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1. Introduction

Elongated cylindrical structures like rods, pipes, cable strands or fibers, support the
propagation of mechanical waves at ultrasonic frequencies along their axes. This waveguide
behaviour is used in a number of scientific and engineering applications: the Non
Destructive Evaluation (NDE) of the structural health of civil engineering elements for safety
purposes (Rose, 2000), in linear displacement sensors (Seco et al., 2009) for high accuracy
absolute linear position estimation, in the evaluation of material properties of metal wires,
optical fibers or composites (Nayfeh & Nagy, 1996), and as fluid sensors in pipes transporting
liquids (Ma et al., 2007). These applications demand exact quantitative models of the
processes of wave generation, propagation and reception of the ultrasonic signals in the
waveguides.

The mathematical treatment of mechanical wave propagation in cylindrical structures was
provided by J. Pochhammer and C. Chree at the end of the XIX century, but its complexity
prevented researchers from obtaining quantitative results until the advent of computers. D.
Gazis (Gazis, 1959) reported the first exact solutions of the Pochhammer-Chree frequency
equation, as well as a complete description of propagation modes and displacement and stress
distributions for an isotropic elastic tube, found with an IBM 704 computer. Since then, the
literature on the topic has grown steadily, and references are too numerous for this book
chapter. We will only mention a few landmark developments: the study of multilayered
waveguides beginning with a composite (two-layer) cylinder by H. D. McNiven in 1963;
the extension of Gazis’ results to anisotropic waveguides, initiated by I. Mirsky in 1965; the
consideration of fluids and media with losses surrounding, or contained in the waveguides,
beginning with V. A. Del Grosso in 1968; and finally, the demonstration of ultrasonic guided
waves generated with electromagnetic transducers by W. Mohr and P. Holler in 1976, and
piezoelectrically by M. Silk and K. Bainton in 1979, for the nondestructive testing of pipes.

1.1 Modelling the response of the waveguide to external excitation

Of particular importance for transducer design is the determination of the mechanical
response of a waveguide when subjected to an external excitation. Several approaches exist
to consider this problem.

Integral transform methods (Graff, 1991) convert the differential equations that physically
model the excitation forces and the behaviour of the waveguide into a set of algebraic
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equations, which are more easily solvable. However, in order to find the actual distribution
of the elastic field excited in the waveguide, inverse contour integration in the complex
plane has to be performed, which is usually complicated. Due to the complexity of the
Pochhammer-Chree equations, this procedure is only practical with simplified versions of
the wave equation, which in general are not accurate enough for ultrasonic frequencies. See
for example, Folk’s solution for the transient response of a semi-infinite rod to a step pressure
applied to its end (Folk et al., 1958).

The Semi-Analytical Finite Element (SAFE) method is a modification of Finite Element
Methods (FEM) in which the elastic field is expanded as a superposition of harmonic
waves in the azimuthal-axial (θ-z) plane, while discretized mechanical equations are used
in the radial (r) direction of the waveguide. This reduction of the number of dimensions
permits a much higher efficiency in the computation of the elastic fields (Hayashi et al.,
2003). Waveguides surrounded by infinite media (like a pipe submerged in soil) can be
handled by SAFE techniques with proper discretized elements (Jia et al., 2011), as well as
waveguides with arbitrary profiles: for example, a railroad rail in (Damljanovic & Weaver,
2004). Although finite element methods are powerful and flexible, they have the shortcoming
of great requirements on computer memory and processing time when large structures
or high frequencies of operation are considered, and the difficulty encountered in the
parameterization of transducer designs (for example, the determination of the transfer
function of the transducer-waveguide coupling).

Spectral methods are another numerical technique which approximate the differential elastic
equations of the waveguide (Helmholtz equations) by differentiation operators, turning the
problem of finding the wavenumber-frequency roots into a matrix eigenvalues determination
(Doyle, 1997). This numerical method, which is computationally simple and reportedly does
not suffer from the problems associated with large diameter waveguides at high frequencies,
has been recently applied to model multi-layered cylindrical waveguides (Karpfinger et al.,
2008).

Modal analysis is an analytical method based on the expansion of the forcing terms acting
in the waveguide into the set of its proper modes (Auld, 1973). In (Ditri & Rose, 1992),
modal analysis is employed to model the loading of a waveguide by a transducer array. This
treatment is extended to more general transducers and antisymmetric modes by (Li & Rose,
2001). Modal analysis is a mathematically exact technique that leads to a closed form integral
equation for the elastic fields in the waveguide, and which incorporates in a natural way the
issue of mode selectivity, offering insight on the physics of waveguide behaviour. For these
reasons, modal analysis will be the approach used in this work.

1.2 Intention and scope of the research

With this book chapter we contribute a numerical simulation treatment of the ultrasonic
behaviour of cylindrical waveguides, based on the Pochhammer-Chree (PC) theory, and
covering the aspects of assembly of the description matrix of the waveguide, tracing of
the frequency-wavenumber curves, computation of mode shapes, use of modal analysis
to determine the response of the waveguide to external excitations, and the dispersive
propagation of signals.

The work described here has resulted in a software package, named PCDISP, written in

the Matlab environment (Matlab, 2004), and freely available1 to be adapted to particular

1 PCDISP webpage: http://www.car.upm-csic.es/lopsi/people/fernando.seco/pcdisp
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Modelling the Generation and Propagation of Ultrasonic Signals in Cylindrical Waveguides 3

circumstances. The main features of the PCDISP software will be introduced in this chapter
alongside with the theoretical concepts upon which it is based.

The purpose of PCDISP is freeing the researchers from the numerically delicate, time
consuming issues arising in the solution of the PC equations, such as the creation of
the waveguide matrix, the numerical instabilities encountered when the thickness of the
waveguide or the operating frequency are high, the determination of proper modes and
the tracing of the dispersive wavenumber-frequency curves. In this way, the researcher can
concentrate in the study of the waveguide/transducer interaction as such.

As far as we are aware of, only two other software suites specifically designed for modelling
elastic wave propagation in cylindrical waveguides exist. Disperse (Pavlakovic & Lowe, 1999)
is a commercial package, based on matrix techniques, capable of analyzing cylindrical or
plate waveguides made of perfectly elastic or damped solids, as well as fluids. GUIGUW
(Bocchini et al., 2011) is a Matlab-based software which utilizes a SAFE-based approach to
model ultrasonic propagation in cylindrical, plate, and arbitrary cross section waveguides.
However, none of these computer solutions permit to model the waveguide response to
external excitations.

The organization of this chapter is detailed next. Section 2 briefly reminds the mathematical
background of the PC theory. Section 3 properly describes the main features of our
methodology and how it is implemented in the PCDISP package. Two common transducer
setups for the generation of ultrasonic waves are studied in section 4 with the help of PCDISP.
Finally, we will offer some conclusions and point to lines in which this research could be
further extended.

2. Background and nomenclature

In this section we present a summarized theoretical background on wave propagation
in cylindrical waveguides, treating such aspects as relevant for our purposes; standard
references can be consulted for further information (Graff, 1991; Meeker & Meitzler, 1972;
Rose, 1999).

A waveguide is a physical structure which supports the propagation of mechanical waves
along its elongated direction z, and modifies the behaviour of such waves with respect to free
propagation in the bulk material. There are two fundamental characteristics of waveguide
propagation. The first is the discretization of waves into propagating modes, of which only
a finite number are permitted for a given frequency, and whose properties are determined
by the shape of the cross section and boundary conditions of the waveguide. The second is
the existence of dispersion, which is the nonlinear relationship between wavenumber and
frequency. As a consequence, signals with a significant bandwidth are distorted as they travel
along the waveguide, because their spectral components propagate at different phase speeds.

The solutions of the wave equation in a cylindrical material are readily found by the use of
potentials and the technique of separation of variables, arriving at the following general form
for the displacement vector (û) and stress tensor (σ̂):

û(r, θ, z) = ũ(r, θ)ejkz = u(r)ejnθejkz σ̂(r, θ, z) = σ̃(r, θ)ejkz = σ(r)ejnθejkz, (1)

where the cylindrical system is used (with coordinates (r, θ, z), and unit vectors (er, eθ , ez)),

harmonic time variation e−jωt is assumed, and ω is the angular frequency, k the wavenumber,

3Modelling the Generation and Propagation of Ultrasonic Signals in Cylindrical Waveguides
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and integer n is a separation constant called the circumferential order, which determines the
symmetry of the solutions in the azimuthal direction.

The radial dependent part of the displacement vector and stress tensor is expressed in matrix
form as (Gazis, 1959):

u(r) =

⎡
⎢⎣

ur(r)

uθ(r)

uz(r)

⎤
⎥⎦ = Du(r) ·

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

L+

L−

SV+

SV−

SH+

SH−

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, σ(r) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

σrr(r)

σθθ(r)

σzz(r)

σθz(r)

σrz(r)

σrθ(r)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

= Dσ(r) ·

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

L+

L−

SV+

SV−

SH+

SH−

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2)

The amplitude coefficient vector A = [L+ L− SV+ SV− SH+ SH−]T consists of longitudinal
(L), shear vertical (SV), and horizontal (SH) deformation components, and the + and − terms
stand for perturbations propagating in the direction of increasing and decreasing radius,
respectively.

The coefficients of matrices Du and Dσ are of the general form Dij(r; n, k, ω, c), with c being the
elastic compliance tensor of the solid. These matrices are given explicitly in tables 1 and 2, for
the case of a mechanically isotropic material. They have been obtained from the equations of
motion with a symbolic computation program (Maple, 2007), and match those found in (Gazis,
1959), except for some typographical errors in the paper, also propagated to later works as
(Graff, 1991). Matrices Du and Dσ are implemented in the PCDISP package in function pcmat.

In tables 1 and 2, α2 = ω2/c2
vol − k2 and β2 = ω2/c2

rot − k2, where cvol and crot are respectively
the volumetric and rotational speeds of the solid (Rose, 1999). Functions Zn(x) and Wn(x)
are two independent solutions of Bessel’s differential equation, with, in general, complex
arguments x = αr, βr. Of the possible choices for Zn(x) and Wn(x), the numerical stability
of the frequency equation determinant is increased when Bessel’s ordinary functions Jn(x)
and Yn(x) are employed for real arguments, and the modified Bessel functions In(x) and
Kn(x) for purely imaginary arguments. With this choice, the contributions to the elastic field
from the standing waves propagating towards increasing (+) and decreasing (-) radius are
separated (see section 3.1.4 for more on the stability of the frequency equation determinant).
To cope with the fact that the recurrence relationships between Bessel’s ordinary functions are
different from those of the modified functions (Abramowitz & Stegun, 1964), signs λ1 and λ2
are introduced, following the scheme of table 3. For complex wavenumbers, PCDISP uses the
ordinary Bessel functions Jn(x), Yn(x) with complex values, and λ1 = λ2 = 1.

The solutions of the wave equation are classified in family modes according to their symmetry
properties, which depend on the circumferential index n of equation 1. Modes for which n = 0
have no dependence on the azimuthal coordinate θ and are labelled axisymmetric. They are
further divided into torsional modes T(0, m) (which only involve the azimuthal component,
and can be thought of as waves which twist the waveguide), and longitudinal modes L(0, m)
(with both radial and axial components). Antisymmetric modes (n ≥ 1) are labelled flexural
F(n, m), and involve all three components of the displacement vector. In general, multiple
propagating modes exist for a given circumferential order and frequency, so a second index m
is used to order them. Table 4 summarizes this information.

4 Ultrasonic Waves
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Modelling the Generation and Propagation of Ultrasonic Signals in Cylindrical Waveguides 5

Du
11 = nWn(αr)− αrWn+1(αr)

Du
12 = nZn(αr)− λ1αrZn+1(αr)

Du
13 = krWn+1(βr)

Du
14 = krZn+1(βr)

Du
15 = nWn(βr)

Du
16 = nZn(βr)

Du
21 = jnWn(αr)

Du
22 = jnZn(αr)

Du
23 = −jkrWn+1(βr)

Du
24 = −jkrZn+1(βr)

Du
25 = jnWn(βr)− jβrWn+1(βr)

Du
26 = jnZn(βr)− jλ2βrZn+1(βr)

Du
31 = jkrWn(αr)

Du
32 = jkrZn(αr)

Du
33 = jλ2βrWn(βr)

Du
34 = jβrZn(βr)

Du
35 = 0

Du
36 = 0

Table 1. Coefficients of the displacement matrix Du of equation 2 (all Du
ij coefficients must be

multiplied by 1/r).

3. Methodology for the simulation of the waveguide behaviour

In this section we describe the methodology used to study waveguide generation and
propagation of ultrasonic signals, discuss the numerical issues encountered, and the approach
used in the PCDISP package. The full process consists in four stages: assembly of the
waveguide description matrix, tracing of the dispersion curves, modal analysis of the excited
modes, and modelling of the signal propagation along the waveguide.

While dealing with these topics, we will introduce the relevant PCDISP routines that should
be used for the computations. Table 5 shows the components of the PCDISP software,
arranged by their functionality. Throughout this chapter, we will use monospace fonts (like
pcmat) to refer to programs of the package.

3.1 Assembling the waveguide description matrix

The waveguide description matrix contains the necessary information to study the mechanical
behaviour of the waveguide. It is built by matching the displacement vector and stress tensor
between adjacent layers, and applying the external boundary conditions. In PCDISP, the
physical data of the waveguide is provided in routine pcwaveguide, and the description
matrix itself is built in pcmatdet.

5Modelling the Generation and Propagation of Ultrasonic Signals in Cylindrical Waveguides
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Dσ
11 = ((k2 − β2)r2 + 2(n − 1))Wn(αr) + 2αrWn+1(αr)

Dσ
12 = ((k2 − β2)r2 + 2(n − 1))Zn(αr) + 2λ1αrZn+1(αr)

Dσ
13 = 2λ2βkr2Wn(βr)− 2(n + 1)krWn+1(βr)

Dσ
14 = 2βkr2Zn(βr)− 2(n + 1)krZn+1(βr)

Dσ
15 = 2n(n − 1)Wn(βr)− 2nβrWn+1(βr)

Dσ
16 = 2n(n − 1)Zn(βr)− 2nλ2βrZn+1(βr)

Dσ
21 = ((2α2 − β2 + k2)r2 − 2n(n − 1))Wn(αr)− 2αrWn+1(αr)

Dσ
22 = ((2α2 − β2 + k2)r2 − 2n(n − 1))Zn(αr)− 2λ1αrZn+1(αr)

Dσ
23 = 2(n + 1)krWn+1(βr)

Dσ
24 = 2(n + 1)krZn+1(βr)

Dσ
25 = −2n(n − 1)Wn(βr) + 2nβrWn+1(βr)

Dσ
26 = −2n(n − 1)Zn(βr) + 2nλ2βrZn+1(βr)

Dσ
31 = (2α2 − β2 − k2)r2Wn(αr)

Dσ
32 = (2α2 − β2 − k2)r2Zn(αr)

Dσ
33 = −2λ2βkr2Wn(βr)

Dσ
34 = −2βkr2Zn(βr)

Dσ
35 = 0

Dσ
36 = 0

Dσ
41 = −2nkrWn(αr)

Dσ
42 = −2nkrZn(αr)

Dσ
43 = k2r2Wn+1(βr)− λ2nβrWn(βr)

Dσ
44 = k2r2Zn+1(βr)− nβrZn(βr)

Dσ
45 = −nkrWn(βr) + βkr2Wn+1(βr)

Dσ
46 = −nkrZn(βr) + λ2βkr2Zn+1(βr)

Dσ
51 = 2jnkrWn(αr)− 2jkαr2Wn+1(αr)

Dσ
52 = 2jnkrZn(αr)− 2jλ1kαr2Zn+1(αr)

Dσ
53 = jλ2nβrWn(βr)− j(β2 − k2)r2Wn+1(βr)

Dσ
54 = jnβrZn(βr)− j(β2 − k2)r2Zn+1(βr)

Dσ
55 = jnkrWn(βr)

Dσ
56 = jnkrZn(βr)

Dσ
61 = 2jn(n − 1)Wn(αr)− 2jnαrWn+1(αr)

Dσ
62 = 2jn(n − 1)Zn(αr)− 2jnλ1αrZn+1(αr)

Dσ
63 = −jλ2βkr2Wn(βr) + 2jkr(n + 1)Wn+1(βr)

Dσ
64 = −jβkr2Zn(βr) + 2jkr(n + 1)Zn+1(βr)

Dσ
65 = j(2n(n − 1)− β2r2)Wn(βr) + 2jβrWn+1(βr)

Dσ
66 = j(2n(n − 1)− β2r2)Zn(βr) + 2jλ2βrZn+1(βr)

Table 2. Coefficients of the stress matrix Dσ of equation 2 (all Dσ
ij coefficients must be

multiplied by G/r2, where G is the shear modulus of the material).

6 Ultrasonic Waves
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Modelling the Generation and Propagation of Ultrasonic Signals in Cylindrical Waveguides 7

Wavenumber Frequency range Coefficients Bessel functions

Real ω/k < cvol, crot
α2, β2

< 0

λ1, λ2 = −1

Zn(αr) = In(αr) Wn(αr) = Kn(αr)

Zn(βr) = In(βr) Wn(βr) = Kn(βr)

Real crot < ω/k < cvol
α2

< 0, β2
> 0

λ1 = −1, λ2 = 1

Zn(αr) = In(αr) Wn(αr) = Kn(αr)

Zn(βr) = Jn(βr) Wn(βr) = Yn(βr)

Real ω/k > cvol, crot α2, β2
> 0

λ1, λ2 = 1 Zn(αr) = Jn(αr) Wn(αr) = Yn(αr)

Zn(βr) = Jn(βr) Wn(βr) = Yn(βr)

Imaginary any

Complex any
α2, β2 complex

λ1, λ2 = 1

Table 3. Choice of Bessel functions in the solution of the Pochhammer-Chree’s equations.

Modes Coefficients Displacement Stress

Torsional T(0, m) SH± uθ σθz, σrθ

Longitudinal L(0, m) L±, SV± ur, uz σrr, σθθ , σzz σrz

Flexural F(n, m) L±, SV±, SH± ur, uz, uθ σrr, σθθ , σzz, σrz, σθz, σrθ

Table 4. Notation and non-null components of the amplitude coefficients, displacement
vector, and stress tensor, for the three family modes of a cylindrical waveguide.

3.1.1 Single layer waveguides

Consider an isotropic tube of inner radius rint and outer radius rext in vacuum or air. The
boundary conditions specify that the traction part of the stress tensor is null in both surfaces
of the tube (Gazis, 1959), so:

σt = σ · er = [σrr, σrθ, σrz]
T = 0 for r = rint, rext, (3)

which leads to the following matrix determinant equation:

det D(ω, k) = det

[
Dσt(rint)

Dσt(rext)

]
= 0, where Dσt = Dσ

ij with i = 1, 5, 6. (4)

Equation 4 is called the frequency or characteristic equation of the waveguide, and its roots
(ω, k) determine the proper modes supported by it. Once these roots are known, the vector
of amplitude coefficients A is determined (up to a multiplicative constant) by solving the
following homogeneous system of equations:

D(ω, k) · A = 0. (5)

Since matrix D(ω, k) is singular at the mode’s frequency-wavenumber roots, a robust method
for computing the amplitude, like the singular value decomposition (SVD), is recommended
(Press et al., 1992). With A determined, the distribution of u(r) and σ(r) is computed by
routine pcmatdet.

The original Pochhammer-Chree formulation was developed for the simple case of a one-layer
isotropic waveguide in vacuum; this, however, represents just a fraction of the waveguides of
practical importance. Waveguides may be constituted by several layers, might be built with

7Modelling the Generation and Propagation of Ultrasonic Signals in Cylindrical Waveguides
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Core routines

pcwaveguide Physical description of the waveguide

pcmat Computes matrices Du(r) and Dσ(r) (tables 1 and 2)

pcmatdet Assembles and solves the waveguide description matrix

pcviewmatdet View the entries of the matrix determinant

Plotters and solvers of the frequency equation

pcplotmatdet1D One-dimensional plot of the freq. eq. determinant vs. k, f , or cph

pcplotmatdet2D Two-dimensional plot of the freq. eq. determinant in k- f space

pcsolvebisection Bisection method to find roots of the freq. eq. vs k, f , or cph

pcdisp Plots the phase and group speeds vs. frequency

pckfcurves Traces k- f curves for real, imaginary, and complex k

pcsolverandom Random solutions of the freq. eq. for complex k

Field computing and wave propagation

pcwaveform Finds the displacement vector u(r) and the stress tensor σ(r)

pcorthogonalcheck Checks the orthogonality of modes in the waveguide

pcsignalpropagation Simulates the propagation of a signal along the waveguide

Modal analysis

pcextsurfacestress External traction stresses σe acting on the waveguide

pcextvolumforce External volumetric forces fe acting on the waveguide

pcplotexcitation Plots the excitation volumetric force and surface stress

pcmodalanalysis Finds the amplitudes of modes excited in the waveguide

Table 5. Components of the PCDISP software.

anisotropic materials, be embedded in the ground, or transport (or be surrounded by, or both)
fluids. We will consider next the extensions of the PC theory which permit to model these
situations.

3.1.2 Multilayered waveguides

Some waveguides are formed by several layers: for example, a metallic rod with external
insulation, or a tube embedded in rock. The Pochhammer-Chree approach was first used
to analyze a two-layer waveguide in (McNiven et al., 1963; Whittier & Jones, 1967), and later
extended to laminated waveguides (formed by an arbitrary number of layers) in (Nelson et al.,
1971). The modern technique to simulate multilayered waveguides is called the Multiple
Layer Matrix (MLM) (Lowe, 1995), and is adapted from the transfer matrix and global matrix
techniques developed by W.T. Thomson and L. Knopoff in the period 1950-1964 to study wave
propagation in stratified media in seismology.

Following the MLM approach, we assemble a system of linear equations for the complete
waveguide, which includes the equations of the elastic waves for each individual layer
(obtained with pcmat), the equations which match the displacement and traction stresses
at the interface between adjacent layers, and the boundary conditions. Consider the example
of a multilayered waveguide shown in figure 1, where a solid cylinder of radius r1 is enclosed

8 Ultrasonic Waves
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Modelling the Generation and Propagation of Ultrasonic Signals in Cylindrical Waveguides 9

l=1

r

r

l=2

l=3
2

1

Fig. 1. Example of a three-layer cylindrical waveguide.

by a tube of inner radius r1 and outer radius r2, in turn surrounded by an infinite medium.
The corresponding system of equations is:

⎡
⎢⎢⎢⎣

Du
1−(r1) −Du

2±(r1)

Dσt
1−(r1) −Dσt

2±(r1)

Du
2±(r2) −Du

3+(r2)

Dσt
2±(r2) −Dσt

3+(r2)

⎤
⎥⎥⎥⎦ ·

⎡
⎢⎣

A1−

A2±

A3+

⎤
⎥⎦ = 0. (6)

Note that the radiation conditions are used to simplify the system matrix, leading to discard
the + terms in region 1, since no waves can emanate from r = 0; similarly, the - terms in
region 3 are not considered, as no energy comes from r = ∞; however, both outgoing and
incoming terms are allowed in the middle region. In each case the unneeded columns of
matrix Dσt are removed. Next, this equation is solved by the SVD method to find the mode’s
amplitude vector, in the same way as the single layer waveguide of section 3.1.1.

3.1.3 Anisotropic and fluid-loaded waveguides

Materials with mechanical anisotropy are routinely employed to build waveguides, and
their behaviour is modelled by taking into account the adequate compliance tensor for the
material (Pollard, 1977). The important case of hexagonal symmetry is found in waveguides
with transverse isotropy (with respect to the propagation axis z), like beryllium, or in fiber
reinforced composite cylinders. Although in this case there are five elastic constants (up from
two for an isotropic material), the mechanical fields are still separable with the treatment
of Gazis for isotropic waveguides, with different coefficients for the Du and Dσ matrices,
obviously (Mirsky, 1965). In the case of purely orthotropic symmetry (three orthogonal
planes of symmetry), the solution of the wave equation is not separable; still, closed solutions
can be achieved in the form of a Frobenius power series (obtained in (Mirsky, 1964) for
the axisymmetric case, and extended later in (Markus & Mead, 1995) to the asymmetric
problem). A recent state of the art in the theory of mechanical waves in anisotropic cylindrical
waveguides is found in (Grigorenko, 2005).

Materials with elastic losses (damping) are treated by the Kelvin-Voigt viscoelastic model
(Lowe, 1995), which replaces the elements of the compliance tensor c of the material by

9Modelling the Generation and Propagation of Ultrasonic Signals in Cylindrical Waveguides
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10 Will-be-set-by-IN-TECH

operators which contain time derivatives, therefore modifying Hooke’s law:

σ = c · ǫ ⇒ σ = c′ · ǫ + c′′ ·
dǫ

dt
= (c′ − jωc′′)ǫ,

where σ and ǫ are the stress and strain tensors, and component c′′ of the compliance tensor
models the viscoelastic losses. The solutions of the frequency equation for a waveguide with
viscoelastic losses, are, by default, complex wavenumbers.

A case of particular practical importance is that of waveguides including a fluid layer (for
example, a pipe carrying a fluid, submerged in a fluid, or both). The theoretical treatment
depends on the viscosity of the fluid.

The influence of inviscid fluids (which do not support shear stresses) on cylindrical
wave propagation is treated theoretically and experimentally in (Sinha et al., 1992). If the
waveguide is submerged in a liquid, propagating modes with complex wavenumber appear,
which radiate (leak) energy into the surrounding fluid. That does not happen for waveguides
containing fluids and surrounded by vacuum, although the propagating modes themselves
are modified from the unloaded situation.

A treatment for Newtonian viscous fluids which is compatible with the PC based formulation
of wave propagation in cylinders is introduced in (Nagy & Nayfeh, 1996). In a form similar to
the Kelvin-Voigt model, the viscous liquid is modelled as an isotropic solid whose compliance
tensor includes complex elements:

c11 = λ +
4

3
c44 c12 = λ −

2

3
c44 c44 = −jωη, (7)

where λ is the compressibility of the fluid, and η its viscosity. This simple model has shown a
good accuracy in predicting propagation in waveguides with viscous fluids (Aristegui et al.,
2001). Indeed, the changes in the propagation of ultrasonic waves in a pipe caused by the
presence of a fluid in its interior can be used to measure the longitudinal wave speed and the
viscosity of the fluid (Ma et al., 2007).

3.1.4 The case of large frequency × thickness product

Solutions of the frequency equation become numerically unstable when the product frequency
times thickness of the waveguide is high. Physically, this phenomenon arises because
the standing waves established in the radial direction of the waveguide are formed by a
combination of terms which increase exponentially with the radius r and others that decrease
exponentially with it. Since it is the sum of both terms which must match the boundary
conditions at r = rint and r = rext, the dynamic range of positive and negative exponentials
in the frequency equation will eventually overflow the numerical capacity of the machine
if the radius or frequency increase. With the 64 bits double precision arithmetic of the
IEEE 754 standard, we have found that a direct implementation of the frequency equation
determinant fails when the product f · (rext − rint) is higher than approximately 30 MHz·mm.
This threshold is easily reached in the NDE of piping with ultrasonic waves, where frequencies
of a few megahertz are common (Rose, 2000).

From table 3, we can see that the problem arises when a mode’s phase velocity falls below
the volumetric (cvol) or rotational (crot) speeds of the solid, making parameters α or β,
respectively, become imaginary. This changes the radial dependence of the mode amplitude
from the bounded Bessel functions J and Y, to the exponentially varying I and K (you can
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Fig. 2. Partition of the waveguide’s cross section for solving the large f d problem.

use pcviewmatdet to see the individual entries of the waveguide description matrix). The
behaviour is different depending on the frequency range:

• For cph < crot, both α and β are imaginary, and there exist two solutions of the frequency
equation, corresponding to two Rayleigh modes propagating close to the outer and inner
surfaces of the waveguide, and with amplitudes decaying exponentially from them. As the
frequency increases, these two modes become decoupled, the opposite waveguide surface
can ultimately be ignored, and the solutions are numerically stable.

• For crot < cph < cvol, α is imaginary and β real. While the SV± and SH± terms remain
bounded, the terms L+ and L− decrease and increase, respectively, with the radius,
as described above. The condition number of the waveguide matrix grows with the
frequency, and its solution will eventually become unstable.

• For cph > cvol, both α and β are real, and the solution is stable (this is also the case with
purely imaginary wavenumber).

Since the detection of the large f d problem in 1965, several solutions have been proposed to
increase the numerical stability in plane waveguides (Lowe, 1995). We have not been able
to locate similar studies for cylindrical waveguides, so, for the PCDISP software, we have
developed an algorithm adapted from the transfer matrix and global matrix approaches and
discussed here. We consider this method as a new contribution to the literature.

The cross section of the pipe is divided into L layers of equal thickness, where the l-th layer
is given by rl−1 < r < rl , and r0 = rint and rL = rext are the inner and outer radii of the pipe
(see figure 2). In the l-th layer, the displacement vector and traction part of the stress tensor
are given by: [

u(r)

σ(r)

]

l

=

[
Du(r)

Dσt(r)

]
· Al , (8)

where the vector of amplitude coefficients Al = [Ll
+ Ll

− SVl
+ SVl

− SHl
+ SHl

−]
T is permitted

to be different for each layer.

We use the shorthand notation:

Dl =

[
Du(rl)

Dσt(rl)

]
,

and scale this matrix by columns for each layer as:

Ds
l = Dl · Gl , (9)

where Gl is a diagonal matrix whose entries are taken as 1/ max col|Dl |.

11Modelling the Generation and Propagation of Ultrasonic Signals in Cylindrical Waveguides

www.intechopen.com



12 Will-be-set-by-IN-TECH

The elastic field [u σ]T is propagated from the inner to the outer part of a layer by the following
equation: [

u(rl)

σ(rl)

]
− Pl ·

[
u(rl−1)

σ(rl−1)

]
= 0, (10)

where Pl is the propagator matrix of layer l, and is given by:

Pl = Ds
l · (G

−1
l · Gl−1) · (D

s
l−1)

−1. (11)

Applying equation 10 to all the layers of the waveguide, we can assemble a global matrix:

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

P1 −I6

P2 −I6

. . .

PL−1 −I6

PL −I6

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u0

σ0

u1

σ1

...

uL−1

σL−1

uL

σL

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 0, (12)

where I6 is the identity matrix of size 6 × 6.

The boundary conditions to match the wave fields to the surrounding medium (or to other
layers in multilayered waveguides) are introduced at radii rint and rext. In the case of stress
free boundaries, the terms σ0 and σL are zero, and their corresponding columns are simply
removed from the global matrix.

Once equation 12 has been solved, and we have determined the displacements and traction
stresses at each layer boundary [ul , σl], the vector of amplitude coefficients for each layer is
found by solving:

⎡
⎢⎣

Ds
l−1

Ds
l · (G

−1
l · Gl−1)

⎤
⎥⎦ · As

l =

⎡
⎢⎢⎢⎣

ul−1

σl−1

ul

σl

⎤
⎥⎥⎥⎦ , (13)

for l = 1, . . . L. The unscaled amplitude vector is simply: Al = Gl · As
l .

The algorithm described increases the f d stability limit by a factor proportional to the number
of layers L, at the expense of larger matrices and longer computational time. In PCIDSP, the
algorithm described is written into routine pcmatdet, and is activated automatically if the
waveguide defined in pcwaveguide consists of NL > 1 layers of the same material.

3.2 Computation of the dispersion curves

The roots of the waveguide’s frequency equation represent the mechanical modes which
satisfy the boundary conditions. The procedure for computing such solutions is described
in this section.

12 Ultrasonic Waves

www.intechopen.com



Modelling the Generation and Propagation of Ultrasonic Signals in Cylindrical Waveguides 13

Material Aluminium Standard DN 25, SCH 80

Inner radius (rint) 12.15 mm Outer radius (rext) 16.70 mm

Poisson’s ratio (ν) 0.35 Bar velocity (c0) 5000 m/s

Density (ρ) 2700 kg/m3 Shear modulus (G) 25.5 GPa

Table 6. Physical data for the aluminium tube used for demonstration of the PCDISP
software in this book chapter.

3.2.1 Nature and ordering of the solutions of the frequency equation

For a given frequency f , the roots of the frequency equation are in general complex
wavenumbers k = kr + jki. Wavenumbers with ki = 0 correspond to the propagating
or proper modes of the waveguide; those with ki �= 0 represent evanescent modes which
attenuate along the axial distance z. Due to the symmetry of the coefficients of the frequency
equation, purely real or imaginary solutions appear in pairs (±kr and ±jki), while complex
solutions do so in quartets (±kr ± jki). The principle of the conservation of energy dictates
which solutions are valid in a waveguide problem. For example, waves which propagate
towards the z+ axis of an infinite waveguide, will necessarily have Im{k} ≥ 0. Although
signal propagation does not occur for imaginary or complex wavenumbers, those solutions
are needed to fulfill the condition of completeness which will be stated in section 3.3.
Furthermore, stationary waves formed by combination of the two wavenumbers kr + jki
and −kr + jki (provided that ki > 0), can exist locally, storing but not dissipating energy
(Meeker & Meitzler, 1972). In ultrasonic applications, these waves are important in the region
of generation of ultrasonic waves, at waveguide discontinuities (like defects), and at the
waveguide ends.

Solutions of the frequency equation can be traced like continuous curves in the k- f space,
where k = kr + jki. As an example, we show the dispersion curves of the longitudinal
modes L(0,m) of a sample waveguide with the data shown in table 6 (this waveguide will
be further used in the examples of section 4). The complete spectrum, up to 3 MHz, has
been computed with the pckfcurves routine of PCDISP, and is shown in figure 3. As it can
be seen, the wavenumber curve of a given mode changes from a real value (shown in blue
colour) to purely imaginary (coloured red, and projected into the negative wavenumber axis),
or complex (plotted in green, with the real part on the positive k axis, and the imaginary part
on the negative k axis), in a complicated fashion.

After finding all possible roots of the frequency equation, branches L(0,m) have to be ordered
in such a way that each mode is assigned a unique, continuous wavenumber between the
maximum frequency fmax and zero frequency. Part (b) of figure 3 shows a reduced frequency
range of the spectrum in part (a), and illustrates the convention for labelling modes. PCDISP
uses the following rules about the behaviour of dispersion curves (Meeker & Meitzler, 1972):

• Only the first torsional T(0,1), longitudinal L(0,1), and first flexural F(1,1), modes propagate
down to zero frequency with real wavenumber.

• Higher order modes switch from real to imaginary wavenumber at the cutoff frequencies
when the wavenumber becomes null (k = 0, f = fcutoff), and the phase speed infinite.

• Miminum points (dω/dk = 0, d2ω/dk2
> 0) of either real or imaginary wavenumber

branches are also cutoff frequencies (with finite phase speed), from which complex
wavenumber branches start.
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Fig. 3. Wavenumber-frequency plot for the L(0,m) modes of the aluminum pipe of table 6, for
frequencies up to 3 MHz (part a). Part b shows the low-frequency spectrum, and the
labelling scheme for the modes. Parts c and d show near crosses of the branches of two
different modes; they have to be largely magnified to be visible.

• Complex branches terminate either at zero frequency or at the maximum points (dω/dk =
0, d2ω/dk2

< 0) of imaginary branches.

• The branches are ordered such that ki is positive for modes propagating in the z+ direction,
and that the sign of the group speed does not change along the curve (although it becomes
null at the cutoff frequencies, and at the purely imaginary branches).

3.2.2 Algorithm for curve tracing in PCDISP

In order to generate continuous curves k = k( f ), from f = 0 to f = fmax, for each mode,
pckfcurves first traces the real wavenumber branches, which start at solutions found with
pcsolvebisection at the f = fmax and k = kmax axes, and finish at the k = 0 axis. If
one is only interested in propagating modes, this finishes the procedure, and the pcdisp

routine can be used to plot the phase and group speeds of propagating modes in the specified
frequency range. Otherwise, the next step consists in tracing branches with purely imaginary
wavenumber, which start at points (0, fcutoff) on the vertical axis of zero wavenumber, and
finish when they reach the f = fmax, k = jkmax axes, or at another cutoff frequency in the
k = 0 axis.
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Fig. 4. Illustrates the root tracing algorithm used by PCDISP.

Parts (c) and (d) of figure 3 show the reason why a robust algorithm for curve tracing of the
dispersion branches is needed, in order to avoid the apparent crossings between branches,
such as modes L(0,7) and L(0,8), with real wavenumbers, and modes L(0,9) and L(0,10),
with imaginary wavenumbers. The curve tracing method used in pckfcurves is shown
in figure 4. The dispersion curve being traced is extrapolated from the three last computed
points {i − 2, i − 1, i} to define an angular interval of width dθ in a circle of radius dr(i)
centered in the last correctly determined point (i) (dr is the step size of the algorithm, in
normalized coordinates of the k- f space). If a sign change is found in this interval, the
algorithm proceeds with a bisection method to accurately estimate the position of point i + 1
(this is the normal situation). Otherwise, the dispersion curve might have undergone a sudden
change of curvature, or another mode might have come very close to the one being traced,
provoking multiple sign changes. In this case, the step dr(i) is decreased, or, if needed, points
i − 1, i − 2, etc, are recomputed with a smaller step dr. Summarizing, the tracing algorithm
of PCDISP keeps track of the curvature of the branch and the proximity of neighbouring
branches, adjusting the interval step between consecutive points accordingly.

It must be pointed out that the frequency equation has spurious solutions at the lines with
slope equal to the volumetric and rotational speeds of the solid (ω/k = cvol and ω/k =
crot), which have to be removed by the root finding algorithm. In the case of multilayered
waveguides, the same phenomenon happens for the speeds of each layer.

The dispersion curves are completed by tracing the complex wavenumber branches k = kr +
jki, starting from the extrema points of the real/imaginary wavenumber branches. Tracing
the complex wavenumber branches needs more computational effort, since it is required to
solve simultaneously for the real and imaginary parts of the wavenumber; we have obtained
satisfactory results with Muller’s method (Press et al., 1992) using also an adaptive step.

Finally, the rules enumerated at the end of section 3.2.1 are used to convert the initially
obtained branches into continuous dispersion curves k = k( f ) for each mode. An example
of this procedure is shown in part (b) of figure 3. First, note that all longitudinal modes except
L(0,1) exhibit cutoff. Mode L(0,2) is cut off at (k = 0, f = 59.7 kHz), where it switches

to a branch with imaginary wavenumber which goes on until (k = 67j m−1, 58.5 kHz),

15Modelling the Generation and Propagation of Ultrasonic Signals in Cylindrical Waveguides

www.intechopen.com



16 Will-be-set-by-IN-TECH

DD

D

e

e

r

r

ext

int

int ext

ext

int

Fig. 5. Cross section of the waveguide and definition of the regions of integration for modal
analysis.

the minimum point of the imaginary branch. At that point, it is joined by the branch
corresponding to mode L(0,3), and both go down to zero frequency with negative complex
conjugate wavenumbers kr + jki and −kr + jki.

Similarly, mode L(0,4) is cut off at the minimum point of the real wavenumber branch (k =
345 m−1, f = 621.5 kHz). Mode L(0,5) is cut off at (k = 0, f = 698.6 kHz), changes to
imaginary wavenumber until it reaches point (k = 0, f = 669.4 kHz), and then again to real,

but negative, wavenumber down to (k = 345 m−1, f = 621.5 kHz), where it joins mode L(0,4).
Mode L(0,5) has a negative wavenumber (and consequently, negative phase speed ω/k), in
order to maintain a positive group velocity dω/dk, since this is a propagating mode in the z+
direction of the waveguide, according to the last rule of section 3.2.1. Below 621.5 kHz, the
dispersion curves of modes L(0,4) and L(0,5) descend to zero frequency with negative complex
conjugate wavenumbers, in the same way as modes L(0,2) and L(0,3).

3.3 Modal analysis

Modal analysis is a mathematical technique which permits to compute the dynamic response
of a waveguide subject to arbitrary external forces, as an expansion of the excited wave over
the set of normal modes of the waveguide, as defined in section 2 (Auld, 1973). Modal analysis
is based upon two properties of normal modes: orthogonality, the existence of a scalar product
which is null for any two different modes; and completeness, the capacity of the set of normal
modes to span arbitrary waveforms in the waveguide.

For two different modes of the waveguide (1) and (2) of the form given in equation 1, the
orthogonality relationship (Auld, 1973) establishes that:

∇̂ · (û1 · σ̂∗
2 − û∗

2 · σ̂1) = 0, (14)

which is applicable to linear elastic materials and also to piezoelectric or magnetostrictive
linear materials, assuming no elastic or dielectric losses. Later on this result will be generalized
to include external forces and stresses.

For separable vector fields in the z coordinate, the tridimensional divergence operator can be
written as:

∇̂ · { } = ∇̃ · { }+
∂

∂z
{ } · ez,
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so equation 14 becomes:

∇̃ · (ũ1 · σ̃∗
2 − ũ∗

2 · σ̃1)e
j(k1−k∗2)z + j(k1 − k∗2)e

j(k1−k∗2)z(ũ1 · σ̃∗
2 − ũ∗

2 · σ̃1) · ez = 0. (15)

Discarding the common factor ej(k1−k∗2)z, integrating over the cross section D of the waveguide,
and applying the divergence theorem, we find that:

∮

∂D
(ũ1 · σ̃∗

2 − ũ∗
2 · σ̃1) · en dl + j(k1 − k∗2)

∫∫

D
(ũ1 · σ̃∗

2 − ũ∗
2 · σ̃1) · ez dS = 0. (16)

In equation 16, ∂D = ∂Dint ∪ ∂Dext represents the inner and outer surfaces of the waveguide,
and the normal unit vector en is taken on each surface pointing out of the waveguide’s interior,
as shown in figure 5.

Because for proper modes the surface traction stress is null (σ̂t = σ̂ · en = 0 in ∂D), the first
integral of equation 16 is zero. Then a suitable scalar product of modes (1) and (2) is:

P12 = −
jω

4

∫∫

D
(ũ1 · σ̃∗

2 − ũ∗
2 · σ̃1) · ez dS = −

jπω

2

∫ rext

rint

(u1 · σ∗
2 − u∗

2 · σ1) · ez · r dr. (17)

In the right part of equation 17 we have assumed that the circumferential order n of modes
(1) and (2) is the same; otherwise, P12 is zero automatically due to the integration over the
θ coordinate. The factor −jω/4 is introduced so that the quantity P11 equals to the integral of
the acoustic Poynting vector in the cross section of the waveguide, i.e., the power transported
by the mode. For nonpropagating modes with ki �= 0, P11 is zero.

With this notation, equation 16 reduces to:

(k1 − k∗2)P12 = 0, (18)

which implies that P12 = 0 unless k1 = k∗2 . In PCDISP, mode orthogonality can be verified
with routine pcorthogonalcheck.

The second condition for modal analysis is completeness, which is based on the premise that
an arbitrary perturbation in the waveguide can be expanded in the set of normal modes:

û1(r, θ, z) = ∑
p

ap(z)ũp(r, θ) σ̂1(r, θ, z) = ∑
p

ap(z)σ̃p(r, θ). (19)

where the modes are indexed by p, and no distinction has been made between propagating
and evanescent modes. The problem lies in computing the set of coefficients ap(z), when the
waveguide is under an arbitrary excitation composed of:

1. A vector force field f̂e(r, θ, z) acting on the bulk material of the tube (region D). In PCDISP,
this vector force field is defined in pcextvolumforce.

2. A traction stress σ̂e(r, θ, z) applied to the tube surfaces (region ∂D). In PCDISP, this surface
stress is defined in pcextsurfacestress.

In the case of existence of external fields, the orthogonality relationship, equation 14, must be
generalized to (Auld, 1973):

∇̂ · (û1 · σ̂∗
2 − û∗

2 · σ̂1) = −û1 · f̂ ∗2 + û∗
2 · f̂1, (20)

where f̂1,2(r, θ, z) represent the forcing terms.
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If we take subscript (1) for the wave existing in the waveguide (equation 19) and (2) as the
q-th proper mode of the waveguide:

û2(r, θ, z) = ũq(r, θ)ejkqz σ̂2(r, θ, z) = σ̃q(r, θ)ejkqz, (21)

we can insert both expressions into equation 20, and, letting f̂2 = 0 since it corresponds to a
normal mode in the waveguide, we obtain that:

∇̂ ·

[

∑
p

ap(z)(ũp · σ̃∗
q − ũ∗

q · σ̃p)e
−jkqz

]
= ũ∗

q · f̂1e−jkqz. (22)

Operating with the divergence operator:

∑
p

ap(z)∇̃ · (ũp · σ̃∗
q − ũ∗

q · σ̃p) +∑
p

[
−jkqap(z) +

dap(z)

dz

]
(ũp · σ̃∗

q − ũ∗
q · σ̃p) · ez = ũ∗

q · f̂1, (23)

which, when integrating across the transversal section of the tube, with the divergence
theorem, reduces to:

∑
p

ap(z)
∮

∂D
(ũp · σ̃∗

q − ũ∗
q · σ̃p) · en dl

︸ ︷︷ ︸
(A)

+

∑
p

[
−jkq +

d

dz

]
ap(z)

∫∫

D
(ũp · σ̃∗

q − ũ∗
q · σ̃p) · ez dS

︸ ︷︷ ︸
(B)

=
∫∫

D
ũ∗

q · f̂1 dS
︸ ︷︷ ︸

(C)

. (24)

The first term simplifies as σ̂q · en = 0 in ∂D, and we can combine the sum over the index p to
find:

(A) = −
∮

∂D
(ũ∗

q · σ̂1) · en dl.

As for the second term, if we assume that p is a propagating mode, we recall the property
of orthogonality of the propagating modes of the waveguide, and the definition of acoustic
power Pp in equation 17, to eliminate all the terms of the sum except the one for which p = q:

(B) = −
4Pp

jω

(
−jkp +

d

dz

)
ap(z).

Inserting this result in the preceding equation:

−
4Pp

jω

(
−jkp +

d

dz

)
ap(z) =

∮

∂D
(ũ∗

p · σ̂1) · en dl +
∫∫

D
ũ∗

p · f̂1 dS, (25)

where the contributions to the mode amplitude due to the volumetric forces ( f̂1 = f̂e) and the
surface tractions (σ̂1 = σ̂e) appear clearly separated. With the following definitions:

f s
p(z) = −jω

∮

∂D
[ũ∗

p(r, θ) · σ̂e(r, θ, z)] · en dl = −jω
∮

∂D
e−jnpθ · [u∗

p(r) · σ̂e(r, θ, z)] · en dl, (26)
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and

f v
p (z) = −jω

∫∫

D
[ũ∗

p(r, θ) · f̂e(r, θ, z)] dS = −jω
∫∫

D
e−jnpθ · [u∗

p(r) · f̂e(r, θ, z)] dS, (27)

equation 25 is changed into an ordinary differential equation, solvable by a standard change
of variables, resulting in:

ap(z) =
ejkpz

4Pp

∫

Rg

e−jkpz′ [ f s
p(z

′) + f v
p (z

′)] dz′, (28)

where the integration takes place in the region Rg where the generating terms f s and f v are not
null, and z is the point where the ultrasonic signal is observed, in the direction of increasing z
from region Rg.

If p is a non-propagating mode, our computation method is changed slightly, since Pp = 0.
However, Pp,p∗ �= 0, and we can set q = p∗, kq = k∗p, and modify equations 26-28 accordingly.

As a summary, we have established the equations that permit to find the amplitude of the
proper modes excited in the waveguide by an arbitrary set of external driving forces. These
equations are used by routine pcmodalanalysis of PCDISP .

3.4 Propagation of waveforms in the waveguide

The modal analysis equations discussed in section 3.3 permit to obtain the frequency response
of a transducer exciting the waveguide. In many applications we want to predict what
ultrasonic waveforms will be obtained at a certain distance z from the excitation source, when
the transducer is excited by a finite length time signal, i.e., to model the transient behaviour
of the system.

The method to study the propagation of signal waveforms is relatively straightforward
(Doyle, 1997). Let u(0, t) be the input signal in the transducer (placed in region Rg), and
U(0, ω) = F [u(0, t)] its Fourier transform. When this signal excites the waveguide, we
determine the corresponding volumetric forces and surface stresses, and evaluate terms ap(z)
from equation 28 for each significant frequency component of U and all normal modes
of the waveguide. Note that the terms ap(z) incorporate both the frequency response of
the transducer itself (inside the integral term) and the effect caused by signal propagation
(exp(jkp(ω)z)). Thus, the frequency components at a distance z from the generating region
are given by:

U(z, ω) = U(0, ω) · ap(z, ω)

U(z,−ω) = U∗(z, ω),
(29)

where the values of the Fourier transform for negative frequencies are taken as complex
conjugate of the positive ones, in order to obtain a real time signal. The waveform at z is
recovered by the inverse Fourier transform:

u(z, t) = F−1[U(z, ω)]. (30)

The imaginary and complex wavenumber parts of the spectrum are required in equation 29
if the exciting signal has significant frequency content below cutoff of the propagating
mode, and the measurement point is not far away from the transducer, as was described in
section 3.2.1.
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(B)

Fig. 6. Transducers used for generation of ultrasonic waves in cylindrical waveguides: (a)
Electromagnetic Acoustic Transducer (EMAT) for Lorentz force excitation; (b) Time-Delay
Periodic Ring Array (TDPRA) for piezoelectric excitation.

The dispersive effect characteristic of waveguide propagation is frequently undesired in
applications, since it implies a distortion of the original signal. One practical way of
minimizing dispersion is to employ signals with narrow spectral content (typically by
windowing a sine pulse train) with a central frequency in the region where the curve cph(ω) =

ω/k(ω) is relatively flat (Lowe et al., 1998). Where this is not feasible, compensation methods
based on inverting the nonlinear k = k(ω) dependence have been developed (Wilcox, 2003).

The propagation of ultrasonic signals in the waveguide is simulated in PCDISP with routine
pcsignalpropagation. When customising this routine, the user must be careful to zero
pad the excitation signal u(0, t) at the end such that the resulting time window has enough
duration to allow propagation of the signal for the distance between transducer and receiving
point. Likewise, a sampling frequency high enough to cover all the spectral content of the
signal should be used; in practical applications, oversampling the signal above the Nyquist
rate is advantageous since it enhances the signal to noise ratio.

4. Demonstration of the methodology

In this section we will illustrate the use of the methodology described in this chapter and the
developed software, to model the performance of a given transducer. The complete procedure
is summarized in table 7, along with the needed routines of the PCDISP package.

Two transducer setups commonly found in ultrasonic guided wave applications will be
analyzed (see figure 6). The first one is an electromagnetic acoustic transducer (EMAT) used to
generate ultrasound in metallic waveguides without physical contact between the transducer
and the sample; the second, an array of piezoelectric rings which generates ultrasound by
mechanically loading the external tube surface. We begin by considering the mechanical
behaviour of the sample waveguide.

4.1 Dispersive curves of longitudinal modes

We will continue to use the waveguide described in table 6. The complete signal spectrum of
the longitudinal modes was already shown in figure 3; in figure 7 we plot the phase and group
speeds in the range of 0 to 800 kHz. An important requisite for guided waves applications of
ultrasound is the selection and exploitation of a single propagating mode, in a region where
dispersive effects are minimum, since, as a general principle, an external force will excite all
propagating modes existing within its bandwidth (Lowe et al., 1998). We will consider two
possibilities: excitation of mode L(0,2) at frequency f1 = 250 kHz, and use of mode L(0,3) at
frequency f2 = 565 kHz (see figure 7 b). The dispersion curves of these modes are relatively
flat at these frequencies, and their group speeds are higher than those of other coexisting
modes.
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Part A: Input data of the waveguide (pcwaveguide)

Assembling of the waveguide description matrix (pcmatdet)

Compute the dispersion curves k = k(ω) (pckfcurves)

Part B: Frequency / transient response of the waveguide (pcmodalanalysis

and pcsignalpropagation)

Fourier transform of excitation signal: U(0, ω) = FFT[u(0, t)]

◮ Loop over propagating modes p

◮ Loop over frequencies ω of the signal’s spectrum

Compute amplitude vector Ap by SVD solution of D(ω, kp) · Ap = 0

Computation of ultrasonic fields of p-th mode: ũp, σ̃p (pcmatdet)

◮ Integration in the region of generation z′ ∈ Rg

Compute f s
p(z

′) by integrating σ̂e(r, θ, z) (pcextsurfacestress) in ∂D

Compute f v
p (z

′) by integrating f̂e(r, θ, z) (pcextvolumforce) in D

◭ End of integration in region Rg

Computation of mode amplitude ap(z) (equation 28)

Determine gain for frequency ω: Up(z, ω) = U(0, ω) · ap(z)

◭ End loop over frequency

Set negative frequencies of the FFT: Up(z,−ω) = U∗
p(z, ω)

Inverse Fourier transform: up(z, t) = IFFT[Up(z, ω)] (eq. 30)

◭ End loop over propagating modes

Sum over propagating modes u(z, t) = ∑p up(z, t)

Table 7. General method used for modal analysis computations, and required PCDISP
routines.
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21Modelling the Generation and Propagation of Ultrasonic Signals in Cylindrical Waveguides

www.intechopen.com



22 Will-be-set-by-IN-TECH

−1 −0.5 0 0.5 1

12.5

13

13.5

14

14.5

15

15.5

16

16.5

Displacement

R
a

d
iu

s
 (

m
m

)

(a) Displacements, mode L(0,2), f = 250 kHz

 

 

u
r

u
z

−1 −0.5 0 0.5 1

12.5

13

13.5

14

14.5

15

15.5

16

16.5

Stress

R
a

d
iu

s
 (

m
m

)

(b) Stresses, mode L(0,2), f = 250 kHz

 

 

σ rr

σθθ

σ zz

σ rz

−1 −0.5 0 0.5 1

12.5

13

13.5

14

14.5

15

15.5

16

16.5

Displacement

R
a

d
iu

s
 (

m
m

)
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Fig. 8. Displacement and stress profiles for mode L(0,2) at f = 250 kHz (upper row), and
mode L(0,3) at f = 565 kHz (bottom row), computed with pcwaveform.

The displacement and stress profiles of the selected modes are shown in figure 8. Their
determination is important in NDE applications since the sensitivity of a propagating mode to
a waveguide defect depends on the matching between the defect’s shape and the mode profile
(Ditri, 1994).

In order to minimize the influence of dispersion in the propagation of signals, we use as
excitation signal a tone burst consisting of ncyc = 16 cycles of a central frequency modulated
by a raised cosine window. This waveform does a good job in exciting a single frequency of
the waveguide with a finite length signal and minimum sidelobes (Oppenheim et al., 1999).

4.2 Generation of ultrasonic waves with an electromagnetic acoustic transducer

Electromagnetic acoustic transducers (EMATs) are used to excite ultrasonic waves in metallic
waveguides by non contact means (Cawley et al., 2004). Basically, an EMAT consists of a
generating coil, which creates a dynamic field H(t) at ultrasonic frequencies, and a bias
magnet providing a constant magnetic field H0, as shown in figure 6 (a). The physical
phenomenon that couples the magnetic field with the elastic field in our non-ferromagnetic
aluminium waveguide is the Lorentz force resulting from the interaction between the eddy
currents J(t) induced in the tube by the dynamic field and the bias field H0, which create a
volumetric force given by:

f em = μ0 J × H0. (31)
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Previously to computing the Lorentz force, we must determine the distribution of the
electromagnetic field in the waveguide. Although an exact solution exists, it is complicated
(Dodd & Deeds, 1968), so, for the purposes of this example, we will consider a simplified

model in which the penetration depth of the EM field in the metal (δ = (2/ωμ0σe)1/2, with
μ0 being the magnetic permeability of vacuum and σe = 38 MS/m the electrical conductivity
of aluminum) is small compared with the thickness rext − rint of the tube (in our case δ <

(rext − rint)/10 for f > 30 kHz). Then the magnetic field in the tube is mainly axial and can be
written as:

H(r, z) = Hzext(z) exp[−(1 + j)(rext − r)/δ]ez rint ≤ r ≤ rext, (32)

where Hzext(z) is the axial field at the outer surface (r = rext) of the tube. We will further
assume that Hzext(z) can be obtained by the elementary formula:

Hzext(z) =
Ns Is

2Ls

⎡
⎣ z√

R2
s + z2

+
Ls − z√

R2
s + (Ls − z)2

⎤
⎦ , (33)

where Ls and Rs are the solenoid’s length and radius, Ns the number of turns, and Is the
current through one turn.

Computing the eddy current with Ampère’s law, J(r, z) = ∇× H(r, z), and since the bias field
is H0 = H0ez, we obtain:

f em(r, z) = −μ0
1 + j

δ
Hzext(z)H0 exp[−(1 + j)(rext − r)/δ]er. (34)

And using equation 27, we can compute the volumetric forcing term for mode p in the
waveguide as :

f v
p (z) = −2π jω

∫ rext

rint

u∗
pr(r) f em

r (r) r dr. (35)

If we consider an EMAT with a solenoid length Ls = 30 mm and Rs = rext = 16.70 mm
we obtain the dependence of transducer gain with frequency shown in figure 9 (a), where
the radial component of displacement at the surface, ur(rext), is plotted on a log scale on
the vertical axis. As we can see, the EMAT exhibits high gain in the low frequency region,
which unfortunately coincides with the zone where the dispersive behaviour of mode L(0,1)
is maximum, making it difficult for guided waves applications. In parts (b) and (c) of the
same figure we show the transient response of the waveguide when excited with the pulse
train described in section 4.1, for central frequencies of 250 kHz and 565 kHz, respectively,
when the radial component of surface displacement (ur) is measured at a point z = 1.5 m from
the EMAT. For 250 kHz, the faster propagating L(0,2) mode is excited with lower amplitude
than the mode L(0,1), while for 565 kHz all modes are excited with approximately equal
amplitudes, appearing also very close in the time domain.

Summarizing, the basic EMAT described in this section shows poor mode selectivity control,
exciting all modes within the bandwidth of the source signal with relatively equal amplitudes,
which makes it a poor choice for this waveguide.

4.3 Generation of ultrasonic wave with piezoelectric surface loading

In this section we consider a Time-Delay Periodic Ring Array (TDPRA), an ultrasonic
transducer with very good mode selectivity and also capable of achieving one directional
emission, emitting much more ultrasonic energy from its enhanced side than in the direction
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Fig. 9. (a) Computed frequency response of the EMAT for solenoid length Ls = 30 mm;
transient waveforms at (b) 250 kHz and (c) 565 kHz. The signals in the transient plots have
been normalized to unit amplitude.

of its weakened side (Zhu, 2001). A TDPRA, shown in figure 6 (b), consists in a number of
piezoelectric rings capable of exerting a pressure loading on the outer surface of the tube. The
rings are organized into Np identical periods of Nr rings each, with the length of a period
matched to the wavelength λ of the mode to be excited. The rings of a period are connected
to the same excitation source, but with a relative delay between them proportional to their
position within the period of the TDPRA; this scheme is repeated throughout the TDPRA.
This reinforces the wavelength matching of a single period and also creates constructive
interference in the enhanced direction (the “head” of the array) and destructive in the other
(the “tail”).

To model numerically the TDPRA, we assume that each ring has width zw, with a separation
zs between adjacent rings and vibrates in its thickness mode, exerting a pressure loading,
σrr = −p over the outer surface of the waveguide, constant for all frequencies. This leads
to an axisymmetric loading (no θ dependence). In this case, the term corresponding to the
surface loading (equation 26) is:

f s
p(z) = 2π jωrextu

∗
r (rext)p(z), (36)
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while the volumetric term is null. The total pressure p(z) is a sum over the Np periods of Nr

rings each:

p(z) = p0 ·
Np Nr−1

∑
i=0

⊓(
zci

zw
)ej2πmod(i,Nr)/Nr , (37)

where zci = (zw + zs)i + zw/2 is the position of the center of each ring, and ⊓(x) = 1 for
|x| < 1/2, ⊓(x) = 0 for |x| > 1/2, is the rectangular function.

The parameters of the TDPRA must be tuned to the frequency to be excited. The load line of
the TDPRA, given by cph = Nr(zw + zs) f , is shown in figure 7 (a), along with the phase speed
curves of the aluminum tube given in section 4.1, for two different designs: the first one with
Np = 4, Nr = 8, zw = 2.2 mm and zs = 0.4 mm, intended to excite mode L(0,2) at 250 kHz,
and the second with Np = 5, Nr = 6, zw = 1.5 mm, zs = 0.4 mm for excitation of mode L(0,3)
at 565 kHz. The intersection points of these lines with the phase speed curves correspond to
the frequencies for which the TDPRA achieves maximum efficiency in mode coupling.

The transducer gain of the first TDPRA is shown in figure 10 (a). For 250 kHz, the mode L(0,2)
is effectively excited, and the excitation frequency can be fine tuned to make it coincide with
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Fig. 10. Plots of the (a) frequency and (b) transient response of the first design of the TDPRA
at f = 250 kHz; plots of the (c) frequency and (d) transient response of the second design of
the TDPRA at f = 565 kHz. In the gain plots, the dashed lines correspond to the opposite
(“tail”) direction. The signals in the transient plots have been normalized to unit amplitude.
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a minimum of the amplitude of the L(0,1) mode, improving the dynamic range between the
two modes. The simulation of the propagated wave (at a distance z = 1.5 m from the TDPRA)
gives the expected results (part (b)). The results obtained with the second TDPRA design are
shown in parts (c) and (d) of figure 10. Mode L(0,3) dominates in this case at 565 kHz, with
a higher relative amplitude over the L(0,1) and L(0,2) modes. In this case, however, as the
group velocities are similar, the received signals appear closer in the time view of part (d). In
all cases, ultrasonic generation in the “head” side has higher amplitude than in the “tail” side.

As a conclusion, the TDPRA is an efficient transducer for generating ultrasonic signals
in cylindrical waveguides, and its feature of phase and wavelength matching permits to
excite modes selectively, fine tune the system gain to a desired frequency, and direct the
generated signal in only one direction. Although in this communication we have concerned
ourselves only with axisymmetric transducers, PCDISP can also be used to study excitation of
nonsymmetric modes by piezoelectric arrays (see reference (Li & Rose, 2001) for an example).

5. Conclusions

In this chapter we have presented a methodology to model the dynamic response of a
waveguide of cylindrical symmetry when subject to an arbitrary set of external forces acting
at ultrasonic frequencies, based on the combination of the mechanical Pochhammer-Chree
equations and modal analysis techniques. Furthermore, a software package (named PCDISP),
created in the Matlab environment, is offered freely with the intention of saving other
researchers from the time needed for implementation of the PC theory equations, permitting
them to focus on their particular problems.

Throughout this communication, we have paid special attention to the numerical issues
of stability of the matrix determinant for large frequency thickness products, provided
algorithms for robust root solving and tracing of the dispersion curves, and modelled
the dispersive effect of the waveguide on signal propagation. The methods described in
this chapter are valid for waveguides formed by any number of layers as long as they
have cylindrical symmetry. The PCDISP software can be further extended to consider
materials with anisotropy (transversely isotropic and orthotropic), as well as materials with
elastic damping and waveguides surrounded by, or containing, fluids. Guidelines for such
extensions are given in the text.

The performance of modal analysis is illustrated by studying two common transducers
employed in guided wave ultrasonic applications: an electromagnetic-acoustic transducer
and a time-delay piezoelectric ring array. We believe that transducer analysis with
quantitative results is achieved comparatively easier and faster than with other competing
techniques like spectral or finite element methods, obtaining significant time savings in the
design stage of ultrasonic transducers.
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