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1. Introduction   

The use of technologies related to combustion of coal in fluidized bed combustors (FBCs) 
present attractive advantages over conventional pulverized coal units. Some of the 
outstanding characteristics are: excellent heat transfer, low emission of contaminants, good 
combustion efficiencies and good fuel flexibility. However, FBC units can suffer materials 
deterioration due to particle interaction of solid particles with the heat transfer tubes 
immersed on the bed (Hou, 2004, Oka, 2004, Rademarkers et al., 1990). Among other issues, 
some of the most important factors believed to cause wear problems are: the motion of 
slowly but relatively coarse particles, particles loaded onto the surface by other particles, 
erosion by relatively fast-moving particles associated with bubbles, and abrasion by blocks 
of particles thrown into the surface by bubble collapse. Thus, erosion or abrasion processes 
can occur by a variety of causes. For the case of particle movement against in-bed surfaces, it 
has been suggested that there is no difference in the ability to cause degradation between 
solid particle erosion and low stress three body abrasion, and distinctions between the two 
forms of wear should not to be made (Levy, 1987). 

1.1 The most commons types of FBCs 

On applications such as steam and power generation, the most important types of FBCs are: 
1) the atmospheric fluidized-bed combustor (AFBC). The superficial air velocity is between 1 
and 3 m s-1, to give a “bubbling bed”(Highley & Kaye, 1983); 2) The pressurized fluidized-
bed combustor (PFBC). Here, the unit is operated at elevated pressure (from 6 up to 40 bar), 
and the main purpose is to expand the combustion products in a gas turbine to generate 
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electricity through steam rising. Therefore, a higher efficiency of electricity generation is 
possible than that from either a gas or steam turbine plant alone (Howard, 1989); 3) the 
circulating fluidized-bed combustor (CFBC). In this system, the velocity of the fluidizing gas 
is significantly higher, being of a typical value about 5  m s-1 to 10 m s-1 than in the two 
previous systems. Fig. 1 shows a schematic diagram of the various FBC´S systems 
(Rademarkers & Ketunen, 1986). 

1.2 Wastage problems in FBCs 

Earlier studies on material behavior in FBCs suggested that wastage by particulate erosion 
did not represent a potential problem. A report considerer very unlikely that wastage would 
be a serious problem as the particle impact velocities are low, generally less than 5 m s-1, 
(Mezko, 1977). Another study confirmed the above observations, since in their FB unit they 
did not found evidence of wastage on the in-bed tubes (Beacham & Marchall, 1979). 
However, despite the general good signs expressed above, since the early eighties, material 
wastage has been a recurrent problem in bubbling fluidized-bed combustors (AFBC and 
PFBC) throughout the world. For instance, wear rates of about 1 mm per 1000 h for in-bed 
tubes have been reported in a Chinese unit (Zhang, 1980). In the USA, observations of 
wastage of the in-bed tubes in several combustors have been reported (Kantesaria & 
Marchall, 1983, Montrone, 1983). In the UK, high wastage has been reported from the 
Grimethorpe plant, where wastages rates up to 1.7 mm per 1000 h were recorded on 
evaporator tubes (Anderson et al. 1987). 

1.3 Wear characteristics 

It is not clear to what extent materials wastage can be attributed to mechanical phenomena 

such as erosion and/or abrasion by the fluidized bed particles (Stringer & Wright, 1987). 

Some of the most important factors believed to cause problems are: a) erosion by relatively 

slowly moving, but relatively coarse particles; b) wear by particles loaded onto the surface 

by other particles; c) erosion by relatively fast-moving particles associated with bubbles; d) 

intrinsic fast particles in the bed (apart from the fast particles in the bubble wakes); e) 

erosion by fast moving particles immediately above the bed in the splash zone; f) erosion or 

abrasion associated with long range patterns; g) erosion induced by in-bed jets; h) abrasion 

by blocks of particles thrown  into the surface by bubble collapse and i) wastage induced by 

the presence of geometrical irregularities 

The wastage modes within a bed are not well understood because some of the above causes 
can be more closely related to a purely erosion process, for example c), e), f) and g), whereas 
others appears to be more related to a three-body abrasion process, for example b) and h). A 
general representation of the dense and bubble phase on an in-bed surface is presented in 
Fig. 2 (Janson, 1985) 

Frames d) to f) are of interest regarding particle –tube interactions; in d) and e), changes in 
emulsion phase density can occur as conditions change in the fluidized bed, for example, 
fluidization behavior. In e), packing of the emulsion phase against an in-bed tube can be 
seen. Frame f) shows the case where a bubble. With a limited number of particles, is present 
at the bottom of a tube. For in-bed tubes, it is generally accepted that particle impact 
velocities range from 1 m s-1, to 5 m s-1. However, experimental determinations of particle 
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velocities are difficult and rely on cold model studies. For instance, it has been reported that 
the average particle velocity was about 70% of the superficial velocity (Vs), but some 
particles had velocities as high as five times the values of Vs (Boiarski, 1978). Another study 
found that on bubble arrival at the tube surface, the particle velocity increases rapidly and 
streak across the tube surface, at velocities up to 5.6 m s-1(Peeler & Whitehead, 1982). 
Another work found that particles do not move independently but as aggregates, and 
reported expressions giving the particle velocity, Vp, as function of the gas superficial 
velocity and impact angle, in the form (Tsutsumi et al., 1989): 

 

Fig. 1. Most common types of FBCs. 
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 Vp = 3.24 Vs 0.73       (at 450 around the tube) (1) 

 Vp = 1.99 Vs 0.89       (at normal impact angle)    (2) 

As Vs is expressed in m s-1 the first expression (valid at shallow impact angles) predicts a 
particle impact velocity of 3.24 m s-1 at a superficial velocity of 1 m s-1. However, since many 
FBC units typically operate at Vs about 2.5 m s-1, particle velocities of about 6.2 m s-1 can be 
obtained.  

 

Fig. 2. A representation of variations in solid density in fluidized-bed bubble and emulsion 
phases.  
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1.4 Location of maximum wear 

The maximum wear is normally located on in-bed tubes on the bottom half portion of the 

tubes, and appears in two patterns. In one, the wear is a maximum at positions about 200 – 

300 on either side of the bottom, while wear is small or zero at the bottom. The second 

pattern has the maximum wear at the bottom of the tube, decreasing to zero typically at 

about 450. These patterns have been called “Class A” and “Class B” respectively (Stringer & 

Wright, 1987), and have been observed in cold simulations as well as in practical units 

(Anderson et al., 1987, Parkinson et al., 1985, Tsutsumi et al, 1989, Wang et al., 1992). It is 

interesting to note that Class A is related to the angle of impact corresponding to maximum 

wear in erosion of ductile metals. However, cold model studies speculates that, erosion is a 

maximum at normal impact angle, while abrasion is a maximum at about 350 on either side 

of the tube bottom (Wheeldon, 1990). Class B is more typical of the so-called brittle erosion. 

Fig. 3 shows both patterns which have been observed in real combustors. 

 

 

(a)    (b) 

Fig. 3. Wastage patterns found in FBCs indicating with arrows the maximum location of 
wear: a) Class A, b) Class B. 

As was mentioned before, erosion or abrasion (particularly three-body abrasion) on in-bed 
tubes can occur by several causes. To date it is not clear to what extent materials wastage 
can be attributed to phenomena such as abrasion or erosion by the fluidized bed particles, 
and the predominance between erosion or abrasion as main forms of mechanical damage 
remains as an area of discussion. The aim of this work is to assess the effect of impact angle 
and mode of wear in terms of the observed morphologies of the exposed surfaces and 1) a 
dominant abrasion process derived from a simulated fluidized bed environment and 
Rabinowicz theory and 2) an erosion process, using Finnie´s erosion theory. 

2. Experimental procedures 

2.1 Materials 

Cylindrical specimens with typical dimensions of about 6 mm diameter and 24 mm length 

made from mild steel (in normalized condition) and 310 stainless steel (solution treated) 

were used. Table 1 shows the chemical composition (%wt) for the steels. 
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 C S P Si Mn Cr Ni Mo Fe 

Mild steel 0.22 0.03 0.04 0.35 0.72 - - - Bal. 

310 SS 0.15 0.025 0.03 1.5 2.0 25 19 - Bal. 

Table 1. Chemical compositions (%wt) of the steels tested 

Before exposure, the specimens were ground progressively to a final surface finish with 800 

grit SiC paper using water as coolant, immediately rinsed in methanol, degreased with 

acetone and dried in a stream of hot air. The extent of damage to specimens exposed to the 

erosion rig was determined by weight change per unit area measurements using a 

Sartorious microbalance, with a resolution of 10-5 g. 

2.2 Impact angle measurements 

To assess the effect of impact angle on selected specimens after tests, thickness loss 

measurements were carried out using a profilometer system. Basically, the system consist of 

i) a specimen jig and its movement unit; ii) a stylus coupled with a LVDT transducer and iii) 

the acquisition unit. The specimen is positioned in the jig which is rotated horizontally 

about its axis by a stepper motor coupled to a gear box. To perform a measurement, a stylus 

is brought into contact with the specimen surface in a continuous mode, and any vertical 

displacement is taken up by movement of the core of a LVDT transducer with a linear 

displacement range of ± 1 mm and a reproducibility of 1 µm. Before the start of a run, the 

stylus was positioned on the area (trailing edge) that was not exposed to the particles in the 

bed environment, using this as a base line. 

2.3 The fluidized-bed rig 

Experiments were carried out in a fluidized bed (FB) rig, which basically consist of a) a 

fluidized-bed chamber containing approximately 40 % vol. of particles during a test, b) a 

specimen holder system and c) a heating system. Fig 4 shows a schematic of the apparatus 

used. This consists of a light fluidized-bed of particles in which cylindrical specimens are 

rotated in the vertical plane into and out of the bed. For each temperature, a fluidizing 

velocity of 1.3 X Umf (where Umf is the minimum fluidization velocity) was used. 

Depending upon the angular velocity chosen, the linear velocity of the specimens relative to 

the particles is achieved.  

2.3.1 Experimental conditions 

The experimental conditions used were the following: exposure temperatures from 1000C up 

to 6000C, and each test last 24 hours; air as oxidant gas; the particles used were relatively 

angular alumina particles of 560 µm average size at impact velocities ranging from 1 m s-1 to 

4.5 m s.-1. Owing to degradation, the particles were replaced at regular intervals. 

Morphological examinations of wear scars were carried out using an AMRAY scanning 

electron microscope, linked with an EDX unit. The aim here was to assess the main trends of 

the effects of temperature and impact velocity and to characterize the extent of degradation 

of the specimens. 
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3. Results and analysis 

3.1 Wastage as a function of temperature and impact velocity 

3.1.1 Mild steel 

Fig. 5 shows the behaviour of mild steel. At the lowest velocity and below 2500C, no weight 
losses were recorded. Further increases in temperature resulted in small weight gains 
(negative scale). At 2 m s-1 and temperatures above 5000C, this trend changed, and small 
weight losses were recorded. In the velocity range of 2.5 m s-1 to 4 m s-1, a wastage peak was 
observed. This peak occurred at 3000C, for impact velocities up to 3.5 m s-1, but between 
3000C and 3500C at 4 m s-1. The weight losses had a minimum at 4500C, and, above this 
temperature, significant increments in weight loss were recorded. At 4.5 m s-1, no wastage 
peak was observed only a continuous increase in weight loss with temperature.  

 

Fig. 4. Schematic diagram of the fluidized-bed apparatus used. 
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Fig. 5. Weight change as a function of temperature and specimen velocity for mild steel 
exposed in the FB rig with the 560 µm alumina particles for 24 h. 

Fig. 6 shows the morphology after exposure at 2500C and 1.5 m s-1. Here, the surface 
consisted mainly of compacted erodent (and erodent debris). X-ray mapping on the 
surface gave evidence for this. At 3000C and 2.5 m s-1, a rather different morphology was 
observed: the surface had a polished appearance, and, at higher magnification, a thin 
(apparently less than 1 µm thick) scale was observed, Fig. 7. At 4500C and 2.5 m s-1, the 
surface had a rippled appearance, Fig. 8, whereas at 6000C and 1.5 m s-1, the surface was 
again rippled, and scale had apparently spalled from some areas, Fig. 9 (a). At 2.5 m s-1, 
surface ripples were still noted, but, now, cracks in the surface scale were clearly seen, 
Fig. 9 (b). With further increase in velocity to 4.5 m s-1, surface ripples were no longer 
observed but a dark polished surface was noted. At higher magnification, surface cracks 
were observed, Fig. 9 (c). 

 

      

(a)     (b) 

Fig. 6. Scanning electron micrograph of mild steel exposed in the FB rig at 2500C and 1.5 m s-1 
showing a) the surface morphology and b) X-ray map of aluminum in a) 
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(a)     (b) 

Fig. 7. Scanning electron micrograph of mild steel exposed in the FB rig at 3000C and 2.5 m s-1 
showing a) the surface morphology and b) morphology at higher magnification 

 

 

Fig. 8. Scanning electron micrograph of mild steel exposed in the FB rig at 4500C and 2.5 m s-1. 

 

   

(a)     (b) 
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(c) 

Fig. 9. Scanning electron micrograph of mild steel exposed in the FB rig at 6000C and at  
a) 1.5 m s-1, b) 2.5 m s-1, and c) 4.5 m s-1 

3.1.2 310 stainless steel 

A most distinctive feature of the weight loss of this steel as a function of temperature when 
compared with the mild steel is that, no weight loss peak was recorded, under any condition, 
Fig. 10. This is in contrast with previous laboratory studies from other groups in the early 
1990s (Ninham et al., 1990, Stack et al., 1991, Stott et al., 1990) and this is attributed to the lower 
impact energies of these studies. The onset of weight loss over all the temperature range was 
found to be strongly dependent on impact velocity. For example, at 1 m s-1 no weight loss was 
recorded at temperatures below 5000C. Increasing velocity reduced quite significantly this 
“threshold” temperature. At 2 m s-1 it fell to 3000C, and at 4.5 m s-1 it was less than 1000C. 
Above this “threshold” temperature, the weight loss increased non-linearly with temperature 
in all cases. At 1000C, the behaviour was similar to that of the mild steel, i. e., below 2.5 m s-1 no 
weight loss was observed, and, above this velocity, the weight loss increased non-linearly. For 
this steel, the extent of weight loss increased with increasing temperature for a given impact 
velocity. It is interesting to note that, at the lower velocities (1-1.5 m s-1) the weight changes 
were relatively independent of velocity for both steels. However, at the high velocities (i.e. >1.5 
m s-1) the increase in wastage rate for mild steel as a function of increasing velocity was much 
greater than for the 310 stainless steel. Weight gains were recorded at the lower velocities for 
both materials. Indeed, this was the case for 310 stainless steel even at 2.5 m s-1. At 600°C, the 
increase in wastage rate as a function of velocity differed from that at the lower temperature, 
while the overall rates were much higher than at 300°C. In the lower velocity range (1-2 m s-1) 
the erosion-corrosion rate of the 310 stainless steel was higher than that of the mild steel. 
However, the results also showed that the ranking order of degradation rates of the alloys 
changed as a function of velocity. For example, at 2 m s-1 the weight loss of 310 stainless steel 
was approximately a factor of 10 greater than for the mild steel. At 2.4 m s-1, however, there 
was no difference between the wastage rates of both materials, while above this velocity, the 
relative wastage rates of the alloys reversed, with the mild steel now giving a higher value 
than the 310 stainless steel. 

In general, impact velocities up to and below 2.5 m s-1 produced rippled surfaces at all 
temperatures. Figures 11(a), 11(b) and 11(c) show examples of surface morphologies after 
exposure at 3000C and 1.5 m s-1, 4500C and 2.5 m s-1, and 6000C and 1.5 m s-1, respectively.  
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Fig. 10. Weight change as a function of temperature and specimen velocity for 310 SS 
exposed in the FB rig with the 560 µm alumina particles for 24 h. 

 

      

(a)     (b) 

 

(c) 

Fig. 11. Scanning electron micrograph of 310 stainless steel exposed in the FB rig at a) 3000C 
and 1.5 m s-1, b) 4500C and 2.5 m s-1, and c) 6000C and 1.5 m s-1, 
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However, such ripples were not observed at impact velocities above 2.5 m s-1. As an 
example of this, Fig. 12 (a and b) shows the surface morphology after exposure at 6000C and 
4.5 m s-1, where wear tracks of about 10 to 20 µm in length and areas of scale spallation 
could be observed. 

        

(a)     (b) 

Fig. 12. Scanning electron micrograph of 310 stainless steel exposed in the FB rig at a) 6000C 
and 4.5 m s-1, b) magnification of a) 

3.2 Wear pattern 

Fig. 13 shows the angular dependence on thickness loss for mild steel and 310 SS at 1000C. In 
the first case, two wear profiles are shown: at 1.5 m s-1, a negative thickness was recorded in 
the angular range from 00 to 1800. More likely, this pattern could be associated with 
deposition of erodent on the exposed area, as was confirmed by EDX analysis on the 
specimen surface. Indeed, this was the case for both steels at such low velocity and below 
3000C. Increasing the impact velocity produced a typical M pattern with two peaks located 
at each side from the front of the specimen. For instance, at 4.5 m s-1, the maximum thickness 
loss was about 30 µm, although some material loss was also evident at normal impact angle. 
For the 310 SS, a similar trend was found, although the thickness loss was slightly less at 
both shallow and normal impact angles, compared with the mild steel. For both steels, the 
angle of maximum attack was almost the same, about 350 (1450). The angle in the parenthesis 
corresponds to the second peak of the pattern. 

For mild steel at 3000C and 4500C, and impact velocities from 2.5 m s-1 to 4.5 m s-1, the wear 

patterns found are shown in Fig. 14. At 3000C, it can be seen that the maximum angle of 

wear shifts slightly to lower angles i.e., from 330 to 270 (1470 to 1530) with increasing speed. 

This also caused a large increase in thickness loss. At the highest speed, a maximum loss of 

about 115 µm was recorded, whereas the specimen front has a typical loss of 15 µm (a loss 

was not observed at lower speeds). At 4500C, and 2.5 m s-1, no thickness loss was recorded, 

but further increases in impact velocity produced similar profiles to the ones observed at 

3000C. At the highest velocity, the wastage at the specimen front was somewhat higher, with 

a V shape pattern. At shallow angles, the main difference at both temperatures was the 

thickness loss magnitudes. Fig. 15 shows the results at 6000C for mild steel. Here the angle of 

attack shifted from 330 to 240 (1470 to 1560) on increasing the impact velocity from 2.5 m s-1 to 

4.5 m s-1. 
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Fig. 13. Thickness loss as a function of impact angle for mild steel at 1000C eroded with the 
560 µm alumina particles at a) 1.5 m s-1, b) 4.5 m s-1 and c) 310 SS at 4.5 m s-1 

 

 

    

(a)  3000C      (b)  4500C, 

Fig. 14. Thickness loss as a function of impact angle for mild steel at a) 3000C and b) 4500C,  
eroded with the 560 µm alumina particles. 
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Fig. 15. Thickness loss as a function of impact angle for mild steel at 6000C  eroded with the 
560 µm alumina particles. 

The wear profiles for the 310 SS as function of impact velocity at 3000C and 4500C are shown 
in Fig. 16. In general, on increasing velocity from 2.5 m s-1 to  4.5 m s-1, the angle of attack 
changed from 330 to 270 (1470 to 1530) at  3000C, and from 300 to 240 (1470 to 1560) at 4500C. 
The patterns were quite similar, but it can be noted that, for each velocity, the wastage 
increases with increasing temperature. At 6000C the maximum angles of attack were about 
the same as the ones at 4500C, although there was a significant increase in the angular range 
of attack at both sides of the front, in particular at the highest speeds, Fig. 17. 

 

  

(a)  3000C      (b)  4500C, 

Fig. 16. Thickness loss as a function of impact angle for 310 SS at a) 3000C and b) 4500C,  
eroded with the 560 µm alumina particles. 
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Fig. 17. Thickness loss as a function of impact angle for 310 SS at 6000C  eroded with the 560 
µm alumina particles. 

Regarding the location of maximum wastage observed in FBCs, this typically occurs at the 
tube bottom (900, Class B), or at about 600- 700 (Class A) on either side of the tube bottom, as 
depicted in Figure 3.  In the present study, the angle of maximum wear was in the range 
from 200- 350. These values are small compared with the previous A classification, but this 
could be due to the possible differences in particle flow. On the other hand, the present 
results on the maximum angle of wear are in good agreement with the wear pattern 
reported on evaporator tubes in FBC units (Parkinson et al., 1985, Tsutsumi et al., 1989). 

3.3 Effect of impact angle and mode of wear 

Due to the nature of the bed, the environment in a fluidized bed may produce wear which 
can resemble either a three-body abrasion process or an erosion process. In the former, 
particles can be pressed against each other and slide over the tube surface, whereas, in the 
latter, particles act independently of each other, leaving the surface after impact. Although 
some valuable information on bed behavior has been reported in the last few years, there is 
still controversy about which process may dominate. On the basis of the results obtained in 
section 3.2, an attempt is made to describe the bed environment in terms of firstly, a 
dominant abrasion process, and, secondly, an erosion process. In the first case, according to 
Rabinowicz (Rabinowicz, 1965) the abrasive wear process is considered to be proportional to 
the contact pressure exerted by the particle flow multiplied by the local velocity on the 
specimen surface, whereas, in the second, Finnie's erosion theory has been considered 
(Finnie, 1960,  Finnie, 1972). 

3.3.1 Bed environment in the FB rig  

Since the FB rig was operated at 1.3 x Umf , gas velocities of about 0.17 m s-1 were achieved 
when using the larger particles. Under these conditions, Tsutsumi's equation (eq. 1), predicts 
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particle velocities of about 0.89 m s"1. Therefore, the velocity of particles in the bed is 
assumed to have no significant effect on the wear of specimens, which, in turn, is dependent 
only on the velocity of the specimens. 

3.3.2 Abrasive wear 

The flow regime in the bed is described by the Reynolds number, Re. Here, a continuous 
medium is considered; therefore 

 0
2

Re
b

b

aU


 

  (3) 

Where:  ρb  = bed density, in the present case ~ 2300 kg m-3; U0  = specimen velocity relative 
to the particles, m s-1 ; a = specimen radius = 0.003 m ; μb = bed viscosity ~ 1.2 kg m-1 s-1 
(value for a bed with 500 μm average size silica particles, (Grace, 1970) 

Considering the velocity extremes in this work, i.e. 1 m s -1 and 4.5 m s-1, this gives Re = 11.5 
and Re = 51.7, respectively. In order to estimate the contact pressure, it is assumed that the 
particle and gas flows are uniform and behave as continua Fig. 18 shows a schematic 
diagram of the system under consideration. 

 

Fig. 18. Schematic diagram of flow pattern on specimens inside the bed of particles, 
indicating the components of velocity, Vr and Vθ. 

Here, the potential fluid flow function, Φ, (in plane polar coordinates) is expressed by 
(Douglas et al., 1984, Kay & Nedderman, 1974) 

 
2

0
cos

a
r

rU 
 

    
 

 (4) 

Where r represents a point in a streamline, θ is the angle considered and a is the specimen 
radius. For flow around a cylinder, the radial (Vr (p,g)) and tangential (Vθ (p,g))components of 
velocity for the particles and fluidizing gas in terms of velocity potential are given by 
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  (6) 

At the surface of the cylinder, r = a , hence 

 ( , ) 0r p gV   (7) 

 ( , ) 02 sinp gV U    (8) 

Now, from Bernoulli´s equation, the pressure exerted by the particle (Pp) and gas (Pg) is 
given respectively by: 

  2 2
0

2

p
pP P U V


    (9) 

  2 2
0

2

g
gP P U V


    (10) 

The difference between (6.8) and (6.9) gives the net pressure acting on the cylinder surface, 
thus  

   2 2
0

1

2
p g p gP P U V      (11) 

  
2 2
0

2
0

1
2

p g p g

U V
P P

U
 

  
         

 (12) 

Now, from eqn. (6.4), and assuming that, in general, the gas density is much lower than the 
particle density, the pressure distribution on the cylinder is given by 

 2

2
0

1 4sin
1

2

p g
p

p

P P
C

U





    (13) 

Where Cp is the pressure coefficient. A plot of equation 13 is given in Fig. 19(a), where it can 

be seen that the pressure distribution is similar to that found at low Re numbers, Fig. 19(b). 

From classical abrasion theory (Archald, J. 1953, Rabinowicz, E. 1960), the abrasive wear 

rate, AWR, can be expressed as 

  p gAWR V P P   (14) 

And, from eqns. (8) and (13) 
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 3 2
0 sin (1 4sin )pAWR U      (15) 

From this equation, Fig. 20 (curve A) shows the dependence of the predicted AWR on 

impact angle. The maximum wear is about 15° from the stagnation point, which is close to 

the specimen front. Hence, the above equation is not in agreement with the actual 

observations, where the maximum wear was observed in the range 24°to 33°. In a bubbling 

fluidized bed, a schematic diagram of the interaction between bubbles and a tube can be 

seen in Fig. 21. The region in the lower part of the bubble is the wake region, which carries 

entrained particles. Here, the measured wake angle is, θw ≈ 120°, as depicted in Fig. 21, for 

silica sand particles of 500 μm mean size (Rowe & Partridge, 1965 ). To some extent, when a 

bubble passing a tube, it appears that this angle may have some effect on the location of 

wear. Equation 15 thus may be modified by taking into account an angle given by θwa= θw/2 

≈ 60°. Consider a case where the flow is modified by changing θ by θ - (θwa - 15°), where the 

15° value is the difference of the angle at normal impact and the angle of maximum wear 

previously found. The result can be seen in fig. 20 (curve B), where the maximum angle of 

wear appears at about 60°, which corresponds with a 30° angle for the actual specimens, and 

correlates well with the experimental findings. However, it predicts higher wear at normal 

impact angle, which is not the case for the specimens in the present work. Now, suppose θ is 

changed by an amount equal to (θ - θwa) in equation 15. The result is given in Fig. 20 (curve 

C). Here, the maximum angle of wear at shallow angles is about 15°, this being lower than 

the observed range. Also, this last change predicts even a higher wear rate at the front of the 

specimen. 

 

 

(a)    (b) 

Fig. 19. Coefficient of pressure, Cp, on the surface of a cylinder as a function of angle,  
a) as derived from equation 13, b) for flow past a cylinder for various Re ranges 
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Fig. 20. Variation in abrasive wear rate as a function of impact angle, as predicted by 
abrasion theory: i) curve A resulting from equation 15; ii) curve B when changing θ by θ-
(θwa-15°) in equation 15, and iii) curve C, changing θ by (θ-θwa) in equation 15. 

 

Fig. 21. Conditions near a tube immersed in a fluidized bed. θw is the wake angle. 
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3.3.3 Erosive wear 

Finnie's classical erosion theory has been used in an attempt to correlate the present results on 
the effect of impact angle with the extent of erosion. The erosion rate expressed as volume loss, 
Ev , is related to the particle impact velocity, U, and angle of impingement, θ, by 

 2cosn
vE U   (16) 

Where n is the velocity exponent (usually between 2 and 3). However, when the erosion rate 
is estimated by thickness loss, Et , equation (16) may simply be multiplied by sin θ (Finnie, I. 
1960). Since the results for the effect of impact angle were given as thickness loss, the 
resulting expression is 

 2cos sinn
tE U    (17) 

This equation is plotted in Fig. 22. As would be expected, the predicted peak erosion angle, 
θmax is  ≈  35°, which is in good agreement with the experimental results. However, it is worth 
noting that these results, Figs. 13 to 17, showed that, at low temperature, i.e. 100°C, and 4.5 
m s-1, θmax was found at about 35°, whereas at 2.5 m s-1 and 300°C, θmax was very similar to 
the previous value. This suggests that, at low temperatures, the impact velocity apparently 
had little effect on the peak erosion angle. At higher temperatures, θmax shifted slightly to 
lower angles with increasing velocity from 2.5 m s-1 to 4.5 m s-1. This is because changes in 
particle flow may take place as a function of both temperature and velocity. At the highest 
velocity used, increasing temperatures also shift θmax to lower angles, (see for example Figs. 
13 and 15). This suggests that the steels exhibit a more ductile behavior with temperature. 
Another observation is that, at least for the alloys studied, θmax seems to be independent of 
the steel type. 

 

Fig. 22. Predicted erosion rate as a function of impact angle according with Finnie´s erosion 
theory. The angle of maximum attack is about 350. The specimen front is at the 900 angle. 
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In general, with the larger particles, ripple formation was a typical feature (which is 
generally associated with a purely erosion process) for most steels exposed at velocities up 
to about 3 m s-1. Higher velocities produced surface morphologies that were dependent on 
the type of steel. For instance, for the low alloy steels, polished surfaces were not 
uncommon, whereas, for the stainless steels, a more clear ploughing and cutting action was 
observed. The wear tracks developed mainly on the 310 SS are consistent with a dominant 
abrasion process. However, very similar morphologies (showing cutting/ploughing action) 
for low alloy steels and stainless steels have been reported in tests carried out in more 
conventional rigs (Morrison  et al., 1986, Zhou & Bahadur, 1990).  

3.3.4 Comparison between abrasion and erosion theories 

Based on the modifications made in the abrasion theory, leading to the behaviour given by 
curve B, Fig. 20, both theories predicted about the same peak angle wear, but only at low 
impact angle. The abrasion theory predicts higher wastage rates at normal impact angle, i. e. 
at the specimen front, while the erosion theory predicts no wastage at this location. This was 
normally the case at velocities typically bellow 4.5 m s-1. Under mild fluidization conditions 
in a cold FB rig, it was found the formation of an air film directly below a cylindrical 
obstacle (Glass & Harrison, 1964). At this location (stagnant point) the gas and particle flows 
are at minimum values. Another possibility is the preferential embedment and deposition of 
very fine erodent particles that occur at normal impact angle compared with low angles. 
This may have modified the wastage rate here due to a shield effect. However, in general, 
exposure at temperatures above 3000C and velocities above 2.5 m s-1 produced some 
wastage at the front of the specimens, clearly minimizing the previous effects. Taking the 
angular distribution of wear as a reference, it is very difficult to determine which form of 
wear may dominate, since a FB environment includes a dilute phase erosive condition and 
also a dense (continuous) phase abrasive condition. Disagreement between researchers is 
not uncommon; for instance, in one study, it was suggested that abrasion is responsible for 
the wear at the bottom of tubes (Stringer & Wright, 1987); however, at the same location 
another report concluded that wastage is by erosion only (Wheeldon, 1990). On the basis of 
purely morphological features, the present results suggest that the main form of wear is one 
of an erosive nature. This agrees well with the results obtained in a FB rig facility, where 
erosion was the main form of wastage, but with a small amount of three-body abrasion 
contributing to the damage (Wang et al., 1993) 

4. Conclusions 

1. A temperature of peak wastage (PWT) was observed for mild steel at about 3000C but 
only within a certain velocity range i e., 2.5 m s-1 < PWT ≤ 4 m s-1. The wastage of the 
310 SS as a function of temperature did not show any peak wastage for the velocities 
studied in this work. 

2. In general, erodent deposition was a dominant process at impact velocities below 3 m s-

1 and temperatures below about 3000C, regardless of the type of steel. The impact angle 
at which wear was a maximum was about 200-300 on each side of the leading point. 
Regarding this observation, it is worth noting that the results showed that at the lower 
temperature and the highest velocity used, the peak wastage angle, θmax, was found at 
about 350, whereas at 3000C and 2.5 ms-1 was very similar. At low temperatures, the 
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impact velocity apparently had little effect on the peak wastage angle. At higher 
temperatures, θmax shifted slightly to lower angles with increasing velocity from 2.5 ms-1 
to 4.5 ms-1. At the highest impact velocity used, increasing temperatures also shift θmax 
to lower values. This suggests that the steels exhibit a more ductile behavior with 
temperature.  

3. A further observation is that, at least for the steels used here, θmax seems to be 
independent of the steel type.  

4. On the basis of wear patterns found as a function of impact angle, an attempt has been 
made to define the probable modes of wear i.e. abrasion vs. erosion. The modified 
abrasion theory predicts well the wear pattern at shallow angles, but predicts higher 
wastage rates at normal impact angle, i.e. at the specimen front. On the other hand, 
erosion theory predicts maximum wear at an impact angle of 350 and no wear at the 
specimen front. Thus both theories have drawbacks with respect to damage in the FB 
rig. 

5. Under the conditions of temperature and velocity considered, the wear losses were 
greater at shallow impact angle compared with the specimen front diminishing the 
importance of abrasion. 

6. Following exposure to the test conditions, the formation of ripples, which are a feature 
of a purely erosive process, were often observed. Wear tracks were also observed, in 
particular at the highest velocities. These last features could be related to abrasive wear. 
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