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1. Introduction 

Nonlinear propagation occurs widely in many acoustic systems, especially in the field of 
medical ultrasound. Despite the widespread use of ultrasound in diagnosis and therapy, the 
propagation of ultrasound through biological media was modeled as a linear process for 
many years. The invalidity of infinitesimal acoustic assumption, at biomedical frequencies 
and intensities, was demonstrated by Muir and Carstensen (Muir & Carstensen, 1980). It 
was realized that nonlinear effects are not negligible and must therefore be taken into 
account in theoretical developments of ultrasound in biomedical research. Indeed, 
increasing the acoustic frequency or intensity in order to enhance resolution or penetration 
depth may alter the beam shape in a way not predicted by linear theory. 

Nonlinear effects occur more strongly when ultrasound propagates through slightly 
dissipative liquids such as water or amniotic fluid. As in medical sonography, the full bladder 
or the pregnant uterus, which may be filled with amniotic fluid, is used as an acoustic window 
in many types of diagnoses; a special attention is given to slightly dissipative liquids where the 
possibility of signal distortions has several implications. However, within soft tissues, the 
tendency for wave distortion to occur is limited by dissipation.  

In absorbing medium, nonlinear effects cannot be examined without considering 
dissipation. The absorption limits the generation of harmonics by decreasing their 
amplitudes gradually. In addition, as the absorption coefficient increases with frequency, 
the energy transformation towards frequencies higher than the fundamental frequency 
(generation of harmonics) can also lead to significant acoustic losses. Nonlinear effects create 
all higher harmonics from the energy at the insonation frequency, but, due to the absorption 
of high frequency components, only the lower harmonic orders and the fundamental 
remain. So, the tendency for wave distortion to occur is limited by dissipation. 

Dissipation can have various origins (Sehgal & Greenleaf, 1982): viscosity (resulting from 
shear motions between fluid particles), thermal conduction (due to the energy loss resulting 
from thermal conduction between particles) or molecular relaxation (where the molecular 
equilibrium state is affected by the pressure variations of the acoustic wave propagation). 

Nonlinear effects and dissipation are antagonistic phenomena. The nonlinearity mechanism 
shocks the wave by generating harmonics while dissipation increases with frequency and 
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attenuates the harmonics resulting from nonlinear effects. The shock length sl  (Enflo & 

Hedberg, 2002; Naugolnykh & Ostrovosky, 1998) quantifies the influence of the nonlinear 
phenomena, and it is necessary to define another parameter, denoted Goldberg’s number   
(Goldberg, 1957), when dissipation is added.   represents the ratio of the absorption length 

al  (the inverse of the absorption coefficient   and corresponds to the beginning of the old 

age region) to the shock length sl  at which the waveform would shock if absorption 

phenomena were absent: 

 a

s

l k M

l




    (1) 

where k , M ,   and   are, respectively, the wave number, the acoustic Mach number, the 

acoustic nonlinearity parameter and the absorption coefficient. 

It should be noted that higher harmonics may turn the wave into shock state. On the other 
hand, dissipation attenuates higher harmonics much more than lower harmonics, thus 
making it more difficult for the waves to go into shock. 

The dimensionless parameter   measures the relative importance of the nonlinear and 
dissipative phenomena, which are in perpetual competition. Thus, the Goldberg’s number is 
a reliable indicator for any analysis including these two phenomena. An analysis based on 
the Goldberg’s number is important since it is an essential step for solving general problems 
involving ultrasound waves of finite amplitude.  

Nowadays, Tissue Harmonic Imaging (THI) or second harmonic imaging offers several 
advantages over conventional pulse-echo imaging. Both harmonic contrast and lateral 
resolution are improved in harmonic mode. Tissue Harmonic Imaging also provides a better 
signal to noise ratio which leads to better image quality in many applications. The major 
benefit of Tissue Harmonic Imaging is artifact reduction resulting in less noisy images, 
making cysts appear clearer and improving visualization of pathologic conditions and 
normal structures. Indeed, Tissue Harmonic Imaging is widely used for detecting subtle 
lesions (e.g., thyroid and breast) and visualizing technically- challenging patients with high 
body mass index. 

In order to create images exclusively from the second harmonic, a theoretical review with 
some mathematical approximations is elaborated, in this chapter, to derive an analytical 
expression of the second harmonic. The performance of the simplified model of the second 
harmonic is interesting, as it can provide a simple, useful model for understanding 
phenomena in diagnostic imaging. 

Despite the significant advantages offered by Tissue Harmonic Imaging, theory has been 
partially explained. A number of works were elaborated over recent decades. Among these, 
are Trivett and Van Buren (Trivett & Van Buren, 1981) work which have presented an 
analysis of the generated harmonics based on the generalized Burgers’ equation. Significant 
differences in the calculated harmonic content were found by Trivett and Van Buren when 
compared with those obtained by Woodsum (Woodsum, 1981). No explanation was given 
by Trivett and Van Buren to justify their results. In an author’s reply, Woodsum seemed to 
attribute these differences to the high number of terms retained by Trivett and Van Buren in 
the Fourier series.  
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Similarly, Haran and Cook (Haran & Cook, 1983) have used the Burgers’ equation to 

elaborate an algorithm for calculating harmonics generation by a finite amplitude plane 

wave of ultrasound propagating in a lossy and nondispersive medium. Their algorithm 

accounts for an absorption coefficient of any desired frequency dependence. The variation 

effect of the absorption coefficient on the second harmonic was demonstrated in a medium 

similar to carbon tetrachloride. Calculations for several types of tissue and biological fluids 

were presented. It was shown that for some biological media having a low absorption 

coefficient, a significant distortion of the plane wave can be observed for large propagation 

ranges. 

Recently, D’hooge et al. (D’hooge et al., 1999) have analyzed the nonlinear propagation 

effects of pulses on broadband attenuation measurements and their implications in 

ultrasonic tissue characterization by using a simple mathematical model based on the 

numerical solution, in the time domain, of the Burgers’ equation. The developed model has 

been validated by measuring the absorption coefficient of both a tissue-mimicking phantom 

in vitro and a liver in vivo at several pressure amplitudes using transmission and reflection 

measurements, respectively.  

In the present chapter, the intensity effects on the behavior of the fundamental and the 

generated second harmonic, by using both the numerical solution of the Burgers’ equation 

and the analytical expressions established with the quasi-linear approximation are 

examined. An analysis on the validity domain of the fundamental and the second 

harmonic analytical expressions established with the quasi-linear approximation is 

elaborated. The deviations resulting from the analytical expressions established with the 

quasi-linear approximation and the numerical solution of the Burgers’ equation are 

estimated. This investigation is based on Krassilnikov et al. (Krassilnikov et al., 1957) 

experimental results. These experimental data concern water and glycerol that 

correspond, respectively, to a weakly dissipative liquid approaching the characteristics of 

urine or amniotic fluid (Bouakaz et al., 2004) and a strongly dissipative liquid with some 

similarities to soft tissues. 

It should be noted that in this study all derivations are developed entirely in the frequency 

domain, thus avoiding both the steep waveform problems and the use of FFT, which 

alternates between time and frequency domains. The utility of the method resides in the 

ease with which it can be implemented on a digital computer. 

2. Theoretical formulation 

The description of acoustic waves in a liquid is founded on the theory of motion of a liquid, 

which is considered to be continuous. In the present investigation, the viscosity and the heat 

conduction coefficients, although in general are functions of the state variables, are assumed 

to be constant. The theoretical formulation of the propagation of finite amplitude plane 

progressive waves in a homogeneous and dissipative liquid is elaborated in section 2.1, and 

the theoretical model is based on the derivation of a nonlinear partial differential equation in 

which the longitudinal particle velocity is a function of time and space. In section 2.2, the 

dimensionless Burgers’ equation is presented, which is considered to be among the most 

exhaustively studied equations in the theory of nonlinear waves.  
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2.1 Basic equations 

The propagation of finite amplitude plane progressive waves in a homogeneous and 
dissipative liquid is governed by the Burgers’ equation. Here, it is assumed that the 
ultrasonic wave propagates in the positive z  direction, and the differential change of the 

longitudinal particle velocity with respect to z  is given by (Enflo & Hedberg, 2002; 

Naugolnykh & Ostrovosky, 1998):  

 
2

2 3 2
0 0

( , ) ( , ) ( , )
( , )

2

u z u z D u z
u z

z c c

   
 

  
 

  
 (2) 

0

1 4 1 1

3 v p

D
c c

  


                
is the diffusivity of the sound for a thermoviscous fluid. This 

parameter is a function of the fluid shear viscosity  , the fluid bulk viscosity  , the 

thermal conductivity  , the specific heat at constant volume vc  and the specific heat at 

constant pressure pc . The acoustic nonlinearity parameter 1 2B A    is function of the 

nonlinearity parameter of the medium /B A , which represents the ratio of quadratic to 

linear terms in the isentropic pressure-density relation (Hamilton & Blackstock, 1988; 

Khelladi et al., 2007, 2009). 0t z c    is the retarded time, 0c  is the infinitesimal sound 

speed and 0  is the undisturbed density of the liquid. 

The term on the left hand side of equation (2) is the linear wave propagation. The first term 

on the right hand side of equation (2) is the nonlinear term that accounts for quadratic 

nonlinearity producing cumulative effects in progressive plane wave propagation, while the 

second term represents the loss due to viscosity and heat conduction or any other agencies 

of dissipation. 

Nonlinear propagation in a dissipative liquid is considered using Fourier series expansion. 

By assuming that the solution of equation (2) is periodic in time with period 02  , the 

solution can be written as the sum of the fundamental and the generated harmonics. Thus 

( , )u z   can be developed in Fourier series, with amplitudes that are functions of the spatial 

coordinate z : 

 0 0
1

( , ) [ ( )cos( ) ( )sin( )]n n
n

u z v z n u z n    



   (3) 

0  is the characteristic angular frequency and ,n nv u  are the Fourier coefficients of the nth 

harmonic. 

When complex notation is used, equation (3) changes to (Haran & Cook, 1983; Ngoc & 
Mayer, 1987): 

 0( ,  ) ( ) in
n

n

u z W z e  



   (4) 
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The complex amplitude can be expressed as nin
n nW w e   where nw , n  correspond 

respectively to the amplitude and the phase of the nth harmonic, and 2 1i   . Note that 
*
n nW W   , * symbolizes the complex conjugate. 

For the easiest derivation, equation (4) is substituted into equation (2) (Haran & Cook, 1983; 
Ngoc & Mayer, 1987): 

 20
2
0

( )n
m n m n

m

W
i n m W W n W

z c

 






  

   (5) 

where
2
0
3
02

D

c

   

Equation (5) describes the amplitude variation of the nth harmonic in the propagation 
direction z . The summation over m  expresses nonlinear interactions among various 
spectral components caused by the energy transfer process, while the other term accounts 
for loss due to dissipation relative to the nth harmonic. 

Equation (5) is rewritten in another form (Haran & Cook, 1983; Ngoc & Mayer, 1987): 

 
1

* 20
2

10

n
n

m n m m m n n
m m n

W
i mW W nW W n W

z c

 
 

 
 

 
     

   (6) 

By using the real notation, knowing that 
2

n n
n

v iu
W


  and 

2
n n

n

v iu
W


 , equation (6) 

yields two coupled partial differential equations governing the behavior of the components 

nv  and nu  as a function of the spatial coordinate z  (Aanonsen et al., 1984; Hamilton et al., 

1985): 

 
1

20
2

10

( ) ( )
2

n
n

m n m m n m m m n m m n n
m m n

v
m u v v u n v u u v n v

z c

 
 

   
 

 
       

   (7) 

 
1

20
2

10

( ) ( )
2

n
n

m n m m n m m m n m m n n
m m n

u
m u u v v n u u v v n u

z c

 
 

   
 

 
       

   (8) 

For a sinusoidal source condition, 0 0(0, ) sin( )u u    (Aanonsen et al., 1984; Hamilton et 

al., 1985; Hedberg, 1999; Menounou & Blackstock, 2004), equation (3) becomes: 

 0
1

( , ) ( )sin( )n
n

u z u z n  



  (9) 

Equation (8) is then written more simply as: 

 
1

20
2

102

n
n

m n m m m n n
m m n

u
mu u nu u n u

z c

 
 

 
 

 
     

   (10) 
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The incremental change of the particle velocity can be approximated by the first order 

truncated power series (Haran & Cook, 1983; Ngoc et al., 1987): 

 
( , )

( , ) ( , )
u z t

u z z t u z t z
z


    


 (11) 

By combining equations (10) and (11), an iterative description of finite amplitude plane 

wave propagation in a homogeneous and dissipative liquid, is obtained: 

 
1

20
2

10

( ) ( ) ( ) ( ) ( ) ( ) ( )
2

n

n n m n m m m n n
m m n

u z z u z mu z u z nu z u z z n u z z
c

 
 

 
 

 
        

 
   (12) 

The first summation term on the right hand side of equation (12) represents the contribution 

of lower order harmonics to the nth harmonic, while the second one is associated with the 

contribution of higher order harmonics. According to the sign of each contribution the nth 

harmonic energy can be enhanced or decreased. The last term in this equation represents 

losses undergone by the nth harmonic. 

Generally, the absorption coefficient  depends on the propagation medium 

characteristics and the insonation frequency. For the considered viscous fluids, this 

frequency dependence is quadratic with frequency and can be represented by (Smith & 

Beyer, 1948; Willard, 1941): 

 2
0 f   (13) 

where 0  depends upon the nature of the liquid, and 0 2f    is the insonation 

frequency. 

Therefore the Goldberg’s number  , increases with the amplitude of excitation and 

decreases with frequency. 

Equation (12) becomes: 

 
1

0
2

10

( ) ( ) ( ) ( ) ( ) ( ) ( )
2

n

n n m n m m m n n n
m m n

u z z u z mu z u z nu z u z z u z z
c

 
 

 
 

 
        

 
   (14) 

where 2 2
0n n f   

Equation (14) allows the determination of the nth harmonic amplitude at the location z z   

in terms of all harmonics at the preceding spatial coordinate z . This derivation requires an 

appropriate truncation of the finite series on the right hand side of equation (14) to ensure a 

negligibly small error in the highest harmonic of interest and to maintain some acceptable 

accuracy. 

In the hypothesis of the quasi-linear approximation, all the harmonics of higher order than 

two can be neglected in the numerical solution of the Burgers’ equation, so equation (14) 

changes to: 
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0
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( ) ( )
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u z u z u z

z c

u z
u z u z

z c







    
  
 

 (15) 

where 2
1 0 f   and 2

2 0 14 4f     denote the absorption coefficients of the 

fundamental and the second harmonic, respectively. 

In many situations, the experimental studies are based on pressure measurements. Knowing 
that the ratio of the nth harmonic pressure to the associated particle velocity is given by 

0 0( , ) ( , )n np z t c u z t (Germain et al., 1989); equation (15) is rewritten as: 

 

1 0
1 2 1 13

0 0

22 0
1 2 23

0 0

( )
( ) ( ) ( )

2

( )
( ) ( )

2

p z
p z p z p z

z c
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p z p z
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


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

    
  
 

 (16) 

If 0
2

2
( )  

P
p z 


, then 0

1 23
0 0

( ) ( )
2

p z p z
c




 can be neglected comparatively to 1 1( )p z . The 

acoustic pressure of the fundamental can be written as (Gong et al., 1989; Thuras et al., 
1935): 

 1
1 0( ) zp z P e   (17) 

where 0P  is the characteristic pressure amplitude (the value of the fundamental pressure at 

0z  ). 

Equation (16) becomes:  

 1222
0 2 2

( )
( )zp z

hP e p z
z

 
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
 (18) 

with 0
3

0 02
h

c




  

The solution of equation (18) is easily obtained. Knowing that for 0z   2(0) 0p  , the 

acoustic pressure of the second harmonic component can be expressed as (Cobb, 1983; 
Thuras et al., 1935): 

 
2 12

2
2 0

1 2

( )
2

z ze e
p z hP

 

 

  
    

 (19) 

Moreover, if the term 2 1( 2 ) 1z   , an approximation of equation (19) can be made 

(BjØrnØ, 2002; Cobb, 1983; Zhang et al.,1991): 

 1 2( 2)2
2 0( ) zp z hP ze     (20) 
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2.2 Dimensionless equations 

For theoretical analysis as well as for numerical implementation, it is more convenient to 

define dimensionless variables, by using the characteristic particle velocity 0U , the 

characteristic time 01   and the lossless plane wave shock formation length sl : 

 
0

u
U

U
 , 0    and 

s

z

l
   (21) 

where U ,   and   are, respectively, the dimensionless longitudinal particle velocity, the 

dimensionless time and the dimensionless propagation path. 

Insertion of equation (21) into the Burgers’ equation (equation (2)), gives the dimensionless 
equation (BjØrnØ, 2002; Fenlon, 1971; Hedberg, 1994): 

 
2

1
2

( , ) ( , ) ( , )
( , )

U U U
U

      
  

  
  
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 (22) 

The dimensionless amplitude of the nth harmonic at the dimensionless location     in 
terms of all harmonics at the preceding dimensionless location   can be written as: 

1
2 1

1

1
( ) ( ) ( ) ( ) ( ) ( ) ( )

2

n

n n m n m m m n n
m m n

U U mU U nU U n U         
 


 

 

 
         

 
   (23) 

With this dimensionless notation, the acoustic pressure of the fundamental and the second 
harmonic can be expressed as: 

 1
1 0( ) slp P e     (24) 

 
 
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1
( )
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s sl l

s

e e
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l

   


 

  
    

 (25) 

In the case of 2 1( 2 ) 1sl    , equation (25) becomes: 

 1 2( 2)
2 0

1
( )

2
slp P e        (26) 

3. Numerical experiments and discussions 

Krassilnikov et al. (Krassilnikov et al., 1957) experimental data for water and for glycerol are 
used in order to simulate the amplitude of the first two harmonics, by using both the 
numerical solution of the Burgers’ equation (equation (23)) and the analytical expressions 
established with the quasi-linear approximation (equations (24), (25) and (26)). Table 1 lists 
material properties. 

According to Krassilnikov et al. (Krassilnikov et al., 1957) experimental work, the absorption 
coefficient is a quadratic function of frequency. The absorption coefficient is that obtained 
from an infinitesimal acoustic excitation, even though the acoustic intensity increases. In the 
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case of water 13 1 2
0 0.23 10  . . Np m Hz     and for glycerol 13 1 2

0 26 10  . . Np m Hz     

(Krassilnikov et al., 1957). 

Nonlinear effects occur more strongly when ultrasound propagates through slightly 
dissipative liquids, so a special attention is given to a propagation medium characterized by 
a Goldberg number greater than unity. In this case, when the waveform approaches the 
shock length, nonlinear effects dominate dissipation phenomena. The amplitude of the 
generated harmonics increases at the expense of the fundamental component. After the 
shock length, absorption limits the generation of harmonics by decreasing theirs amplitudes 
gradually with the propagation path. For this reason, all the simulations of the first two 
harmonics are plotted as a function of the dimensionless location   up to unity and for 

several values of the acoustic intensity. Moreover, all the shock lengths for several 
intensities are greater than 19.8 cm  (Table 2). As in biomedical diagnosis the region of 

interest (ROI) is about 20 cm , it is absolutely useless to explore beyond 1   and the 

selected range 0 1   is amply appropriate for this kind of investigation. 

It should be pointed out that the shock length sl  depends on the medium characteristics 0 , 

0c ,   and on the external parameters such as the insonation frequency and the amplitude 

of excitation. In this study, the insonation frequency is fixed at 2 MHz , thus the shock 

length for a given medium will depend only upon the amplitude of excitation. 

Among all the configurations presented in this study, including various acoustic intensities 
and two analyzed mediums, only one case is sensitive in biomedical diagnostic and must be 
analyzed with extreme caution. Indeed, a more favorable situation where nonlinear effects 
have sufficient time to be entirely established corresponds to the case of water, for which the 

acoustic intensity is equal to 24.7 W/cm  and as a consequence a shock length equal to 

19.8 cm . As the generation of harmonics occurs while moving away from the source and 

approaching the shock length, the greatest signal distortion may occur in the range of interest. 
Moreover, the irradiation of living tissue with shock waves in diagnostic processes appears 
risky since the damage and exposure criteria for these radiations have not been delineated. 

It should be noted that all the simulations are made with intensities of 20.2 - 4.7 W/cm  

(Table 2), which correspond to breast lesion diagnosis (Nightingale et al., 1999). 

It will be stated by the derivation of the Goldberg number that water surpasses any tissue in 
its ability to produce extremely distorted waveforms even at relatively low intensity. So, a 
special attention is given to this liquid where the possibility of distortion occurring has 
several implications. Indeed, water can generate extreme waveform distortion compared to 
glycerol, as indicated by the Goldberg’s number for water, which is 200 times larger than 

that of glycerol for an acoustic intensity of about 20.2 W/cm  (Table 2).  

Parameters Temperature
(°C) 

Density
3

0( / )kg m  

Sound velocity 

0( / )C m s  

Acoustic nonlinearity 

parameter   

Water 20 998 1481 3.48 

Glycerol 20 1260 1980 5.4 

Table 1. Material properties. 
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Water 

Temperature (°C) Intensity (W/cm2) Shock length (m) Goldberg Number  

20 0.34 0.739 14.7 

20 2 0.304 35.7 

20 4.7 0.198 54.9 

Glycerol 

Temperature (°C) Intensity (W/cm2) Shock length (m) Goldberg Number  

22 0.2 1.443 0.07 

21 2.5 0.408 0.24 

19 4.5 0.304 0.32 

Table 2. Goldberg’s number for water and glycerol with intensities of 2W/cm4.7 -0.2  and 

an insonation frequency of MHz 2 . 

Initially, the ultrasonic wave is taken to be purely sinusoidal with a frequency of 2 MHz  in 

the two considered media. Only the fundamental wave exists at the starting location 0  , 

and the other harmonic modes are generated as the wave propagates from the source. 

Through an iterative method, the value of the Goldberg number is inserted into the Burgers’ 

equation in order to determine its numerical solution (Table 2). 40 harmonics are retained to 

simulate the numerical solution of the Burgers’ equation which is considered, in the 

deviation calculus, as an exact solution. 

For a better readability and interpretation of the obtained numerical data, a symbol with a 

defined shape and type is inserted on the graphic layout of the analyzed functions. All the 

following simulations exploit equations (23), (24), (25) and (26) corresponding respectively 

to the numerical solution of the Burgers’ equation, the quasi-linear approximation of the 

acoustic pressure of the fundamental, the quasi-linear approximation of the second 

harmonic and the quasi-linear approximation of the approximated second harmonic. 

The simulations relating to water and glycerol are represented in all figures (a) and (b), 

respectively. 
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Fig. 1. Pressure amplitude 01/Pp  versus the   coordinate. 
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The amplitude 1 0p /P   (figure 1a, figure 1b) and the amplitude 2 0p /P  (figure 2a, figure 2b) 

increase with   (Table 2). So, the effect of the increased acoustic intensity is to enhance the 
amplitude of the fundamental and also that of the second harmonic.  

In the hypothesis of linear acoustics, increasing the absorption coefficient leads 

systematically to a decrease of the wave amplitude. The finite amplitude waves do not obey 

to the same principle because nonlinear effects and dissipation are two phenomena in 

perpetual contest. The interplay between these two phenomena developed along the 

propagation path is not simply an additive effect as normally assumed in linear acoustics. 

Therefore, a measure of whether nonlinear effects or absorption will prevail is the 

Goldberg’s number  . The larger   is, the more nonlinear effects dominate. Whereas for 

values of 1  , absorption is so strong that no significant nonlinear effects occur. Thus the 

calculation of the Goldberg’s number is required to quantify the amplitude of the generated 

harmonics. 

By taking water as an example, the most significant amplitude of the generated harmonic, 

for various values of intensity, corresponds to the highest Goldberg’s number (figure 2a). 

This is in perfect agreement with physical phenomena that take place in the analyzed 

medium. Indeed, a high Goldberg number corresponds to a predominance of the 

nonlinearity phenomenon as compared to dissipation, which represents the main factor of 

amplitude decrease. This situation is also apparent for glycerol (figure 2b).  

For a slightly dissipative liquid, it can be seen that the second harmonic component grows 

cumulatively with increasing the normalized length   at the expense of the fundamental 

(figure 1a, figure 2a). Its growth begins to taper off at the location of the initial shock 

formation, beyond this location the curves decay as expected. So, the nonlinearity 

mechanism is a bridge that facilitates the energy exchange among different harmonic 

modes. An increase of the Goldberg’s number enhances the transfer of energy from the 

fundamental to higher harmonics and between harmonics themselves. Thus, the generated 

harmonics can only follow the evolution of the fundamental which gives them birth. 

However, for a strongly dissipative medium, the absorption is so strong that significant 

nonlinear effects do not occur. Indeed, the old age region begins at a range smaller than the 

shock length and once nonlinear effects take place, absorption dominates the behavior of the 

fundamental and the generated harmonic (figure 1b, figure 2b). In absorbing media, the 

exchange of energy is more complicated, because absorption diminishes amplitude with 

increasing the propagation path and acts as a low pass filter that reduces the energy of 

higher harmonics (figure 2b). 

The evaluation of the relative deviation, for each analytical expression in relation to the 
numerical solution of the Burgers’ equation, is carried out in the following way: 

 
 analytical xpression- numerical solution(Burgers)

(%) 100
numerical solution(Burgers)

e
Deviation    (27) 

The relative deviation, on the selected range, of the analytical expression of the fundamental 

component (equation (24)) in relation to the numerical solution of the Burgers’ equation is 

less than 4%  for glycerol (figure 3b). 
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Fig. 2. Pressure amplitude 02/Pp  versus the   coordinate. 

Thus, for a strongly dissipative liquid, equation (24) can be considered as a good 
approximation of equation (23). In fact, in this case the Goldberg’s number is lower than 
unity (Table 2); then dissipation becomes important and dominates nonlinear effects. 

As for water, the relative deviation of the analytical expression of the fundamental 
component (equation (24)) in relation to the numerical solution of the Burgers’ equation is 

about 12%  at 1   (figure 3a). It should be noted that for water, the deviations increase 

with   (figure 3a). Indeed, in this case nonlinear effects become important ( 2( ) p z  much 

greater than 02  P  ) and the analytical expression of the fundamental established with the 

quasi-linear approximation is not valid. 

For glycerol, the relative deviation of the analytical expression of the second harmonic 
(equation (25)) in relation to the numerical solution of the Burgers’ equation is much weaker 

than that resulting from equation (26) (figure 4b). As an example, for 0.1   the deviation 

obtained from equation (25) is lower than 1% , and that produced by equation (26) can reach 

40% . 
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Fig. 3. Relative deviation of the analytical expression of the fundamental compared to the 
numerical solution of the Burgers’ equation versus the   coordinate. 
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Fig. 4. Relative deviation of the respectively analytical expression of the second harmonic 
and the approximated second harmonic compared to the numerical solution of the Burgers’ 
equation versus the   coordinate. 

So, for a strongly dissipative liquid, equation (25) is a good approximation of the numerical 

solution of the Burgers’ equation (figure 4b). But, the equivalence of equations (25) and (26) 

is not checked (figure 4b). Indeed, equation (26) is a good approximation of equation (25) 

only if 2 1( 2 ) sl    is weak comparatively to unity. 

In the case of water, the relative deviation of the analytical expression of the second 

harmonic (equation (25)) in relation to the numerical solution of the Burgers’ equation is 

about 40%  at 1   (figure 4a). In fact, the determination of the analytical expression of the 

second harmonic is based on the analytical expression of the fundamental. As in the case of 

a slightly dissipative medium a noticeable deviation between 1( )p   and the numerical 

solution of the Burgers’ equation is observed, the deviation of the analytical expression of 

the second harmonic in relation to the numerical solution of the Burgers’ equation becomes 

more significant. These deviations increase with   (figure 4a). Moreover in this case, 

2 1( 2 ) sl    is weak comparatively to unity and equations (25) and (26) are equivalent. 

Consequently, the preceding comments are also applicable for the analytical expression of 

the approximated second harmonic (equation (26)) (figure 4a). 

According to this study, all these obtained solutions are valid, since the measurement is 

made near the source; otherwise some assumptions must be taken into account in the 

analysis of the propagation of finite amplitude acoustic waves in liquids. In addition, the 

analytical expressions precision depends essentially on the Goldberg’s number value. 

Moreover, for a strongly dissipative medium, the analytical expressions of the fundamental 

and second harmonic (equations (24) and (25)) can constitute a good approximation of the 

numerical solution of the Burgers’ equation. 

For a slightly dissipative medium, the analytical expressions established show discrepancies 
when compared to the numerical solution of the Burgers’ equation. Indeed, equation (24) 
assumes that the differential variation of the fundamental component with respect to the 
spatial coordinate is only proportional to the product of the absorption coefficient and the 
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acoustic pressure of the fundamental ( 1
1 1

( )
( )

p z
p z

z



 


). This hypothesis is not always 

checked (equation (16)). 

As mentioned at the beginning of this chapter, the performance of the simplified model 

(equation (26)) is interesting, as it can provide a simple, useful model for understanding 

phenomena in diagnostic imaging. In fact, tissue harmonic imaging offers several unique 

advantages over conventional imaging. The greater clarity, contrast and details of the 

harmonic images are evident and have been quantitatively verified, like the ability to 

identify suspected cysts... Despite the significant advantages offered by harmonic imaging, 

theory has been only partially explained. According to the theoretical development 

established in this chapter, equation (26) is valid only if 2 0( ) 2  p P    and 

2 1( 2 ) 1sl    . Not taking into account these assumptions can generate erroneous 

numerical results. 

On the other hand, as the finite amplitude method is based on pressure measurements of the 

finite amplitude wave distortion during its propagation, the analytical expressions of the 

fundamental (equation (24)), the second harmonic (equation (25)) and the approximated 

second harmonic (equation (26)) lead also to the measurement of the acoustic nonlinearity 

parameter . However, this method necessitates an accurate model taking into account 

diffraction effects (Labat et al., 2000; Gong et al., 1989; Zhang et al., 1991). The omission of 

this phenomenon can explain the discrepancies observed of the nonlinearity parameter 

values measured by the finite amplitude method compared to those achieved by the 

thermodynamic method (Law et al. 1983; Plantier et al., 2002; Sehgal et al., 1984; Zhang & 

Dunn, 1991). The latter is potentially very accurate. The major advantage of the 

thermodynamic method is that it does not depend on the characteristics of the acoustic field 

(Khelladi et al., 2007, 2009). 

4. Conclusion 

The validity domain of the fundamental and the second harmonic analytical expressions 

established with the quasi-linear approximation can be preset only on the derivation of the 

Goldberg’s number, which can be considered as a reliable indicator for any analysis 

incorporating nonlinear effects and dissipation. 

The obtained numerical results illustrate that the analytical expressions of the fundamental 

and the second harmonic established with the quasi-linear approximation provide a good 

approximation of the numerical solution of the Burgers’ equation for a propagation medium 

characterized by a Goldberg number that is small compared to unity. 

In the other hand, for a propagation medium characterized by a Goldberg number greater 

than unity, the analytical expressions of the fundamental and the second harmonic already 

established with the quasi-linear approximation are not checked and must be redefined. 

For that purpose, future studies will concentrate on a new mathematical formulation of the 

fundamental and second harmonic for a propagation medium characterized by a Goldberg 

number that is large compared to unity. 
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