Setting 0 2a  , the maximum accelerating 

field is max 070.zE E  for 1Lpk   . Assuming the beam-loaded efficiency 0.5b  , the net 

accelerating field becomes 
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With the acceleration stage length approximately equal to the dephasing length 
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the energy gain in the acceleration stage is given by 
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. (41) 

Here we assume the accelerating field zE  keeps constant over the whole stage length 

stage ( / )p c pk L n n . In fact the 2D particle-in-cell simulation shows that the laser pulse 

undergoes self-focusing at the entrance of the plasma channel and propagates over the stage 

length with the energy depletion, leading the average amplitude to be 0/ 1a a   (Nakajima 

et al., 2011). The plasma density will be determined by setting the required beam energy bE  

for the FEL injector linac as 
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E E E E




          
. (42) 

The required accelerator length is given by 

    
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                       
 (43) 

In the operation of the staged LPA, self-focusing of the drive laser and self-injection of plasma 

electrons should be suppressed to prevent the beam quality from deterioration as much as 

possible. These requirements can be accomplished by the LPA operation in the quasilinear 

regime, where the laser spot size is bounded by conditions for avoiding bubble formation, 
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2
01 /4 2

p Lk r a

a



, (44) 

and strong self-focusing, 

 
 2

0
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32

p LL

c

k r aP

P
  , (45) 

where     2 5 2 2 22 / / 17 / GWc L p c pP m c e n n    is the critical power for relativistic self-

focusing. These conditions put bounds to the spot size 

 2.4 4p Lk r   for 0 2a  . (46) 

For a given spot radius 
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, (47) 

the peak laser power LP  becomes 
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. (48) 

With the FWHM pulse duration L  given by 

  
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  , (49) 
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the required laser pulse energy LU  is calculated as 
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. (50) 

3. Beam dynamics in laser-plasma accelerators 

3.1 Betatron oscillation 

Beams that undergo strong transverse focusing forces 2 2F mc K x    in plasma waves 

exhibit the betatron oscillation, where x  is the transverse amplitude of the betatron 

oscillation. From the axial and radial fields, Eqs. (21) and (22), driven by the Gaussian pulse , 

the focusing constant K  is given by 

 

 
2

2
2
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4
sin

p z

p L

k E
K

Ek r
 , (51) 

where sin  is set to be the average value over the dephasing phase max0     , where 

max is the maximum dephasing phase at the acceleration distance stageL , i.e. 

  max stage2 dpL L  . The envelope equation of the rms beam radius r is given by 
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2 2 3

0r n
r

r

d K
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 
  

   , (52) 

where 0n  is the initial normalized emittance (Schachter, 2011). Assuming the beam energy 

  is constant, this equation is rewritten as 

 
2 2
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2
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d
C

dz

    , (53) 

where 2K  is the focusing strength and 2 2 2 2 2
0 0 0 02 / 2 2 /r r n rC         is the 

constant given by the initial conditions  0 0
/r r z

d dz 


   and  0 0r r  . Thus the beam 

envelope is obtained as 
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where 
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The beam envelope oscillates around the equilibrium radius r C   with the 

wavelength 2 k   , where 2 k    is the betatron wavelength. For the condition 

02 nC     that leads to 2
0 02 /r n   with 0 0r   , the beam propagates at the 

matched beam radius 
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 (56) 

Consider the betatron oscillation in the wakefields given by Eqs. (26) and (27), driven by the 
super-Gaussian pulse. The focusing force is written as 
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2 sin
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z
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L

Er
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



  , (57) 

where zE  is the peak amplitude of the accelerating field. For Lr r , the equation of 

betatron oscillation is given by 
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dz 
  , (58) 

where the focusing constant 2K is 
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0
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K k

Er
  (59) 

The envelope equation of the rms beam radius r  is given by 
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Assuming the beam energy   is constant, Eq. (60) leads to 
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where 
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 (62) 

and 
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 (63) 

With  
0

0r z
d dz


 , the equilibrium radius is obtained from setting 2 2 2 0rd dz  as 
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 (64) 

3.2 Betatron radiation and radiative damping 

The synchrotron radiation causes the energy loss of beams and affects the energy spread 
and transverse emittance via the radiation reaction force. The motion of an electron 

traveling along z-axis in the accelerating force zeE  and the radial force reE  from the plasma 

wave evolves according to 

 
RAD RAD

2
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,       ,x x z z z
p

du F du E F
K x k

cdt cdt Emc mc
      (65) 

where RADF is the radiation reaction force and / em cu p  is the normalized electron 

momentum. The classical radiation reaction force (Jackson, 1999) is given by 
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u , (66) 

where  1/221 u   is the relativistic Lorentz factor of the electron and 

  242
6.26 10 s

3
e

R

r

c
    (67) 

Since the scale length of the radiation reaction Rc  is much smaller than that of the betatron 

motion, assumming that the radiation reaction force is a perturbation and z xu u . the 

equations of motion Eqs. (65) are approximately written as 
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   (68) 

Finally the particle dynamics is obtained from the following coupled equations, 
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   , (69) 

and 

 2 4 2 2

0

z
p R

Ed
c K x

dt E

     . (70) 

The particle orbit and the energy are obtained from the coupled equations, Eqs. (69) and 

(70), describing the single particle dynamics, which can be solved numerically for specified 

focusing and accelerating fields. 
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The radiative damping rate is defined by the ratio of the radiated power 
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to the electron energy as 
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For the betatron oscillation of a matched beam in the plasma wave, the damping rate is 
given by 
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where 2 2
02 xx   is an average over the beam particles. Assuming the damping time is 

slow compared to the betatron oscillation 

  
33 3

23 22 2
0 0 1R r R r

p
p p

K
cK k

ck kcK 

 


 
   




  
 
 
 
 

    , (74) 

and 2 2
0p z RE E c K   the analytical expression for the mean energy and the relative 

energy spread are obtained by solving Eqs. (69) and (70) with the initial energy 0  and the 

initial energy spread 0  (Michel et al., 2006), 
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and 
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. (76) 

For   0 0/ / 1p zt E E   , Eq. (76) is approximated to 
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Initially the energy spread decreases linearly with time due to acceleration and for later 

times,  2 2 2 2
0 0/t     , the energy spread increases due to the radiative effects. The total 

energy loss due to the synchrotron radiation is given by 
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where f  is the final beam energy and 
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The energy spread at f becomes 
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Assuming the first term that means an adiabatic decrease of the energy spread is neglected 
in comparison with a radiative increase given by the second term, the energy spread leads to 
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4. Design considerations on a laser-plasma X-ray FEL 

4.1 A design example for 6 GeV LPA-driven X-ray FEL 

4.1.1 Requirements for emittance and energy spread 

The SASE FEL driven by an electron beam with energy   requires the transverse 

normalized emittance 

 n X  , (81) 

where X is a FEL wavelength of radiation from the undulator with period u , 
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, (82) 

and uK  is the undulator parameter with the magnetic field strength on the undulator axis uB , 
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    0.934 cm Tu u uK B . (83) 

For lasing a hard X-ray region 0.1 nmX  (the photon energy photon 12.4 keVE  ) from the 

undulator of 2 cmu   with the magnetic field of 0.5 TuB  ( 0.934uK  ) at the beam 

energy 6 GeVbE  ( 41.2 10   ), the normalized emittance should be 1.2 m radn  . In 

addition , it is essential for SASE FELs to inject electron beams with a very high peak current 

of the order of 100 kA. This requirement imposes a charge of ~ 200 pC on the LPA design in 

the case of accelerated bunch length of 2 fs. Eq. (36) determines the operating plasma density 

to be 17 310  cmpn  for 1p rk    and 0.5b  . The matched beam condition Eq. (56) for a 

given initial normalized emittance 0n  imposes an allowable linear focusing strength, 
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where iE  is the injection energy. For 0 1p rk   , 100 MeViE  and 17 310  cmpn  , a given 

emittance 0 1 m radn   leads to 3105pK k  , which limits the injection phase to be 
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For 3p Lk r   and 0 0.5zE E  , the injection phase angle should be 00 0.006    . In the 

case of the mismatched beam with a finite energy spread, different particles will undergo 

betatron oscillations at different frequencies, 1/2
   , which will lead to decoherence 

that is a slippage of the particles with respect to each other, and then to emittance growth 

until the emittance reaches the matched value. This emittance growth rate (Michel et al., 

2006) is given by 
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Without the betatron radiation, the evolution of the transverse emittance can be 

approximately calculated from 
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For 2 28 1t  , 
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where z is the acceleration distance and   0p pk z v t      is the aceleration phase. 

Considering the energy spread, 

0

0
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, and 0
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z
p
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k z

E
   , 

the normalized emittance becomes 
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Setting 0n n  at stagez L  and f  , the initial relative energy spread is limited to 
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 (90) 

For 0 1p rk   , 3p Lk r  , 6 GeVbE  and 100 MeViE  , the allowable energy spread scales as 
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For the super-Gaussian drive pulse, as the betatron frequency is dependent on the 

oscillation amplitude as 
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with the matched beam radius Eq. (64), the normalized emittance is 
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For 2n  , Eq. (93) becomes the Gaussian pulse case given by Eq. (89). The allowable energy 

spread for the super-Gaussian pulse is given by 
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For 0 1p rk   , 3p Lk r  , 6 GeVbE  , 100 MeViE   and 4n  (6), 
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 (95) 

The super-Gaussian wakefields mitigate the emittance growth due to mismatching of the 
injected beam. 

In order to reach the X-ray wavelength 0.1 nmX  using the undulator with 2 cmu  , 

the maximum beam energy bE  is set to be 6 GeV. The accelerator stage length becomes 

stage dp0.4 m 0.43L L  where the accelerating field is 15 GV/mzE   at the operating 

plasma density 17 31 10  cmpn   . Setting the injection phase 0 0  , the acceleration 

distance corresponds to the dephasing phase 
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Scanning the electron beam energy in the range from 1.2 GeV to 6 GeV can allow the FEL to 

cover the X-ray wavelengths 0.1 nm 2.5 nmX  ( photon496 eV 12.4 keVE  ). 

The FEL operation is characterized by the FEL Pierce parameter (Bonifacio, 1984), 
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, (97) 

where bI  is the beam current, 17 kAAI   is the Alfven current, r is the r.m.s transverse 

size of the electron bunch, and the coupling factor is 1uA   for a helical undulator and 

   0 1uA J J    for a planar undulator, where  2 24 1 2u uK K    and 0J  and 1J  are 

the Bessel functions of the first kind. For 2 cmu  , 0.934uK  and 0.92uA  , assuming 

the average beta function in the undulator 1 mu  , the FEL parameter can be obtained 

as 
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The gain length gainL  that is the e-folding length of the exponential amplification of the 

radiation power is 

 gain
FEL2 3

uL


 
  (99) 

The saturation length is set to be sat gain FEL(10 15) uL L    , at which the saturation 

power is approximately sat FEL b bP I E . Accordingly the spectral band width is 
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FEL1 uN  , where uN  is the number of undulator periods. Assuming a bunch duration of 

2 fsb  , the beam current scales as 
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, (100) 

for 1p rk    and 0 0.5zE E  . With stage 0.4 mL  , the beam energy scales as 
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The required emittance for SASE FEL is 
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for 2 cmu  , 0.934uK  . Accordingly the FEL parameter scales as 
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and the relative energy spread requirement for the SASE FEL is given as 

 FEL
 


 . (104) 

4.1.2 Numerical studies of betatron radiation effects 

According to Eq. (80), we estimate the energy spread growth due to the betatron radiation 

from the electron beam accelerated in the wakefields from the injection energy 

100 MeViE  ( 200i  ) to 6 GeVbE  ( 41.2 10f   ) for 0 0.5zE E  , 0 1p rk   , 

3p Lk r  and sin 1 2   as 
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, (105) 

which is much smaller than FEL . For avoiding the normalized emittance growth due to the 

betatron oscillation, setting the initial energy spread 0( ) 1 %    adiabatically decreases 

to be FEL( ) 0.02 %f    after accelerated up to 6 GeV. 

The degradation of the energy spread and the emittance due to betatron radiation effects is 

investigated by solving the coupled equations, Eqs. (69) and (70), describing the single 

www.intechopen.com



 
Laser-Driven Table-Top X-Ray FEL 

 

137 

particle dynamics. We have solved them numerically for the case of the aforementioned 6 

GeV LPA. Using the numerical results for a set of test particles that can be solved for the 

initial conditions corresponding to the initial energy, energy spread and transverse 

emittance, an estimate of the underlying beam parameter can be calculated as an ensemble 

average over test particles; for example, the mean energy is given by 

 /i p
i

N    , (106) 

where i  is the energy of the i th particle and pN  is the number of test particles, and the 

energy spread is defined as 

 
2 2 2
        . (107) 

The normalized transverse emittance is calculated as 

 
2 2 2 2( ) ( ) ( )( )nx x x x xx x u u x x u u                    , (108) 

where /xu dx cdt , with averaging over the ensemble of particles. The single particle 

equations of motion, Eqs. (69) and (70), are integrated numerically using the Runge-Kutta 

algorithm. We have carried out numerical calculations for an ensemble of 410pN   

particles for the parameters of the 6 GeV LPA operated at 17 31 1 c0 mpn   as shown in 

Table 1. 

The results of our numerical calculations are shown in Fig. 1 together with the analytical 

estimates for   and /   , calculated from Eqs. (75) and (76). The numerical calculations 

are in excellent agreement with the analytical expressions. The relative energy spread in the 

beginning decreases linearly in time due to the linear increase of the zeroth order mean 

energy. For the numerical calculations the final value is 4
numerical( / ) 1.7 10       at the 

end of the stage, while the analytical estimate calculates 4
analytical( / ) 1.7 10      . The 

   increases almost linearly in time and reaches a final value of 41.2 10  for both the 

analytical and the numerical calculations after the LPA stage, which corresponds to an 

electron energy of 6 GeV. Since the radiative effects are negligibly small as estimated from 

Eq. (105), the emittance is well conserved over the LPA stage, where the matched beam is 

injected. In Fig. 1, an analytical estimate of the emittance evolution is given by 
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where   p nxk    is the dimensionless normalized emittance at  , 0 0( )   , 

0zE E  , 1 2
pK k  , ld  is the linear damping energy, at which the emittance damps to 

0 1 e   , 
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and nd  is the nonlinear damping energy, given by 
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Fig. 1. The results of the beam dynamics calculations for the 6 GeV LPA at the operating 

plasma density 17 31 1 c0 mpn   : (a) mean energy, (b) relative energy spread and (c) 

normalized transverse emittance over the stage length 0.4 m for the initial energy 100 MeV, 

initial energy spread of 1%, initial normalized emittance 1.2 m rad, and constant 

accelerating field 15 GV/mzE  . The dashed curves show the numerical calculations, while 

the solid curves show the analytical expressions Eqs. (75) and (76) for mean energy and 

relative energy spread, and Eq. (109) for normalized emittance, respectively. 
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.  (111) 

For the given parameters 0.5  , 0.37  and 0 1.2 m radn  at 17 310  cmpn  , the 

linear damping energy is 11
ld 1.3 10   (66 PeV), while the nonlinear damping energy is 

8
nd 1.5 10  (75 TeV). 

4.1.3 Attainable peak brilliance of the laser-driven X-ray FEL 

In the saturation regime, the photons flux of X-ray radiation is 

 26 1
photon FEL

photon

4.4 10 sb bE I
N

E e
        (112) 

for 6 GeVbE  , phton 12.4 keVE  ( 0.1 nmX  ) , FEL 0.0025  and 58 kAbI  . Thus the 

peak brilliance can be obtained as 
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. (113) 

This peak brilliance is comparable to large-scale X-ray FELs based on the conventional linacs 
(Ackermann et al., 2007). 

The parameters of the required drive laser pulse can be obtained from Eq. (47)-(50) for 

0 1.4a  , 1p Lk   , 3p Lk r   and 17 31 10  cmpn    as follows: the laser spot radius is 

51 mLr  , the peak laser power is 171 TWLP  , the pulse duration is 93 fsL   and the 

laser pulse energy is 16 JLU   at the laser wavelength 0.8 mL  . It is necessary for laser-

plasma accelerators to propagate ultraintense laser pulses with peak power of the order of 

200 TW over the single stage distance of the order of 0.4 m at repetition rate of 10 Hz. Stably 

propagating laser pulses through the plasma channel with a parabolic density profile 

  
2

2p
ch

r
n r n n

r
   , (114) 

where n  is the density depth at the channel radius chr , requires that its spot radius Lr  

should be equal to the matched radius 
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For this condition, the density depth of plasma channel is given by 
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where  21 /c e Ln r r   is the critical channel depth (Sprangle, 1992). 

The design parameters of a table-top X-ray FEL driven by the 6 GeV LPA are summarized 

for a wavelength of 0.1 nmX   in Table 1. 
 

Electron beam parameters

Beam energy bE 6 GeV

Peak beam current bI 58 kA

Energy spread (rms)   0.02%

Pulse duration b 2 fs

Normalized emittance n mm mrad

Laser-plasma accelerator parameters

Plasma density pn 17 31 10 cm
Plasma wavelength p 106 m
Channel depth at Lr c pn n 0.44

Accelerating field zE 15 GV/m

Injection beam energy iE 100 MeV

Stage length stageL 40 cm

Charge per bunch bQ 116 pC

Laser wavelength L 0.8 m
Normalized laser intensity 0a 1.4

Laser pulse duration L 93 fs

Laser spot radius Lr 51 m
Laser peak power LP 171 TW

Laser pulse energy LU 16 J

Undulator parameters

Undulator period u 2 cm

Undulator parameter uK 
FEL parameter FEL 
Gain length gainL 73.5 cm

Saturation length satL 8 m

X-ray parameters 

Wavelength X 0.1 nm ( phton 12.4 keVE  )

Photon flux photonN 26 14.4 10  s
Peak brilliance peakB 32 2 24.4 10 photons/s mm  mrad  0.1%BW     

Table 1. The design parameters of a table-top X-ray FEL driven by a laser-plasma-based 
accelerator. 
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4.2 A high-quality electron beam injector 

4.2.1 Self-injection in the bubble regime 

Most of LPA experiments that successfully demonstrated the production of quasi-

monoenergetic electron beams with narrow energy spread have been elucidated in terms of 

self-injection and acceleration mechanism in the bubble regime (Kostyukov et al. 2004; Lu et 

al., 2006). In these experiments, electrons are self-injected into a nonlinear wake, often referred 

to as a bubble, i.e. a cavity void of plasma electrons consisting of a spherical ion column 

surrounded with a narrow electron sheath, formed behind the laser pulse instead of a periodic 

plasma wave in the linear regime. Plasma electrons radially expelled by the radiation pressure 

of the laser form a sheath with thickness of the order of the plasma skin depth / pc   outside 

the ion sphere remaining unshielded behind the laser pulse moving at relativistic velocity so 

that the cavity shape should be determined by balancing the Lorentz force of the ion sphere 

exerted on the electron sheath with the ponderomotive force of the laser pulse. This estimates 

the bubble radius BR  matched to the laser spot radius Lr , approximately as 

 02p B p Lk R k r a  , (117) 

for which a spherical shape of the bubble is created. This condition is reformulated as 

 

1 3

0 2
c

P
a

P

 
 
 

 , (118) 

where 2 2
017( / ) GWc pP    is the critical power for the relativistic self-focusing (Lu et al., 

2006). The electromagnetic fields inside the bubble is obtained from the wake potential of 

the ion sphere moving at the velocity Bv  as 
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where Bz v t    is the coordinate in the moving frame of the bubble and r  the radial 

coordinate with respect to the laser propagation axis (Kostyukov et al. 2004). One can see 

that the maximum accelerating field is given by 2 2
max / 2z p BeE mc k R  at the back of the 

bubble and the focusing force is acting on an electron inside the bubble. Assuming the 

bubble phase velocity is given by 
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where 2 2
etch /p Lv c   is the velocity at which the laser front etches back due to the local 

pump depletion, the dephasing length leads to 
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Hence the electron injected at the back of the bubble can be accelerated up to the energy 
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Using the matched bubble radius condition, the energy gain is approximately given by 
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where 2 5 2/ 8.72 GWrP m c e  (Lu et al., 2007). 

The 2D and 3D particle-in-cell simulations confirm that quasi-monoenergetic electron beams 

are produced due to self-injection of plasma electrons at the back of the bubble from the 

electron sheath outside the ion sphere as the laser intensity increases to the injection 

threshold. As expelled electrons flowing the sheath are initially decelerated backward in a 

front half of the bubble and then accelerated in a back half of it toward the propagation axis 

by the accelerating and focusing forces of the bubble ions, their trajectories concentrate at 

the back of the bubble to form a strong local density peak in the electron sheath and a spiky 

accelerating field. Eventually the electron is trapped into the bubble when its velocity 

reaches the group velocity gv  of the laser pulse. The trapping cross section (Kostyukov et al. 

2004) 
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with the sheath width d  imposes 02 8p Bk R a  , i.e. 0 2a   for the matched bubble 

radius. Once an electron bunch is trapped in the bubble, loading of trapped electrons 
reduces the wakefield amplitude below the trapping threshold and stops further injection. 
Consequently the trapped electrons undergo acceleration and bunching process within a 
separatrix on the phase space of the bubble wakefield. This is a simple scenario for 
producing high-quality monoenergetic electron beams in the bubble regime.  

However, in most of laser-plasma experiments aforementioned conditions and scenarios are 

not always fulfilled. In the experiment for the plasma density 19 3(1 2) 10  cmpn    , 

observation of the self-injection threshold on the normalized laser intensity gives 0th 3.2a   

after accounting for self-focusing and self-compression that occur during laser pulse 

propagation in the plasma. In terms of the laser peak power 
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the self-injection threshold for the power ( / ) 12.6c thP P   as the laser spot size reduces to 

the plasma wavelength due to the relativistic self-focusing (Mangles et. al, 2007). In the 
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experiment at 18 3(3 5) 10  cmpn    , the self-injection threshold is th( / ) 3cP P  , 

corresponding to 0th 1.6a  (Froula et al., 2009). 

4.2.2 A design example of self-injection bubble-regime LPA 

We study the production of high-quality electron beams by means of the particle-in-cell 
(PIC) simulations for the self-injection. We have confirmed the qualities of accelerated 
electron beams with the r.m.s. energy spread less than 1%, the normalized transverse 
emittance of the order of a few mm mrad  and the r.m.s. bunch duration of the order of 1 
fs. These parameters can satisfy the criteria of the electron beam injector that are required for 
X-ray FELs. 

The self-injection electron beam production has been investigated by the 2D PIC simulation 

code VORPAL (Nieter et al., 2004), using the 2D moving window, of which the size is 
283.5 120 m and the number of simulation cells is 1472 320 , assuming H immobile 

ions and 4 electrons per simulation cells. The laser pulse of the wavelength 0.8 mL   is 

focused on a spot size 20 mLr  , so that the peak normalized vector potential becomes 

0 3a  . Initially the laser pulse is located at 0 mmz  and after approximately 1.7 pst  , it 

moves at the focal point 0.5 mmz  distant from the plasma edge. The transverse electron 

density forms a parabolic radial profile, given by Eq. (114). In this simulation, we set the on-

axis plasma density and the density depth to be 18 32 10  cmpn    and 0.3 pn n  , 

respectively. The longitudinal electron density and +H  ion density of the plasma increase 

along with laser propagating axis from 0 mmz   to 0.5 mmz  and are constant over the 

rest of the simulation distance. The simulation has been carried out for the FWHM pulse 

duration 27,  35, 38, and  40 fsL  . For each pulse duration, two bunches are trapped and 

accelerated as follows: the higher energy bunch with narrow energy spread is trapped and 

accelerated in the first bucket of the wake, while the lower energy bunch with large energy 

spread is trapped to the second bucket of the wake. Figure 2 shows the energy spectrum of 

accelerated electron bunch for 38 fsL  at 2.9 mmz  , where the first bunch reaches the 

maximum energy and the minimum energy spread. 

 

Fig. 2. The 2D PIC simulation results of the self-injected laser wakefield acceleration in the 

plasma channel for 0 3a  , 38 fsL  , 20 mLr  , 18 32 10  cmpn   and 0.3c pn n  : (a) the 

energy spectrum and (b) the phase space distribution of accelerated electrons at 9.6 pst  . 
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The beam parameters such as the bunch energy, the energy spread, the charge, the 

normalized emittance and the bunch length of the first bucket are investigated as a function 

of the laser pulse duration, when the bunch energy reaches the maximum value, for which 

the bunch has travelled approximately the dephasing length. For the optimum pulse 

duration, we obtains the best beam parameters characterized by the energy 283 MeVbE  , 

the r.m.s. relative energy spread / 0.5 %E bE  , the normalized emittance 

2.2 mm mradn  , the r.m.s. bunch length 0.38 mb  (1.3 fs) and the peak beam current 

15 kAbI  , when a drive laser pulse with the peak power 120 TWLP  ( 0 3a  ) and pulse 

duration 38 fsL  is focused at the spot radius 20 mLr  into the entrance of the plasma 

channel with the channel depth / 0.3pn n  . These electron beam parameters satisfy 

requirements for the table-top soft X-ray FEL capable of generating a 10 GW-class saturation 

power at the radiation wavelength of 13.5 nm (92 eV photon energy) using a 1.1-m long 

undulator with 5-mm period and the 1-Tesla magnetic field that give the undulator 

parameter 0.465uK  ( Nakajima, 2011). 

In practical applications, high-quality beams from laser-plasma injectors are transported and 
injected to the undulator or the next LPA stage through a beam transport system. We 
consider the compact beam transport system for focusing the above-mentioned accelerated 
electron beam into the next accelerator stage or the miniature undulator for the soft X-ray 
FEL. The design has been studied using TRACE3D (Crandall & Rusthoi, 1997), which is an 
envelope code based on a first-order matrix description of the transport. The focus system 
consists of four permanent-magnet-based quadrupoles (PMQs), arranged in the defocus-
defocus-focus-focus lattice configuration. The simulation results of TRACE3D are shown in 
Fig. 3, where the electron bunch is transported from the left to the right for the 
aforementioned beam parameters. 

 

Fig. 3. TRACE3D simulation result of the electron beam transporting through the PMQ 

focus system for the beam energy 283 MeVbE  , the normalized emittance 

2.2 mm mradnx ny    , the relative energy spread / 0.5 %E bE  , the bunch duration 

1.3 fsb   and the beam current 15 kAbI  . 

The field gradient of the two dimensional Halbach-type PMQ (Lim et al., 2005) is given by 
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where rB  is the tip field strength, ir  is the bore radius and 0r  is the outer radius of the 

PMQ. With 2 TrB   and 3 mmir  , and 0 12 mmr  , we can obtain the field gradient 
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500 T/mB  . In this simulation, we assume the parameters of the PMQs as follows: for 

PMQ1 and PMQ2, the field gradient 600 T/mB   and for PMQ3 and PMQ4, 

500 T/mB  . All PMQs have the same permanent-magnet geometry, i.e. 3 mmir  , 

0 12 mmr   and the length of 20 mm. Since the electron beam only with the energy 

283 MeVbE  from the LPA located at the position 0 mmz   focuses on the horizontal and 

vertical r.m.s. beam sizes of 5.6 mx  and 6.9 my  , respectively, at the position 

400 mmz  , the second bunch with the lower energy 120 MeVbE  and the larger energy 

spread overfocuses on the plane at 400 mmz  . Hence, we can tune the beam energy of the 

focus system so as to discriminate the first bunch with high energy and high qualities from 

the second bunch with low energy and less qualities. 

5. Stability control of laser-plasma acceleration 

Many of applications require the stability of the beam parameters as well as their qualities. 
In particular, the stability issue is crucial for the X-ray FEL relying on the SASE mechanism. 
The stability of the laser system itself is very important for achieving stable LPAs (Hafz et 
al., 2008). However, up to date there is no conclusive proposal for stabilizing the production 
of electron beams from LPAs at the low plasma densities which are relevant to GeV 
energies. Here we show the effect of laser pulse skewness (asymmetry) on minimizing the 
electron beam pointing angle in the weakly-nonlinear laser wakefield accelerator operating 
at the low densities in a gas jet target. 

5.1 Experiment for stabilizing electron beam production 

5.1.1 Setup and parameters 

The experimental setup is described as follows. A laser beam from a titanium sapphire 

system had, after compressor, the energy of ~ 0.9 J per pulse. The laser pulses are delivered 

to a target chamber and focused above a 4-mm long supersonic helium gas jet by using a 

focusing optic having F-number of 22 that focuses the laser pulse on the FWHM spot size 

0 23 1 mw   in vacuum. The gas jet stagnation pressure is ~ 1 bar and the laser is focused 

at the height of a few millimeters above the nozzle, where the gas density is in the range of 
17 18 310 10  cm . Therefore the expected wavelength of the wakefield is in the range 

30 100 mp   . The electron beam pointing angle is detected by using a LANEX Kodak 

phosphor screen which is located at the distance of 78.5 cm from the gas jet. The LANEX is 

imaged onto an intensified charge-coupled device located near the interaction chamber in a 

radiation shielded area (Hafz et al., 2008). In order to obtain temporally-asymmetric laser 

pulses, the distance between two gratings of the pulse compressor is detuned from its 

optimum value which produces the shortest (37 fs) and symmetric pulses. The temporal 

pulse shape is measured by using a spectral phase interferometer for direct electric field 

reconstruction (SPIDER) device. Of interest is the negative detuning (positive chirp) which 

produces fast rise time laser pulses. Through negative detuning values from 0 to 250 µm, the 

laser pulse asymmetry increases and its length increases from 37 fs to 74 fs. In this range, the 

laser intensity is in the range 17 18 27.5 10 1.46 10  W/cm   , corresponding to the 

normalized vector potential of the laser pulse in the range 0 0.59 0.83a   . Therefore, this 

experiment is characterized roughly with the parameters 0 1a   and 0L pc w   . 
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5.1.2 Results 

In the following, the reference direction for the electron beam pointing angle is the laser 

beam direction itself. At first, we set the laser compression to optimum (no detuning), so 

that the laser intensity is 18 2~ 1.46 10  W/cm . The helium gas jet backing pressure is 1 bar 

and the interaction point is located at 1 mm height to the nozzle. At this height the gas 

density is 18 3~ 1 10  cm . With those interaction conditions, the probability of observing an 

electron beam is as low as 1% or lower. However, the situation dramatically changes by 

detuning the compressor grating distance toward negative values. At a detuning distance of 

-100 µm the electron beam started to appear, however, the beam pointing angle is as large as 

± 40 mrad. (The ± sign here means the direction of deflection angle with respect to the laser 

reference. In what follows we will remove the ± sign for simplicity). By changing the 

detuning distance to –200 µm the electron beam pointing angle is improved to 25 mrad and 

to 15 mrad at the detuning of –300 µm. Then the electron beam pointing angle has increased 

again to 25 mrad by increasing the detuning to –500 µm. In this experiment, the electron 

beam pointing in the vertical direction is smaller than that in the horizontal one. At laser 

height of 1.75 mm to the nozzle position, we notice that the electron beam pointing angle is 

improved to 8.5 and 10 mrad for the detuning distances of –200 and –400 µm. The electron 

beam pointing angle (horizontally and vertically) has been dramatically reduced to 2 mrad 

at a laser height of 3.25 mm where the gas density is in the range of 17 310  cm . Each data 

point is an average of 10 successive shots. From these data we can conclude that a detuning 

distance of –200 through –250 µm and the height of 3.25 mm are almost the optimum 

conditions for producing the smallest electron beam pointing angles. It should be noted that 

for this detuning range the laser intensity is in the range of 17 27.5 9 10  W/cm . More 

precise scanning for the grating detuning distance at a fixed laser height of 3.25 mm shows 

an interesting result as illustrated in Fig. 4. For this height and at zero detuning, the electron 

beam pointing angle is severely large ~100 mrad and the beam generation reproducibility is 

~50%. Again, within the grating detuning range from –200 to –300 µm the electron beam 

pointing angle reaches its minimum value at 2 mrad. In addition, the electron generation 

reproducibility is almost 100%, and the electron beam charge is ~30 ±10 pC as measured by 

an integrating current transformer. The data points of Fig. 4 are averages over hundreds of 

successive laser shots except for those at 0 or positive detuning values where the electron 

beam production is null or extremely rare. 

Finally, we measured the electron beam energy by using a bending dipole magnet (H-

shaped) which had a uniform magnetic field intensity of 0.94 Tesla and a longitudinal length 

of 20 cm (Hafz et al., 2008). The distance from the gas jet to the magnet entrance is ~1.5 m 

and the LANEX is located at 25 cm from the end of the magnet. Between the gas jet and 

magnet we installed 1-m long helical undulator with 0.5 T magnetic field and 2.4 cm period 

for generating a synchrotron radiation. The distance from the gas jet to the undulator is 30 

cm, and the inner diameter of the undulator tube is 9 mm. Thus an electron beam from the 

gas jet must enter the undulator, propagate through it and then enter the dipole magnet 

region which bends the beam into the LANEX screen. The measured electron beam have a 

quasi-monoenergetic energy peak at ~ 165 MeV. This article is focused on minimizing the 

fluctuation of the electron beam pointing angle, thus our results are crucial for on-going 

www.intechopen.com



 
Laser-Driven Table-Top X-Ray FEL 

 

147 

world-wide experiments on compact free-electron laser and undulator radiation using 

intense laser irradiated gas jets as a compact electron beam accelerator (Hafz et al., 2010; 

Nakajima, 2008). 

 

Fig. 4. Electron beam pointing angle versus detuning distance at the optimum height of 3.25 
mm above the gas jet nozzle. 

6. Conclusion 

We have worked out the design considerations of a compact X-ray FEL that can reach the 

wavelength of 0.1 nm corresponding to the hard X-ray with photon energy of 12 keV. The 

system consists of a cm-scale 100 MeV-class electron beam injector, a 0.4-m long PMQ-based 

transport beam line , a 0.4-m long 6 GeV LPA linac and a 8-m long undulator. Including a 

100 TW-class table-top laser system and an application space for the coherent X-ray 

research, main system can be installed within a 10-m long, 2-m wide space. The present 

considerations are based on the current achievements of laser-plasma accelerators and 

currently available technologies on drive lasers and undulators, for which we have not 

assumed new technologies and developments as well as new physics concepts on FEL. In 

this context, the present design of the hard X-ray FEL would be rather conventional and 

therefore it may be materialized in a near term at a reasonably low cost, guaranteeing the 

performance comparable to large-scale X-ray FELs. Harnessing miniature undulators with 

period of 5 mmu   (Grüner et al., 2007; Eichner et al., 2007) may make the required 

saturation length shorter by a factor of 3, i.e. a 2.5-m long undulator, and the required 

electron beam energy becomes approximately half, i.e. 3 GeVbE  , for a 0.1 nm X-ray 

wavelength, assuming the saturation length scales as 5 6
sat uL   with 1 2

u  and the LPA 

is operated at the same plasma density. This option may turn out a whole system to be on a 

3-m long table top under the condition of trading off requirements for further high-quality, 

high-stability electron beam production from the LPAs.  

Another way to build X-ray FELs on a table top is to produce the interaction between an 
electron beam and a laser pulse via coherent Thomson scattering or Compton scattering 
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(Bonifacio, 2005; Smetanin & Nakajima, 2004), where intense laser fields are used as an optical 
undulator or a laser wiggler/undulator that replaces the magnetic undulator field to the laser 
field with 3~4 orders magnitude shorter wavelength. Combining laser-plasma accelerated 
electron beams with laser undulators leads to further compact X-ray FELs, which have been 
recently proposed as all-optical-free electron lasers (Petrillo et al, 2008). However, these 
options must satisfy harsh requirements in terms of beam current, emittance, energy spread 
and stability of both laser and electron beams. We would like to expect further research and 
future progress in this new approach to a compact X-ray FEL using laser-plasma accelerators. 
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