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1. Introduction 

Systems have traditionally been analyzed assuming only one player, i.e. the defender 
maximizing system reliability facing exogenously fixed factors related to technology, nature, 
weather, culture, etc. After the September 11, 2001 attack realizations emerge that whereas 
one set of players work to ensure system reliability, another set of players oppose system 
reliability. This paper thus provides a game-theoretic analysis of a main system and a 
standby system. Examples of systems are power supply, telecommunications systems, water 
supply, roads, bridges, tunnels, political and economic institutions, businesses, schools, 
hospitals, recreational facilities, and various assets. 

Many strategic considerations exist for a main system and a standby system. The players 
can choose their efforts in the present, or in the future dependent on the outcome of the 
strategic interactions in the present. For example, the defender of a water supply system will 
be intent on protecting it in the present since if it fails, the standby system has to take over in 
the future. 

Compared with the literature the contribution of this paper is to provide an understanding 
of how the strategic interactions in the present are linked to the strategic interactions in the 
future for a main system and a standby system. This is done by analyzing a defender and an 
attacker in a two period game. The first period expresses the present and the second period 
expresses the future. The main system can fail dependent on the strategic interactions in the 
first period. This in turn impacts the strategic interactions in the second period. 
Furthermore, looking ahead to the second period before the game starts influences the 
players’ strategies in the first period. 

Systems where the future state of affairs depend on the present state of affairs are referred to 
as dependent systems (Ebeling 1997). Dependent systems have a long tradition of being 
analyzed using Markov analysis, which is unrelated to game theory.1 A simple definition of 

                                                 
1 First the number of system states is specified. Second the reliability is determined based on the system 
configuration. Third a rate diagram is designed where each node represents a state and each branch 
with an arrow specifies a transition rate (failure rate) expressed with a parameter. Fourth an equation is 

formulated for the probability of being in each state at time t+t which equals the probability of being 
in the state at time t, adding or subtracting the probabilities of moving into or out of the state from 
neighboring states when accounting for the transition rates. Fifth each equation is reformulated as a 
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a stochastic process with the Markov property is that the conditional probability distribution 
of future states of the process depends only upon the present state.2 Markov analysis has 
proven highly successful applied to reliability analysis. This paper is concerned with two 
limitations of Markov analysis. First, enabling each of two players to choose strategies in 
each of two periods violates the Markov property since players are free to choose future 
strategies that are not conditioned on their present strategies. Generally, any theory 
involving intentional action (e.g. game theory) violates the Markov property. Second, this 
paper relaxes the constraint in Markov modeling where the transition rates between 
different states are kept constant through time. 

This paper enables players to exert efforts to impact the system reliability as time 
progresses. That is, we analyze how players choose strategies through time to impact the 
reliability of dependent systems. We consider a dependent system consisting of a main 
system and a standby system. Both the main system and the standby system can be in two 
states which are to operate or fail. The dependent system is analyzed for general parameter 
values with backward induction as a two period game. We determine how two players 
make strategic decisions through time to impact the system reliability. Players allocate 
resources in the sense of substituting efforts across components and across time. 
Determining the nature of such substitutions is of substantial interest, see e.g. Enders and 
Sandler (2003), Hausken (2006), and Keohane and Zeckhauser (2003). 

The paper answers questions such as whether players exert high efforts in the first period to 

position themselves for the second period, whether they are so weakened that they 

withdraw from the game, or whether they prefer the game to last one period or two periods. 

One player, the defender, maximizes the system reliability. The other player, the attacker, 

minimizes the system reliability. Both the main system’s and the standby system’s 

reliabilities depend on the relative levels of defense and attack and on the contest intensities. 

Each player’s utility depends additively on the system reliability in the two periods, with a 

discount parameter varying between 0 and 1 for the second period. The unit costs of defense 

and attack, and the contest intensities, are different for the main system and the standby 

system, analogously to failure rates being different in Markov analysis dependent on the 

system state. 

Hausken (2010) analyzes complex systems applying game theory. Hausken (2011) provides 
a game theoretic analysis of a two period dependent system of two components which can 
be fully operational, in two states of intermediate degradation, or fail.  

For multi-state system reliability, see Lisnianski and Levitin (2003). For degraded systems 
see Ebeling’s (1997:117ff) Markov analysis of a system which can be fully operational, 

                                                                                                                            

differential equation. The number of equations equals the number of states minus 1. The probability of 
being in the last state equals 1 minus the sum of the probabilities of being in the other states. Examples 
of systems analyzed with Markov analysis are load sharing systems, standby systems, degraded 
systems, and multistate systems (Ebeling 1997:108ff). For example, if one component fails in a load 
sharing system, the failure rates increase for the remaining components. A standby component may 
experience a low or zero failure rate in its standby state, and a higher failure rate when operational 
(which may or may not equal the failure rate of the originally operating component). 
2 Another definition is that of memorylessness where, conditional on the present state of the system, its 
future and past are independent. See e.g. Taylor and Karlin (1998) for further definitions. 
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degraded, ot failed. See Zio and Podofillini (2003) for Monte Carlo simulation of the effects 
of different system performance levels on the importance of multi-state components. 
Ramirez-Marquez and Coit (2005) use Monte-Carlo simulation to approximate multi-state 
two-terminal reliability. A next step is to incorporate strategic defenders and attackers into 
the analysis of multi-state and degraded systems. 

In earlier research Levitin (2007) considers the optimal element separation and protection in 
a complex multi-state series-parallel system, and suggests an algorithm for determining the 
expected damage caused by a strategic attacker. Hausken and Levitin (2009) present a 
minmax optimization algorithm. The defender minimizes the maximum damage the 
attacker can inflict thereafter. The defender has multiple defense strategies which involve 
separation and protection of system elements. The attacker also has multiple attack 
strategies against different groups of system elements. A universal generating function 
technique is applied for evaluating the losses caused by system performance reduction. 
Levitin and Hausken (2009) introduce three defensive measures, i.e. providing redundancy, 
protecting genuine elements and deploying false elements and analyze the optimal resource 
distribution among these measures in parallel and k-out of-N systems. Levitin (2009) 
considers optimizing defense strategies for complex multi-state systems. 

Azaiez and Bier (2007) consider the optimal resource allocation for security in reliability 
systems. Bier et al. (2005) analyze the protection of series and parallel systems with 
components of different values. They specify optimal defenses against intentional threats to 
system reliability, focusing on the tradeoff between investment cost and security. Bier et al. 
(2006) assume that a defender allocates defense to a collection of locations while an attacker 
chooses a location to attack. Hausken (2008) considers defense and attack for series and 
parallel reliability systems. Dighe et al. (2009) consider secrecy in defensive allocations as a 
strategy for achieving more cost-effective attacker deterrence. 

Section 2 presents the model. Section 3 solves the model. Section 4 analyzes three special 
cases. Section 5 simulates the solution. Section 6 considers examples. Section 7 concludes. 

2. The model 

Consider a main system and a standby system. A defender and an attacker play a two 

period game. In period j, j=1,2, the defender exerts effort tMj at unit cost cM to defend the 

main system, where tMj is the defender’s free choice variable. Analogously, the attacker 

exerts effort TMj at unit cost CM to attack the main system, where TMj is the attacker’s free 

choice variable. If the main system is successfully defended in period 1 it continues to 

operate in period 2, while the standby system continues to be on standby. If the main system 

is successfully attacked in period 1 it does not operate in period 2, and instead the standby 

system operates in period 2. This means that the defender exerts effort tS2 at unit cost cS to 

defend the standby system, and the attacker exerts effort TS2 at unit cost CS to attack the 

standby system. Defense and attack are interpreted broadly. Defense means protecting 

against the attack, and maintaining and adjusting the system to prevent that it breaks down. 

Attacking means attacking the system, which may get aided by natural factors (technology, 

weather, temperature, humidity, etc.) to ensure that the system breaks down. We assume 

that the standby system does not operate in period 1 but is located in a secure place (e.g. 

underground bunker) from which it can be accessed if it is needed in period 2. We do not 
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model efforts the defender and attacker may exert with respect to the standby system in 

period 1. In both periods both players make their strategic choices simultaneously and 

independently. Before the second period both players know the strategies chosen and the 

outcome of the first period. We formulate the reliability pMj of the main system in period j, 

and the reliability pS2 of the standby system in period 2, as contests between the defender 

and attacker. The most common functional form is the ratio form (Tullock 1980) 

 2
2

2 2

, 1,2, ,
M S

M M S S

m m
Mj S

Mj Sm m m m
Mj Mj S S

t t
p j p

t T t T
  

 
 (1) 

where / 0Mj Mjp t   , / 0Mj Mjp T   , 2 2/ 0S Sp t   , 2 2/ 0S Sp T   , and mI  0, I=M,S is a 

parameter for the contest intensities of the main system (M) and standby system (S). The 
reliabilities pMj and pS2 can also be interpreted as probabilities of system survival. Equation 
(1) is common in the rent seeking literature where the rent is an asset which corresponds to 
reliability in this paper. Conflict exists over reliability between the defender and the 
attacker, just as conflict exists over a rent between contending players. See Tullock (1980) for 
the use of mI, Skaperdas (1996) for an axiomatization, Nitzan (1994) for a review, Hirshleifer 
(1995) for illustration, usefulness, and application, and Hausken (2005) for recent literature. 
At the limit, with infinitely much defensive effort, and finite offensive effort, system I is 
100% reliable. The same result follows with finite defensive effort and zero offensive effort. 
At the other limit, with infinitely much offensive effort, and finite defensive effort, 
component i is 0% reliable. The same result follows with finite offensive effort and zero 
defensive effort. The sensitivity of pij to tij increases as mI increases. When mI =0, the efforts tij 
and Tij have equal impact on the reliability regardless of their size which gives 50% 
reliability, pij=1/2. 0< mI <1 gives a disproportional advantage of exerting less effort than 
one’s opponent. When mI =1, the efforts have proportional impact on the reliability. mI >1 
gives a disproportional advantage of exerting more effort than one’s opponent. This is often 
realistic in praxis, as evidenced by benefits from economies of scale. Finally, mI =  gives a 
step function where “winner-takes-all”. 

The main system can in period 1 be in the two states shown in Table 1, where vM and VM are 

the defender’s and attacker’s values of an operational main system given presence of a 

standby system. 

State Main system Reliability Defender value  Attacker value  
1 operates  pM1  vM-cMtM1   -CMTM1 
2 fails  1- pM1  -cMtM1   VM-CMTM1 

Table 1. Main system in two states in period 1. 

We express the players’ period 1 utilities as 

 1 1 1

1 1 1

,

(1 )
M M M M

M M M M

u v p c t

U V p C T

 
  

 (2) 

The players’ period 1 strategic choices determine both their first period utilities and the 

system state as the start of period 2. Each time period can be short or long, e.g. one minute, 

one month, one shift, one season. If the main system fails in period 1, it cannot be repaired in 
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time for the onset of period 2. This assumption is justified since repairing or replacing failed 

components can be complicated for economical and logistical reasons, and may require 

competence and time, which we assume is impossible both during the periods and in the 

transition from period 1 to period 2.3 Hence the strategies the players choose for period 1 

have to account for the combinations of possibilities in which the main system may operate 

or fail in the two periods, and the standby system may operate or fail in period 2. If the main 

system fails in period 1, since it cannot be repaired or replaced before the commencement of 

period 2, the players need to assess their defense and attack in period 2 to account for which 

of the two states (operation or failure) follows after period 1. In period 2 the players also 

make their strategic choices simultaneously and independently, knowing the outcome and 

choices in period 1. 

If the main system operates after period 1 (state 1), then the unit costs of defense and 

attack remain unchanged and the players make strategic choices tM2 and TM2. If the main 

system fails in period 1 (state 2), we assume that the unit costs of defense and attack for 

the standby system are cS and CS, and the contest intensity is mS. The defender and 

attacker values of the standby system are vS and VS, where vS≤vM and VS≤VM. The 

defender and attacker values after period 2 are shown in Table 2, where  and  are time 

discount parameters. 

 
State Main system Reliability Defender value  Attacker value 
 after period 1 after period 1 in period 2  in period 2 

1 operates  pM1  vMpM2-cMtM2)  (VM(1-pM2)-CMTM2) 

2 fails  1- pM1  vSpS2-cStS2)  (VS(1-pS2)-CSTS2) 

Table 2. Defender and attacker values after period 2. 

We thus express the players’ utilities over the two periods as 

 1 1 1 2 2 1 2 2

1 1 1 2 2 1 2 2

( ) (1 )( ),

(1 ) ( (1 ) ) (1 )( (1 ) )
M M M M M M M M M M S S S S

M M M M M M M M M M S S S S

u v p c t p v p c t p v p c t

U V p C T p V p C T p V p C T

       
           

(3) 

The third term on the right hand side in both utilities contains pM1 which is the probability 

that the main system survives period 1. The fourth and rightmost term on the right hand 

side in both utilities contains 1-pM1 which is the probability that the main system does not 

survive period 1. Fig. 1 shows the two-period game as an extensive form game tree. 

3. Solving the model 

The two players have two strategic choice variables tM1 and TM1 in period 1, and four 

strategic choice variables tM2,TM2, tS2, and TS2 in period 2. We analyze pure strategy Nash 

equilibria. We solve the game with backward induction starting with period 2. 

Differentiating gives 2/ Mu t  = 2/ Su t  =0 and 2/ MU T  = 2/ SU T  =0. Solving the four 

equations gives 

                                                 
3 Future research may model the repair of the main system. 
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 (4) 

where uI2 and UI2 are the period 2 utilities for system I, I=M,S. The second order conditions 
are satisfied when 

 

1/ 1/
1 / 1

, ,
1 / 1

I Im m

I I I I

I I I I

m C V m
I M S

m c v m

    
     

    
 (5) 

Equation (5) is satisfied with an infinitely large range for the commonly used contest 

intensity mj=1, and generally stretches from below to above 
/

/
I I

I I

C V

c v
=1. 

 

Fig. 1. The two-period extensive form game tree. 

Defender loses: -cMtM1 
Attacker wins: VM-CMTM1  

Period 1

Defender wins: vM-cMtM2) 

Attacker loses: -CMTM2  

Defender wins: vM-cMtM1 
Attacker loses: -CMTM1 

Defender loses: -cMtM2 

Attacker wins: (VM-CMTM2) 

Period 2 

(1-pM1)(1- pS2)

1- pM1

pM1pM2 

pM1

Period 2

pM1(1- pM2)

(1-pM1)pS2

Defender loses: -cStS2 

Attacker wins: (VS-CSTS2) 

Defender wins: vS-cStS2) 

Attacker loses: -CSTS2  
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Equations (3) and (4) show that the second period strategic choice variables do not 

depend on the first period strategic choice variables, only on the parameters. This means 

that the two-period game gives the same result as a corresponding one-period game 

where the players choose their six strategies simultaneously and independently. This 

result follows since the players’ strategic choices in period 2 are independent for the two 

states that are possible after period 1. For state 1 the strategic choice variables are tM2 and 

TM2. For state 2 the strategic choice variables are tS2 and TS2. Consequently the players do 

not need to know the outcome of period 1 in order to play period 2. But, the probabilities 

of the two states depend on how period 1 is played, so the players account for the 

outcome of period 2 for each of the two states when determining their strategies in period 

1. Thus the expressions for tM2 and TM2 are valid for a one period main system as 

described in Table 1, and the expressions for tS2 and TS2 are valid for a one period system 

of a standby system. 

To solve period 1 we rewrite (3) as 

 
1 1 1 1

2 2 2 2 2 2

2 2 2 2 2 2

, (1 ) ,

( ), ( ),

( (1 ) (1 ) ), ( (1 ) )

M M M M M M

M M M M M S S S S S S S S

M M M M M S S S S M M M M

u ap b c t U A p B C T

a v v p c t v p c t b v p c t

A V V p C T V p C T B V p C T

 
      
      
            

 (6) 

where a,b,A,B are parameters determined by inserting (4) into (6). We interpret a and A as 

the defender’s and attacker’s values of an operational two period system consisting of a 

main system and a standby system. The parameters b and B provide direct values to the 

defender and attacker, respectively. Differentiating gives 1/ Mu t  = 1/ MU T  =0. Solving 

the two equations gives 
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where 
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 (8) 

Inserting =0 into (8) gives a=vM, A=VM, b=B=0, TM1=TM2, and tM1=tM2, confirming that 

period 1 operates as the last period 2 with maximum discounting. Equation (8) implies 

lim 0
Mm

a


  (since a cannot be negative) and lim
Mm

A


   and thus high contest intensity for 

the main system causes the defender and attacker to perceive the two period system as 

valueless and very valuable, respectively. Conversely, (8) also implies lim
Sm

a


   (since a 

cannot be negative) and lim 0
Sm

A


  (since A cannot be negative) and thus high contest 

intensity for the standby system causes the defender and attacker to perceive the two period 

system as very valuable and valueless, respectively. 

The second order conditions are satisfied when 

 

1/ 1/
1 / 1

1 / 1

M Mm m

M M M

M M M

m C A m

m c a m

    
    

      (9) 

The boundary solutions are as follows. The interior solution above is valid when u≥0 and 

U≥0 in (7). When u<0 or U<0, no pure-strategy Nash equilibrium exists. Analyzing mixed 

strategy equilibria is beyond the scope of this paper. Equation (7) and the next sections show 

that u<0 and U<0 are possible when the contest intensity of the main system mM is large 

which induces large costly efforts. The case u<0 is calamitous for the defender since it 

cannot earn positive utility. We assume that the defender withdraws in this case, exerting 

zero effort and earning zero utility, while the attacker exerts negligible effort earning utility 

VM+VS since all reliabilities are zero. One may reason that if the defender knows that the 

attacker exerts negligible effort, the defender can exert positive effort and earn positive 

utility. However, if the attacker knows that, it can exert positive effort and earn positive 
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utility. In the absence of a pure-strategy Nash equilibrium, the assumption of withdrawal is 

plausible. Analogously, for the case U<0, we assume that the attacker withdraws exerting 

zero effort and earning zero utility, while the defender exerts negligible effort earning utility 

(1+)vM since all reliabilities are one. 

4. Analyzing three special cases 

Let us consider three special benchmark cases with straightforward interpretations. The first 
is the egalitarian case mM=mS=0 causing zero efforts and thus 50% probability of failure for 
the main system in period 1, and for the main system or standby system in period 2. This 
case illustrates how the players’ utilities depend on the main system and standby system 

and the weights assigned to period 2 expressed with  and . Cases 2 and 3 assume 

/

/
I I

I I

C V

c v
=1, which occurs e.g. when the players have equal unit costs CI=ci and evaluations 

VI=vi, and equal contest intensities for the main system and the standby system, mM=mS=m. 
For case 2 we show how this impacts the values a,A,b,B of the two period system dependent 

on the discount parameters  and . For case 3 we furthermore show the impact of no 

discounting ==1. 

First, inserting mM=mS=0 into (4),(7),(8) gives 

 

1 1 2 2 1 2

1 1 2 2

1
0, , , ,

2

, , , , ( ), ( )
2 2 2 2 2 4 2 4

M M I I M I

M M M MI I
I I M S S M

T t T t p p I M S

v V v Vv V
u U u U u v v U V V



      


         

 (10) 

The utilities are not affected by efforts in egalitarian contests, so the players choose zero 

efforts which cause 50% reliability for the main system in period 1. The main system has 

50% probability of surviving into period 2, and thus 25% reliability at the end of period 2. 

The standby system has 50% probability of being implemented in period 2, and thus 25% 

reliability at the end of period 2. The utilities are positive in both periods. 

Second, inserting 
/

/
I I

I I

C V

c v
=1 and mM=mS=m into (8) gives 

 
2 2 2 2

( ), ( ), ,
4 4 4 4

M M S M S M S M

m m m m
a v v v A V V V b v B V    
           (11) 

giving rise to three observations. 1. The defender gets increased value of the two period 

system and the attacker gets decreased value of the two period system with low contest 

intensity m<2, since vS≤vM and VS≤VM. High contest intensity m>2 causes the reverse result 

and is costly for the defender. 2. Contest intensity m=2 gives a=vM, A=VM, b=B=0, TM1=TM2, 

and tM1=tM2. 3. Equal values vS=vM and VS=VM give a=vM, A=VM, TM1=TM2, and tM1=tM2. 

Third, inserting 
/

/
I I

I I

C V

c v
=1 and mM=mS=m==1 into (4),(7),(8) gives 
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(12) 

5. Simulating the solution 

Figs. 2-5 plot the six efforts tM1,TM1,tM2,TM2,tS2,TS2 and two utilities u and U as functions of 
one parameter relative to the baseline cM=CM=cS=CS=vM=VM=vS=VS=mM=mS==1. The 
titles on the vertical axis are as specified in the legend box. Fig. 1 panel 1 plots as functions 
of the standby system values vS=VS varying between 0 and 1. When the standby system has 
its maximum value vS=VS=vM=VM=1, the six efforts equal 0.25 and the utilities are 0.5, as 
also seen from (12) where a=A=1 and b=B=0.25. As vS=VS decrease below 1, the efforts 
tS2=TS2 decrease linearly toward zero, while tM2=TM2 remain constant at 0.25. However, the 
defender compensates for the decreased value of the standby system by defending the main 
system more thoroughly in period 1, and thus tM1 increases when vS=VS decrease. The 
attacker responds to this by decreasing TM1 when vS=VS decrease, and thus the attacker’s 
utility U also decreases when vS=VS decrease. The defender’s utility u is almost constant 
(slightly U shaped) since the defender compensates for the decreasing value of the standby 
system by defending the main system more thoroughly in period 1. Fig. 1 panel 2 plots as 
functions of the main system values vM=VM increasing upwards from vS=VS=1. Now the 
standby system efforts tS2=TS2 remain constant at 0.25, and all the other variables increase in 
vM=VM. Increasing vM=VM relative to the fixed vS=VS=1 induces the defender to defend the 
more valuable main system more thoroughly in period 1, and thus tM1 increases more than 
TM1, and the defender’s utility u increases more than the attacker’s utility U, though tM2=TM2 
for the main system in period 2 increase equivalently. 
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Fig. 2. Efforts tM1,TM1,tM2,TM2,tS2,TS2 and utilities u and U as functions of vS=VS and vM=VM. 

Fig. 3 panel 1 plots as functions of the defender’s unit costs cM=cS changing equally for both 

systems. The three defender efforts tM1=tM2=tS2 decrease convexly and equivalently as the 

defense becomes more costly. The three attacker efforts TM1=TM2=TS2 are inverse U shaped. 

When cM=cS is low, the inferior attacker provides modest efforts against the defender 

cheaply producing a substantial defense. When cM=cS is high, the defender efforts are low 

and the attacker does not need to attack substantially. Hence the attacker efforts are largest 

for intermediate cM=cS. The defender utility decreases, and the attacker utility increases, in 

cM=cS. Fig. 3 panel 2 plots as functions of the defender’s unit cost cM for the main system, 

keeping cS=1 for the standby system. The results are similar but tS2=TS2 remain constant at 

0.25. When cM<1, both the defender’s and the attacker’s efforts for the main system are 

larger in period 1 than in period 2, and conversely when cM>1. 

 

Fig. 3. Efforts tM1,TM1,tM2,TM2,tS2,TS2 and utilities u and U as functions of cM=cS and cM. 

Fig. 4 panel 1 plots as functions of equivalent contest intensities mM=mS for both systems. 
High contest intensities induce higher efforts which increase linearly in mM=mS. The higher 
efforts are costly causing the utilities to decrease linearly reaching zero when mM=mS=2. Fig. 
4 panel 2 plots as functions of the contest intensity mM for the main system, keeping mS=1. 
Thus tS2=TS2 remain constant at 0.25. When mM<1, the results are similar but the 
comparatively higher mS=1 causes lower utilities in panel 2. For the main system in period 2 
the efforts increase linearly in mM as seen from (4) inserting cM=CM=vM=VM=1. However, for 
the main system in period 1 the efforts do not increase linearly since A and a, instead of vM 
and VM, operate in the efforts tM1 and TM1 in (7). As mM increases above 1, tM1 and TM1 
increase in a decreasing manner, reaching maxima and thereafter decreasing towards zero. 
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The defender accepts its maximum for tM1 being lower than the attacker’s maximum for TM1. 
This gives low reliability pM1 for the main system in period 1 as mM increases above 1. The 
high contest intensity for the main system makes it too costly to defend and attack 
compared with defending and attacking the standby system in period 2. The defender’s 
utility decreases below 0.25 as mM increases above 1.61, reaches a minimum 0.14 for mM=2.22 
as the defender realizes that the main system is too costly to defend, and increases 
asymptotically towards 0.25. Recall from (3) that if the defender does not defend the main 
system in period 1, it is guaranteed to fail, pM1=0, causing utility 0.25 generated by the 
standby system since pS2=0.5 with the given parameter values. Hence the attacker’s utility 
eventually increases towards 1.25. 

 

Fig. 4. Efforts tM1,TM1,tM2,TM2,tS2,TS2 and utilities u and U as functions of mM=mS and mM. 

Fig. 5 panel 1 plots as functions of the discount parameters . All efforts are constant at 0.25. 

The utilities increase from 0.25 when period 2 is discounted (=0) and reliability is pM1=0.5 

for period 1, to 0.5 when both periods have equal weight (=1) and all reliabilities are pM1= 

pM2=pS2=0.5. Fig. 5 panel 2 also plots as functions of , but decreases the values of the 
standby system to vS=VS=0.5. This decreases the efforts for the standby system to tS2=TS2=0.125. 

The utilities remain at 0.25 when =0 and period 2 is irrelevant. As increase, the 
defender compensates for the less valuable standby system by increasing tM1 from 0.25 to 0.28 

when =1, which increases the reliability of the main system in period 1. The attacker 

decreases TM1 from 0.25 to 0.22 when =1, while tM2=TM2 remain constant at 0.25. The 
defender’s utility thus increases more than the attacker’s utility, but both utilities increase less 
than in panel 1 where the standby system is more valuable at vS=VS=1. 

 

Fig. 5. Efforts tM1,TM1,tM2,TM2,tS2,TS2 and utilities u and U as functions of . 
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6. Examples 

There are no limits to the kinds of standby systems that can be envisioned. In fact, any 

system produced to deliver some function, can be supplemented with a standby system to 

deliver the same function in the event that the main system breaks down. Examples of 

systems are power supply, telecommunications systems, water supply, roads, bridges, 

tunnels, political and economic institutions, businesses, schools, hospitals, recreational 

facilities, and various assets. One example of a standby system is a standby generator which 

is a back-up electrical system that operates automatically (Hickey 2002). Within seconds of a 

utility outage, an automatic transfer switch senses the power loss, directs the standby 

generator to start, and transfers the electrical load to the standby generator. The standby 

generator thereafter supplies power to the circuits. To ensure a proper response to a power 

outage, a standby generator runs weekly self-tests. Most units run on diesel, natural gas or 

liquid propane gas. Automatic standby generators may be required by building codes for 

critical safety systems. Examples are building elevators, fire protection systems, standby 

lighting, or medical and life support equipment. Residential standby generators are 

common, providing backup electrical power to security systems, household appliances such 

as refrigerators, stoves, and hot water heaters, and HVAC systems. To determine the 

quality, design, and maintenance regime for the main system and standby system in each 

particular example, the analysis in this paper can be used. 

7. Conclusion 

We consider two players choosing strategies through time to impact the reliability of a 
dependent system which consists of a main system and a standby system. Each system can 
be in two states, i.e. it can operate or fail. If the main system operates successfully through 
period 1, it continues to operate into period 2 and the standby system remains in standby. If 
the main system fails in period 1, the standby system is implemented in period 2.  

Each system is protected by a defender which maximizes its reliability subtracting the 
defense costs, and attacked by an attacker which maximizes its unreliability subtracting the 
attack costs. Each system’s reliability depends on the relative levels of defense and attack 
and on the contest intensity. Each player’s utility depends additively on the system 
reliability in two time periods, with a time discount parameter for the second period. The 
unit costs of effort and the contest intensities are different for the two players and the two 
systems. The two period game is analyzed with backward induction. 

In period 1 the defender chooses a defense effort and the attacker chooses an attack effort for 
the main system. In period 2 the defender chooses one defense effort for the main system 
and one defense effort for the standby system, not knowing before the game starts whether 
the main system or the standby system is the system to be defended in period 2. 
Analogously in period 2, the attacker chooses one attack effort for the main system and one 
attack system for the standby system. Hence six strategic decisions are made by the two 
players. 

The players assign different values to the main system and the standby system. We present 
analytical solutions and simulations to illustrate the players’ efforts in the two periods and 
the utilities dependent on parametric changes. 
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Each time period can be short or long, e.g. minutes, days, months, as determined by the 
nature of the system and how failures occur dependent on the players’ efforts. Since the 
main system fails in period 1 with positive probability, period 2 starts with the standby 
system with this positive probability. 

Before period 1 each player assesses its effort for period 1 knowing that this effort impacts 
the probability that the main system survives into period 2. Exerting low defense effort in 
period 1 increases the probability that the standby system is implemented in period 2. We 
show that as the value of the standby system decreases below that of the main system, the 
defender increases its defense of the main system in period 1. Increasing the value of the 
main system increases the defender’s utility more than the attacker’s utility since the 
defender defends the main system more thoroughly in period 1. High defense effort in 
period 1 is an investment into the future for the defender. 

As the defender’s unit defense costs increases, its efforts and utilities decrease while the 
attacker’s efforts are inverse U shaped and its utility increases. This follows since low unit 
defense costs make it not worthwile for the inferior attacker to attack, while high unit 
defense costs make it unnecessary for the superior attacker to attack substantially. 

Increasing contest intensities for both systems causes all efforts to increase driving utilities 
downwards eventually reaching zero. Increasing the contest intensity only for the main 
system causes both efforts for the main system in period 1 to be inverse U shaped but taller 
for the attacker. This increases the probability that the main system fails in period 1. This 
benefits the attacker and does not benefit the defender which resorts to defending the 
standby system in period 2. Increasing discount parameters, making period 2 more 
valuable, benefit both players. 

Two limitations of Markov analysis have been illustrated in this paper. First, we have 
enabled players to choose efforts strategically, which violates the Markov property. Second, 
we have relaxed the constraint in Markov modeling where the transition rates between 
different states are kept constant through time. The parameter values for the standby system 
in period 2 may differ from the parameter values for the main system in period 1. Future 
research may model in a multi-period game multiple states of operation for the main system 
and the standby system, and repair of the main system. 

8. Notation 

tMj defender’s effort to protect main system in period j, j=1,2 
TMj attacker’s effort to attack main system in period j, j=1,2 
tS2 defender’s effort to protect standby system in period 2 
TS2 attacker’s effort to attack standby system in period 2 
pMj reliability of main system in period j 
pS2 reliability of standby system in period 2 
cM defender’s unit cost of effort for main system 
CM attacker’s unit cost of effort for main system 
cS defender’s unit cost of effort for standby system 
CS attacker’s unit cost of effort for standby system 
vM  defender’s value of operational main system given presence of a standby system 
VM  attacker’s value of operational main system given presence of a standby system 
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vS  defender’s value of standby system 
VS  attacker’s value of standby system 
mM attacker-defender contest intensity for main system 
mS attacker-defender contest intensity for standby system 

 defender’s time discount parameter for period 2 

 attacker’s time discount parameter for period 2 
a  defender’s value of an operational two period system 
A  attacker’s value of an operational two period system 
b additional value to defender of two period system 
B additional value to attacker of two period system 
u defender’s utility 
U attacker’s utility 
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