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1. Introduction  

A wireless sensor network consists of sensor nodes deployed over a geographical area for 

monitoring physical phenomena like temperature, humidity, vibrations, seismic events, and 

so on. Typically, a sensor node is a tiny device that includes three basic components: a 

sensing subsystem for data acquisition from the physical surrounding environment, a 

processing subsystem for local data processing and storage, and a wireless communication 

subsystem for data transmission. In addition, a power source supplies the energy needed by 

the device to perform the programmed task. This power source often consists of a battery 

with a limited energy budget. In addition, it is usually impossible or inconvenient to 

recharge the battery, because nodes are deployed in a hostile or unpractical environment. 

On the other hand, the sensor network should have a lifetime long enough to fulfill the 

application requirements. Accordingly, energy conservation in nodes and maximization of 

network lifetime are commonly recognized as a key challenge in the design and 

implementation of WSNs. 

Experimental measurements have shown that generally data transmission is very expensive in 

terms of energy consumption, while data processing consumes significantly less (Raghunathan 

et al., 2002). The energy cost of transmitting a single bit of information is approximately the 

same as that needed for processing a thousand operations in a typical sensor node (Pottie & 

Kaiser, 2000). The energy consumption of the sensing subsystem depends on the specific 

sensor type. In some cases of scalar sensors, it is negligible with respect to the energy 

consumed by the processing and, above all, the communication subsystems. In other cases, the 

energy expenditure for data sensing may be comparable to, or even greater (in the case of 

multimedia sensing) than the energy needed for data transmission. In general, energy-saving 

techniques focus on two subsystems: the communication subsystem (i.e., energy management 

is taken into account in the operations of each single node, as well as in the design of 

networking protocols), and the sensing subsystem (i.e., techniques are used to reduce the 

amount or frequency of energy-expensive samples). 

1.1 Power consumption in sensing subsystem 

In fact, the energy consumption of the sensing subsystem not only may be relevant, but it 
can also be greater than the energy consumption of the radio or even greater than the energy 
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consumption of the rest of the sensor node (Alippi et al., 2007). This can be due to many 
different factors (Raghunathan et al., 2006): 

 Power hungry transducers. Some sensors intrinsically require high power resources to 

perform their sampling task. For example, sensing arrays such as CCDs or multimedia 

sensors (Akyildiz et al., 2007) such as CMOS image sensors generally require a lot of 

power. Also chemical or biological sensors (Diamond, 2006) can be power hungry as 

well. 

 Long acquisition time. The acquisition time may be in the order of hundreds of 

milliseconds or even seconds, especially in the case of multimedia sensors. Hence the 

energy consumed by the sensing subsystem may be high, even if the sensor power 

consumption is moderate. In this case reducing communications may be not enough, 

but energy conservation schemes have to actually reduce the number of acquisitions 

(i.e. data samples). It should also be pointed out that energy-efficient data acquisition 

techniques are not exclusively aimed at reducing the energy consumption of the sensing 

subsystem. By reducing the data sampled by source nodes, they decrease the number of 

communications as well. Actually, many energy-efficient data-acquisition techniques 

have been conceived for minimizing the radio energy consumption, under the 

assumption that the sensor consumption is negligible. 

 Power hungry A/D converters. Sensors like acoustic and seismic transducers generally 

require high-rate and high-resolution A/D converters. The power consumption of the 

converters can account for the most significant power consumption of the sensing 

subsystem, as in (Schott et al., 2005). 

1.2 Multimedia sensing subsystem 

One of the main differences between multimedia sensor networks and other types of 

sensor networks lies in the nature of how the image sensors perceive information from the 

environment. Most scalar sensors provide measurements as 1-dimensional data signals. 

However, image sensors are composed of a large number of photosensitive cells. One 

measurement of the image sensor provides a 2-dimensional set of data points, which we 

see as an image. The additional dimensionality of the data set results in richer information 

content as well as in a higher complexity of data processing and analysis. In addition, a 

camera’s sensing model is inherently different from the sensing model of any other type 

of sensor. Typically, a scalar sensor collects data from its vicinity, as determined by its 

sensing range. Multimedia nodes are characterized by a directional sensing model, called 

Field of View (FoV, see Figure 1), and can capture images of distant/vicinal 

objects/scenes within its FoV from a certain direction. The object covered by the camera 

can be distant from the camera and the captured images will depend on the relative 

positions and orientation of the cameras towards the observed object (Soro & Heinzelman, 

2005; Tezcan & Wang, 2008; Adriaens et al., 2006). Because of non-coincidence between 

neighborhood and sensed region by multimedia nodes, coverage-based techniques in 

WSN do not satisfy WMSN requirements. 

Accordingly, the amount of power consumed in the sensing subsystem of a multimedia 
sensor node is considerably more than of a scalar ordinary sensor. For example, a 
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temperature sensor (texas instrument, 2011) as a scalar sensor consumes 6ǍW for sensing the 
environment. To have a view of multimedia sensors power consumption, table 1 shows the 
power consumed by four classes of cameras that are available today either as prototypes or 
as commercial products. At the lowest end of the spectrum is tiny Cyclops (Rahimi et al., 
2005) that consumes a mere 46mW and can capture low resolution video. CMU-Cams (Rowe 
et al., 2002) are cell-phone class cameras with on-board processing for motion detection, 
histogram computation, etc. At the high-end, web-cams can capture high-resolution video at 
full frame rate while consuming 200mW, whereas Pan-Tilt-Zoom cameras are re-targetable 
sensors that produce high quality video while consuming 1W. It is noticeable that the 
mentioned power amounts are the power consumed by the camera sensors without 
considering the power consumed by the host motes, see (Tavli et al, 2011) for a survey of 
visual network platforms. 

 

Fig. 1. The Field of View (FoV) of a multimedia sensor node. 

Multimedia Sensor Power of image capturing Capability in image capturing 

Cyclops 42 mW Fixed angle lens, 352×288 at 10 fps 

CMU-Cam 200 mW Fixed angle lens, 352×288 up to 60 fps 

Web-Cam 200 mW Auto focus lens, 640×480 at 30 fps 

High-end PTZ Camera 1 W Pan-tilt-zoom lens, 1024×768 up to 30fps 

Table 1. Power consumption and capabilities of four classes of camera sensors. 

On the other hand, given the large amount of data generated by the multimedia nodes, both 
processing and transmitting image data are quite costly in terms of energy, much more so 
than for other types of sensor networks. Furthermore, visual sensor networks require large 
bandwidth for transmitting image data. Thus both energy and bandwidth are even more 
constrained than in other types of wireless sensor networks.  

In this chapter, we describe a power efficient mechanism for managing the sensing subsystem 
of multimedia sensor nodes for surveillance in WMSNs. For this purpose, the deployed 
multimedia nodes are clustered according to their common covering regions and the clusters 
are managed to schedule the members to collaboratively survey the sensing area in a duty-
cycled manner. With avoiding acquisition of redundant and correlated data, not only the 
sensing subsystem of nodes save its energy, but also the transmission and processing 
subsystems meet an optimized amount of data to be transmitted/processed and thus can 
conserve their residual energy. Therefore, the network lifetime is considerably prolonged. 
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The chapter is organized as follows. In section 2 we present an overview of work related to 
sensor management and scheduling policies. A surveillance mechanism with its details in 
grouping, management and scheduling multimedia nodes to be energy efficient is explained 
in section 3. Finally, the future work and conclusions are derived. 

2. Sensor management and scheduling policies 

In redundantly deployed multimedia sensor networks a subset of cameras can perform 

continuous monitoring and provide information with a desired quality. This subset of active 

cameras can be changed over time, which enables balancing of the cameras energy 

consumption, while spreading the monitoring task among the cameras. In such a scenario 

the decision about the camera nodes activity and the duration of their activity is based on 

sensor management policies. Sensor management policies define the selection and scheduling 

(that determines the activity duration) of the camera nodes activity in such a way that the 

visual information from selected cameras satisfies the application specified requirements 

while the use of camera resources is minimized. Various quality metrics are used in the 

evaluation of sensor management policies, such as the energy-efficiency of the selection 

method or the quality of the gathered image data from the selected cameras. In addition, 

camera management policies are directed by the application; for example, target tracking 

usually requires selection of cameras that cover only a part of the scene that contains the 

non-occluded object, while monitoring of large areas requires the selection of cameras with 

the largest combined FoV. While energy-efficient organization of camera nodes is oftentimes 

addressed by camera management policies, the quality of the data produced by the network 

is the main concern of the application. 

The problem of finding the best camera candidates is investigated in (Soro & Heinzelman, 

2007). In this work, the authors propose several cost metrics for the selection of a set of 

camera nodes that provide images used for reconstructing a view from a user-specified view 

point. Two types of metrics are considered: coverage aware cost metrics and quality-aware 

cost metrics. The coverage-aware cost metrics consider the remaining energy of the camera 

nodes and the coverage of the indoor space, and favor the selection of the cameras with 

higher remaining energy and more redundant coverage. The quality-aware cost metrics favor 

the selection of the cameras that provide images from a similar view point as the user’s view 

point. Thus, these camera selection methods provide a trade-off between network lifetime 

and the quality of the reconstructed images.  

Monitoring of large areas (such as parking lots, public areas, large stores, etc.) requires 

complete coverage of the area at every point in time. Such an application is analyzed in 

(Dagher et al., 2006), where the authors provide an optimal strategy for allocating parts of 

the monitored region to the cameras while maximizing the lifetime of the camera nodes. 

The optimal fractions of regions covered by every camera are found in a centralized way 

at the base station. The cameras use JPEG2000 to encode the allocated region such that the 

cost per bit transmission is reduced according to the fraction received from the base 

station.  

Oftentimes, the quality of a reconstructed view from a set of selected cameras is used as a 
criterion for the evaluation of camera selection policies. In the work (Park et al., 2006) 

www.intechopen.com



 
Power Management in Sensing Subsystem of Wireless Multimedia Sensor Networks 553 

distributed look-up tables are used to rank the cameras according to how well they image a 
specific location, and based on this, they choose the best candidates that provide images of 
the desired location. Their selection criterion is based on the fact that the error in the 
captured image increases as the object gets further away from the center of the viewing 
frustum. Thus, they divide the frustum of each camera into smaller unit volumes 
(subfrustums). Then, based on the Euclidian distance of each 3D point to the centers of 
subfrustums that contain this 3D point, they sort the cameras and find the most favorable 
camera that contains this point in its field of view. The look-up table entries for each 3D 
location are propagated through the network in order to build a sorted list of favorable 
cameras. Thus, camera selection is based exclusively on the quality of the image data 
provided by the selected cameras, while the resource constraints are not considered. 

In order to reduce the energy consumption of cameras, the work (Zamora & Marculescu, 
2007) explores distributed power management of camera nodes based on coordinated 
node wake-ups. The proposed policy assumes that each camera node is awake for a 
certain period of time, after which the camera node decides whether it should enter the 
low-power state based on the timeout statuses of its neighboring nodes. Alternatively, 
camera nodes can decide whether to enter the low-power state based on voting from other 
neighboring cameras.  

Selection of the best cameras for target tracking has been discussed often (Pahalawatta et 
al., 2004; Ercan et al., 2006). Pahalawatta et al. present a camera selection method for 
target tracking applications used in energy-constrained visual sensor networks. The 
camera nodes are selected by minimizing an information utility function (obtained as the 
uncertainty of the estimated posterior distribution of a target) subject to energy 
constraints. However, the information obtained from the selected cameras can be lost in 
the case of object occlusions. This occlusion problem is further discussed by Ercan et al. 
where they propose a method for camera selection in the case when the tracked object 
becomes occluded by static or moving occluders. Finding the best camera set for object 
tracking involves minimizing the MSE of the object position’s estimates. Such a greedy 
heuristic for camera selection shows results close to optimal and outperforms naive 
heuristics, such as selection of the closest set of cameras to the target, or uniformly spaced 
cameras. The authors here assume that some information about the scene is known in 
advance, such as the positions of static occluders, and the object and dynamic occluders 
prior probabilities for location estimates. 

As a conclusion, in multimedia sensor networks, sensor management policies are needed to 
assure balance between the opposite requirements imposed by the wireless networking and 
vision processing tasks. While reducing energy consumption by limiting data transmissions 
is the primary challenge of energy-constrained visual sensor networks, the quality of the 
image data and application, QoS, improve as the network provides more data. In such an 
environment, the optimization methods for sensor management developed for wireless 
sensor networks are hard to directly apply to multimedia sensor networks. Such sensor 
management policies usually do not consider the event-driven nature of multimedia sensor 
networks, nor do they consider the unpredictability of data traffic caused by a monitoring 
procedure. Thus, more research is needed to further explore sensor management for 
multimedia sensor networks. Since sensor management policies depend on the underlying 
networking policies and vision processing, future research lies in the intersection of finding 

www.intechopen.com



 
Wireless Communications and Networks – Recent Advances 554 

the best trade-offs between these two aspects of visual sensor networks. Additional work is 
needed to compare the performance of different camera node scheduling sensor policies, 
including asynchronous (where every camera follows its own on-off schedule) and 
synchronous (where cameras are divided into different sets, so that in each moment one set 
of cameras is active) policies. From an application perspective, it would be interesting to 
explore sensor management policies for supporting multiple applications utilizing a single 
visual sensor network. 

The presented mechanism in the following section groups multimedia nodes in clusters 

based on their common sensing region of the whole deployment region. The clusters 

monitor the environment independently but in each cluster the members collaborate in data 

acquisition in an intermittent manner. The scheduling and activity times in each cluster are 

determined based on the cluster population and the scale of overlapping between FoV of 

cluster members. So, the data transmissions are not limited in this kind of sensor 

management but the volume of sensed data is reduced by management in only sensing 

subsystem and applying coordination among cluster members to optimize capturing image 

times and to avoid redundant sensing of the same data in the overlapped FoVs. On the other 

hand, the sensing region is divided between clusters and each cluster monitors its domain 

with its exclusive frequency and member scheduling. Thus, clusters are not synchronized 

for sensing the region whiles each point of the sensing region is monitored frequently 

according to the number of nodes that cover that point by their sensing subsystem. 

3. The surveillance mechanism 

3.1 Preliminary 

We assume wireless sensor nodes with fixed lenses providing a θ angle FoV, densely 

deployed in a random manner. The assumption of fixed lenses is based on the current 

WMSN platforms (Tavli et al, 2011). Almost all of them (SensEye, MicrelEye, CITRIC, 

Panoptes, Meerkats) (Kulkarni et al., 2005; Kerhat et al., 2007; Chen et al., 2008; Feng et al., 

2005; Margi et al., 2006) have fixed lenses and only high powered PTZ cameras have 

movement capabilities. We consider a monitor area with N wireless multimedia sensors, 

represented by the set S = {S1,S2,...,SN} randomly deployed. Each sensor node is equipped to 

learn its location coordinates and orientation information via any lightweight localization 

technique for wireless sensor networks. It is not the purpose of this chapter to define 

mechanisms to find this location. Without loss of generality, let us assume that nodes in the 

set S belong to a single-tier network or the same tier of a multitier architecture. 

Our policy in order to applying collaboration among multimedia sensor nodes in the 

surveillance mechanism is clustering the network nodes based on their similarity in sensing 

the environment. The criterion applied in this purpose is the clustering scale of FoVs of 

nodes. The nodes having a large region of common area in their FoV, have a similar view of 

the sensing area then can cooperate in a established group, (Alaei & Barcelo, 2010).  

3.2 Cluster formation and cluster membership  

Now, let us consider the set S = {S1,S2,...,SN} of wireless multimedia nodes belonging to the 
same tier of a network randomly deployed. The cluster formation algorithm is executed in 
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a centralized manner by the sink after deploying the network. The main reasons in 
choosing a central architecture are the following: (i) for a distributed architecture, each 
node should notify to the rest of the nodes about its location Ai and its orientation ǂi (i = 
1,…,N). In a centralized architecture the nodes should notify to the sink their location and 
orientation. Note that this notification can be done using any energy efficient sensor 
routing protocol and only is necessary at bootstrap phase. All phases of the clustering 
algorithm are executed only one time, right after node deployment. (ii) In many WSN 
applications, the sink has ample resources (storage, power supply, communication and 
computation) availability and capacity which make it suitable to play such a role. (iii) 
Collecting information by a sink node is more power efficient compared to spreading this 
information to each and every other node within the network. (iv) Having the global view 
of the network at the sink node facilitates provision algorithms for closer-to-optimal 
cluster determination; the global knowledge can be updated at the sink when new nodes 
are added or some nodes die. Such maintenance tasks can be regarded as a normal routine 
for the sink. (v) Finally, using a centralized scheme can relieve processing load from the 
sensors in the field and help in extending the overall network lifetime by reducing energy 
consumption at individual nodes. The following phases are performed to establish and 
form clusters, (Figure 2):  

 Bootstrap: At node bootstrap, each sensor {Si, i = 1,…,N} transmits its position (xi,yi) and 

orientation ǂi to the sink. To accomplish this step any efficient sensor routing algorithm 

can be used. Thus, the clustering algorithm is not bound to how the sink receives this 

information. If there is an un-connected node in the network, it cannot announce itself 

and thus will not be considered in the algorithm.  

 Cluster Formation: (i) Initially, the sink creates an empty cluster associated with an un-

clustered multimedia node of S. Thus, that node will be clustered as the first member 

(i.e., Cluster-Head (CH)) of the established cluster. (ii) Then, the sink finds the qualified 

un-clustered nodes for joining to the CH by computing the area of overlapped polygons 

of their FoV. From position and orientation of nodes, the sink computes the overlapped 

region between each un-clustered multimedia node and the CH of the established 

cluster. For calculating the FoV overlapping area of two nodes, we first survey the 

intersection of their FoVs. Second, if they intersect each other, we find the intersection 

region and at last, compute the area of the polygon. For this purpose, in the first step, 

we define the equations of the sides of FoVs using the vertex coordinates. Then, the 

intersection of each side of each FoV to all sides of the other is calculated. A 

decomposition approach is used for calculating the area of the overlapping region of 

FoVs. If the computed overlapped region is equal or greater than the threshold 

considered as the Clustering Scale (Ǆ) -the minimum region that has to be overlapped 

between two node FoVs to be grouped in a cluster-, the un-clustered node will be 

clustered as a member of the established cluster. (iii) When no more nodes can be added 

to the cluster, the sink takes a new un-clustered node, begins a new cluster and goes to 

step (ii). 

 Membership notification: we assume that the sink uses any energy-efficient sensor routing 

algorithm to notify to each first-member of every cluster about its cluster-ID and what 

are the members of the cluster. Then, each first-member sends a packet to the members 

of his cluster notifying them about the cluster which they belong to.  
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Fig. 2. Clustering Procedure. 

The algorithm is executed by the sink once upon deployment and thus all nodes will 

become clustered. If a node joins to the network hereinafter, it has to send its position and 

orientation to the sink for announcing itself as a new node. The sink computes the FoV of 

the new node and finds the first cluster that can accept it as a new member. For this 

purpose, the sink computes the overlapping regions between FoV of the new node and the 

CH of each cluster and checks whether he is satisfying the cluster membership test. Then, 

the sink sends a message to the CH in order that this node re-organizes the cluster with the 

new member. Depending on the application, this notification may suppose a new 
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energy. When a node dies, the CH will notify the rest of the members about the new cluster 

set and will reconfigure any parameter related to the cluster. The CH also periodically 

compares the residual energy of cluster members and its residual energy to select the new 

CH with the maximum residual energy in the cluster. If the CH decides to entrust CH role 

to another cluster member, notifies to the cluster members about the new CH. Note that the 

beaconing among cluster members implies low overhead since clusters have few nodes and 

hello periods can be on the order of duty-cycle sensing periods. 

3.2.1 Intra-cluster collaboration  

Let us see the potential of cooperative node monitoring in clusters in terms of sensor area 
coverage. We define the Maximum Cluster Coverage Domain (MCCD) parameter for a 
cluster as the maximum monitoring area which is covered by that cluster. Since each cluster 
is established considering the clustering scale equal to Ǆ, the MCCD can be computed as 
follows (Csize is the size of the cluster): 

 FoV FoV size size size FoV FoVMCCD ┛ A (1 ┛) A C (C ┛ (C 1)) A ┚ A              (1) 

where: 

 size size1 ┚ C ┛ (C 1)    
 (2) 

The effective cluster covering domain can be inferior to the MCCD calculated by Equation 
(1) since some nodes can overlap more than the region determined by Ǆ. Since MCCD gives 
us an upper bound on the area covered by the cluster, using MCCD will allow us worst-case 
dimensioning. Factor ǃ represents the increment of area that the cluster senses with respect 
to an individual sensor. When each node of a cluster obtains an image from its FoV, a part of 
the related MCCD with a ratio at least equal to 1/ǃ respect to the MCCD is captured 
whereas this part includes overlapped areas of other nodes in the cluster. Sensing the 
environment by each member delivers information not only from the FoV of the active node 
but also from some overlapped parts of other nodes in the same cluster: at least Ǆ·AFoV of the 
area is common to the first-member and more than 1/ǃ of the MCCD is monitored. For 
example, in a cluster consisting of just 2 members, assuming a clustering scale of Ǆ = 0.5, the 
MCCD is 1.5·AFoV. Thus, when each of the two members of the cluster is activated and 
monitors the environment, an area of one FoV is captured that is at least 2/3 of the whole 
MCCD of the cluster. Consequently, scheduling and coordination among members in order 
to sense the field in a collaborative manner may yield a gain in energy saving and 
performance efficiency even with a low number of members in the cluster. 

3.2.2 Cluster formation evaluation 

All sensor nodes have been configured with a FoV vertex angle of θ = 60º and RS of 20 m. A 
sensing field spanning an area of 120m × 120m has been used. Sensor densities were varied 
to study the cluster formation from sparse to dense random deployments. Figures illustrate 
the average results of 50 independent running tests whereas each test corresponds to a 
different random deployment. Once a random deployment is defined, cluster formation is 
obtained from node location, angle of orientation and FoVs of nodes, using the described 
method whose complexity is O(N.logN). Furthermore, as it was mentioned before, each 
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node sends a packet to the sink in the bootstrap phase, then the sink notifies each CH via 
one packet his membership set for that cluster (phase 3) and then the CHs notify cluster 
nodes about their cluster membership and any related parameter. Thus, the average 
overhead of the algorithm is forwarding N packets from the nodes to the sink and 
forwarding NC packets from the sink to first-members and forwarding NC·(ǍCsize–1) packets 
from CHs to cluster nodes; where N is the number of nodes, NC is the average number of 
clusters and ǍCsize is the average cluster size. So the total overhead will be: N + NC + 
NC·(ǍCsize–1) packets. The maintenance overhead is NC·(ǍCsize–1) beacons every keep-alive 
period, where the keep-alive period can be a multiple of the sensing duty-cycle period. 

3.2.2.1 Number of clusters and cluster-size 

The average number of clusters, ǍNC, and the average cluster-size (ǍCsize) in a tier/network 

for different node densities with several clustering scales are shown in Figures 3 and 4. 

Increasing the node density does not only cause an increment in the number of clusters but 

also yields more overlapping areas among FoVs and thus raises the cluster-size. However, 

the clustering scale (Ǆ) also impacts in the cluster membership selection process. The 

clustering scale determines the minimum region that is required to be overlapped between 

the FoV of each node belonging to a given cluster and the FoV of the CH of that cluster. So, 

Ǆ determines the minimum intersection part of FoV of each member with the CH of an 

established cluster. Lower clustering scales obligate less overlapping areas for cluster 

membership and increase the domain covered by a given cluster since more nodes will be 

conforming to the membership rule. Increasing the clustering scale restricts node 

membership because of higher required overlapping areas between FoVs of nodes. Thus, 

higher clustering scales result in lower cluster-sizes, less MCCD and thus higher number of 

clusters.  

 

Fig. 3. Average number of established clusters. 

Sparse networks have low average cluster-size, ǍCsize, because sparse deployments result in 
low overlapping areas. Moreover, high values of Ǆ also will produce low ǍCsize. The result 
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will be lower potential for node coordination. On the other hand, dense wireless multimedia 
sensor networks can particularly benefit from higher cluster sizes and thus more potential 
for node coordination.  

 
Fig. 4. Average size of established clusters. 

Finally, Figure 5 shows the cumulative probability function for the cluster-size in the 
network for different node densities assuming a clustering scale of Ǆ = 0.5. For example, in a 
network consisting of 250 nodes, 28% of clusters have a single member which does not have 
enough overlapping with others to satisfy the clustering scale, 32% of clusters have a cluster 
size of 2, 21% of 3, 12% of 4 and 7% of them consisting of more than four members. 

   
Fig. 5. The cluster size cumulative distribution function (Ǆ = 0.5). 
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3.2.2.2 Coverage 

Figure 6 illustrates the percentage of area that is covered by the random deployment in 

terms of node density. As it is shown in the figure, for covering 95% of the area, a dense 

deployment of 300 nodes is required. As the figure shows, the rate of increment of the 

covered area for low node densities is faster than for high node densities. This indicates that 

after a new node is added in a dense deployment, low new coverage area is obtained.  

For example, the first 100 nodes cover 75% of the field, but the next 100 nodes will only 

cover 15% of new area. The conclusion is that dense networks are able to cover high areas at 

the cost of high overlapping and sensing redundancy, but this overlapping can be used for 

improving reliability if nodes belonging to the same cluster work in a coordinated manner. 

Furthermore, the existence of obstacles produces a reduction of the sensing area because of 

FoV occlusion effect, (Tezcan & Wang, 2008). So, employing dense networks of low-cost, 

low-resolution and low-power multimedia sensor nodes instead of sparse networks of high-

power, high-resolution sensors (e.g., PTZ) will be more beneficial.  

 
Node density 

Fig. 6. Percentage of the covered area with respect to the whole deployment area. 

Applications that are interested in multiple views will also benefit from this situation, since 

there will be several nodes monitoring the same area from several perspectives. 

Applications that are interested in detecting objects and are not interested in having an 

instantaneous multiple-view of the object may benefit from collaborative node processing in 

terms of energy savings. For the first set of applications clustering of nodes may serves as an 

indicator of triggering simultaneous multi-perspective pictures. For the second set of 

applications, clustering may serve as a baseline framework for collaborative node 

scheduling avoiding redundant sensing and processing and thus increasing network 

lifetime. Other applications that are interested in correlated data (e.g., Distributed Video 

Coding, DVC) may use clustering in order to exploit multi-view correlations to build joint 

encoders (Pereira et al., 2008).  
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3.3 Cooperative node selection and scheduling 

In monitoring mechanisms, usually cameras should perform duty-cycled monitoring over 

the area that they sense. That means that every T (Figure 7.a) seconds the sensors in the 

monitored area will awake and monitor the area. This is the situation for a planned 

network in which every sensor is placed in such a position that there is no overlapping 

among sensors. Nevertheless, this duty-cycle scheduling will produce high power 

consumption in those situations in which there are overlapping sensors, since camera 

nodes with overlapping areas do not cooperate to sense the area and thus they 

redundantly monitor the area. 

In this section, we explain a cooperative mechanism based on the clustering method that 

coordinates nodes belonging to the same cluster to work in a collaborative manner to 

monitor the sensing area. The objective of this mechanism is to increase power conservation 

by avoiding similar sensing and redundant processing at the same time. Also, collaborative 

sensing by nodes that have FoVs intersecting each other yields to more reliability: cluster 

members will monitor the region sequentially and if a moving object is not detected in one 

image capturing, it will be in the vicinal FoVs at the next capturing times. Thus, the other 

members in the same cluster may detect the object. 

Let us divide the environment in domains covered by clusters of nodes (MCCD, Section 3.2). 
All clusters concurrently sense their domains. In each cluster, members are awakened 
sequentially in an intermittent manner by the CH with a time interval related to the cluster-
size and the scale of clustering (see Figure 7.b); (i.e., Tinterval is the time between awakening 
two consecutive members of a cluster). In this way, each node of a given cluster periodically 
participates in capturing an image from its unique perspective and surveillance the 
environment and finally sleeps again with a cluster-based period called Tp. Formulas for 
these periods are derived in Section 3.3.1.  

 

                            (a)                                                                                    (b) 

Fig. 7. (a) Period of awakening a given node in the un-cooperative scheduling. (b) 
Scheduling for a cluster consisting of three members (S1, S2, S3). 

3.3.1 Cluster-based TP and Tinterval computation 

Let us consider as baseline mechanism a non-collaborative duty-cycled scheme in which 
every node awakes with an interval period of time T and monitor the area (i.e., takes a 
picture and performs object detection) as tier 1 in (Kulkarni et al., 2005). The objective of the 
collaborative mechanism is to produce a cluster-based duty-cycled scheduler in which: (i) 
Each node is awakened and senses the area with a reliable period of Tp>T taking advantage 
of the overlapping among nodes in the cluster, thus, saving energy and increasing network 
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Tinterval Tinterval Tinterval 
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lifetime. Each cluster will have its own TP interval, determined according to the cluster-size 
and the clustering scale. (ii) During the sleeping period of each member of a given cluster, 
other nodes belonging to the cluster are awakened with intervals of Tinterval < T (that is equal 
to: Tp /Csize) in a sequential manner.  

The area sensed by each cluster is related to the MCCD area. In order to compute Tp we will 
consider the MCCD area. By awaking each member of a given cluster, in average, a part of 
the related MCCD with a ratio equal to 1/ǃ is captured (Equation (2)). Note that the MCCD 
is an area of ǃ.AFoV and is sensed by Csize overlapping members, thus sensing the 
environment by each node delivers information not only from the FoV of the awakened 
node but also from some overlapped parts of the FoV of other nodes in the same cluster. 
Then, we may define the node interval duty-cycle period as: 

 size size
P

size size

C C
T T T

┚ C ┛ (C 1)
   

  
 (3) 

Note that the TP is proprietary for each cluster in terms of its cluster-size and clustering 
scale. As it was mentioned before, the MCCD calculated by Equation (1) is the maximum 
covering domain of a cluster while the effective cluster covering domain may be less than 
MCCD since some members of a given cluster may overlap more than the region 
determined by Ǆ. Consequently, a given cluster can cover an area less than ǃ·AFoV. Thus, 
using ǃ gives us the lowest interval Tp and thus the most reliable one since lower values of ǃ 
would increase the interval TP. On the other hand, members of a cluster are awakened 
sequentially to sense their environment in an intermittent way with time intervals equal  
to Tinterval: 

 P
interval

size size size

T T
T T

C C ┛ (C 1)
  

  
 (4)  

Let us consider Figure 6.b and for example a cluster with three members, C = {S1, S2, S3}, 
cluster-head S1 and Ǆ = 0.5. Every node will be awakened every TP = 1.5·T seconds and the 
area will be monitored every Tinterval = 0.5·T seconds. As can be observed, every sensor is 
awakened with a period higher than the non-collaborative scheme but the area is monitored 
more times. Then, the area duty-cycled frequency is increased while the sensor duty-cycled 
frequency is reduced.  

Table 2 shows the evolution respects of Tp and Tinterval to T as a function of Ǆ for several Csize. 
We first have to notice that for a clustering scale factor Ǆ =1, Tp = T, while for Ǆ < 1, T ≤ Tp ≤ 
T/(1–Ǆ). Then, the duty-cycle frequency at which a specific node is awakened is decreased 
by a factor that at least is (1–Ǆ) times the frequency of the non-collaborative scheme. On the 
other hand some sensor of the cluster will be on duty every Tinterval seconds. Note that Tinterval 
will be lower than T and will be smaller as Csize increases. This means that the area is 
monitored more frequently although every specific sensor monitors with less frequency. The 
reason is justified in how clusters are formed. Any sensor of the cluster overlaps with the 
first-member by at least an area of Ǆ·AFoV. Thus, when a sensor enters in duty, he will 
monitor an area equal to Ǆ·AFoV overlapped with the first-member and an area equal to 
(1–Ǆ)·AFoV that in the worst case does not overlap with any other member of the cluster. 
Sensing the whole cluster area with Tinterval equal to T would result in that an area equivalent 
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to (1–Ǆ)·AFoV would be monitored every Csize·T, a value that can be very high. However, 
using Equation (3), monitoring of the area equivalent to (1–Ǆ)·AFoV is guaranteed by a 
monitoring interval that is not superior to T/(1–Ǆ), that is much lower than Csize·T. 

 

Csize 

γ 
5 4 3 2 

0.5 1.67 1.60 1.5 1.33 

0.55 1.79 1.70 1.58 1.38 

0.6 1.92 1.82 1.67 1.43 

0.65 2.08 1.95 1.77 1.48 

0.7 2.27 2.11 1.88 1.54 

(a) 

Csize 

γ 
5 4 3 2 

0.5 0.334 0.4 0.5 0.665 

0.55 0.358 0.425 0.527 0.690 

0.6 0.384 0.455 0.557 0.715 

0.65 0.416 0.488 0.590 0.740 

0.7 0.454 0.528 0.627 0.770 

(b) 

Table 2. (a) Tp/T , (b) Tinterval/T for different cluster sizes and clustering scales. 

Sleep/wake up protocols has extensively been studied in the area of wireless sensor 
networks, mainly for the radio subsystem, (Anastasi et al., 2009). Our clustering algorithm 
works on the sensing subsystem. It is important to notice that executing object detection 
does not imply sending packets to the sink. Thus, the sleep/wake up algorithm can be 
decoupled with the radio subsystem. Sleep/wake up can be based on periodic duty-cycle 
synchronized by the first-member: every Tp period, the sensing subsystem wakes up and 
performs object detection. However, clock drifts can cause cluster de-synchronization. To 
handle resynchronization, the system makes use of the beaconing scheme for cluster 
maintenance: nodes receive periodical beacons from the first-member and vice versa in 
order to detect new members or to detect members that have died. Beaconing duty-cycling 
belongs to the radio subsystem and it is independent of the sensing subsystem. That means 
that waking up the sensor to send a beacon is independent of waking up the sensor to take a 
picture and perform object detection. Thus, the cluster-head may resynchronize cluster 
members without need of waking up the sensing subsystem.  

3.4 Lifetime prolongation evaluation 

To evaluate the scheduling scheme in terms of power conservation, we compare the 
cooperative scheduled scheme with a single-tier network or a tier of a multi-tier architecture 
consisting of N nodes monitoring without coordination among them as (Rahimi et al., 2005; 
Kulkarni et al., 2005; Feng et al., 2005), in which, nodes are awakened with a time period of 
T. We note that the evaluation is over the sensing subsystem and that the radio subsystem 
(i.e.; transmission and reception of packets) is not taken into account.  
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The energy consumed in the network for object detection by N nodes during a duty-cycle 

interval of T in the non-collaborative scheduling is: 

 
sleep sleep w_up cap detectE N (T P E E E )     

 (5)  

where Tsleep and Psleep are the period and power consumption for a node in sleep mode. 

Ew_up, Ecap and Edetect respectively are the energies consumed in waking up a node, capturing 

a picture and performing object detection. 

Let us now consider the cooperative scheduling algorithm in a clustered tier/network. Both, 

the interval between waking up consecutive nodes in the same cluster and the period of 

waking up a given node are functions of the cluster-size of the cluster which the nodes 

belong to. In one hand, in clusters with high cluster-size, Tinterval is small and thus cluster 

duty-cycle frequency is increased. On the other hand, higher number of nodes in the cluster 

causes longer periods TP for awaking a given node of the cluster and thus yields an 

enhancement for power conservation in cluster’s members. Assuming average cluster-size 

for all clusters in the tier/network, TP will be: 

 size

size size

C
P

C C

T
T

( 1)


  




  
 (6) 

where T is the base period for waking nodes in the base un-coordinated tier. Figure 8 shows 

the evolution of Tp normalized by T (i.e.; Csize/ǃ) for several node densities and clustering 

scales, Ǆ. We may observe that the node average duty-cycle frequency is reduced by factors 

that are, for example, on the order of 0.78 for a 200 node network and a scale factor of Ǆ = 0.6.  

 

Fig. 8. TP/T for several node densities and clustering scales. 

Consequently, the total amount of averaged consumed energy by nodes for object detection 
in the coordinated tier during TP will be: 
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P sleep PE E N P T T( )    

 (7)  

From (6) and (7): 

 size

size size

C
P sleep

C C

T
E E N P

( 1)

( 1)

 
  

  
   

  
 (8) 

So: 

sizesize size

size size

C sleepC CP

P C C

N PEE

T T

( 1)( ( 1))    
 

      
 


 

size size

size size

C CP
sleep

P C C

NE E
  P

T T

1 ( 1)
(1 )

  


 
   

       
sizeCwhere  (0     and    1)1) (     

Therefore, the consumed power is: 

 
P sleepP P P    

 
(9)

  

where:  

 size

size

C

C

         ,     0
1

(1 ) 1


  



       

size

size

C

C

N
        ,     0 N

( 1) 
  


  

     

Parameter P in Equation (9) is the power consumed in the network with the base un-
coordinated mechanism. The consumed power in our scheme (PP) is reduced by a factor ǌ 
with respect to P. The ǌ factor depends on the average cluster-size and the clustering scale 

factor. As can be observed from Equation (9) increasing Csize produces lower values of ǌ, 

and thus a saving in energy with respect the uncoordinated system. For example a Csize =1.5 

(100 nodes with Ǆ=0.5) produces a ǌ = 1 – Ǆ/3 = 0.83 while a Csize = 2.15 (200 nodes with Ǆ = 
0.5) produces a ǌ = 1–0.53·Ǆ = 0.73. The other term (σ·Psleep) in Equation (9) is due to the fact 
of taking nodes to sleep mode in intervals of duration (TP > T) and then nodes sleep Tp–T 
more time than in the un-clustered scheme.  

Figure 9 illustrates the impact of factor ǌ in Equation (9) in terms of node densities for 
several clustering scales. From this figure we can see that in high node density tiers, the 

factor ǌ is more beneficial since Csize is higher and thus there is more potential of 
cooperation among nodes. 

Figure 10 shows the consumed power (P) in the base un-coordinated tier for object detection 
in four cases of period of duty-cycle for different node densities. The consumed power has 
been computed for nodes consisting of Cyclops as camera sensor embedded in the host 
MICA II, similar to the tier 1 in (Kulkarni et al., 2005). 
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Fig. 9. Factor ǌ in cooperative scheduling for several clustering scales. 

 
Fig. 10. Consumed power (P) for a non-cooperative tier/network of nodes consisting of 
Cyclops. 

For instance, in the case without coordination, the power consumed in a tier consisting of 
200 nodes that performs monitoring with a duty cycle of T=5 second, is 1.344 watts. In the 
coordinated network with the same number of nodes and a clustering scale of 0.5, the power 
consumed by the network would be reduced by a factor ǌ of 0.737 (see Figure 9) at the cost 
of increasing 52.60 mW, (σ·Psleep). This means a tier power consumption of 1.344·0.737 + 
0.0526 = 1.043 Watts implying a reduction of 22.39%. Thus, in this case, the Prolongation 
Lifetime Ratio (PLR) would be of 1.344/1.043 = 1.289. Figure 11.a,b shows the prolongation 
lifetime ratio assuming a clustering scale of 0.5 and 0.6 for different node densities in four 
cases of duty-cycle (T). Tiers with high number of nodes have higher capability for 
cooperation and thus their nodes can conserve considerable amount of energy comparing to 
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sparse networks and consequently, have longer prolonged lifetime. The figure indicates the 
more prolongation lifetime for dense tiers. 

 
(a) 

 
(b) 

Fig. 11. Prolongation Lifetime Ratio (PLR) for different node densities in the clustered tier 
with a clustering scale equal to (a) 0.5. (b) 0.6, in four states of base awakening period. 

4. Future work 

In the clusters established by the depicted mechanism, each cluster member has a common 
sensing region with the CH. The clusters do not have any intersection and each cluster 
monitors its covering domain with only intra-cluster collaboration. Clustering with the 
capability of intersection and cooperation among clusters can increase the scale of efficiency 
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of monitoring performance and power conservation of cluster members. In a monitoring 
mechanism utilizing intra and inter cluster cooperation, sensing regions are allocated to 
intersected clusters thus can be monitored with a higher frequency and/or consuming less 
amount of energy although the node selection and scheduling procedure will be more 
complicated. Some initial work has been done in (Alaei & Barcelo, 2010). 

5. Conclusion 

In this chapter a mechanism for management the wireless multimedia sensor nodes, was 
described. The mechanism, first, clusters nodes according to their scale of similarity in 
covering the environment; second, selects and schedules members of established clusters to 
monitor the sensing region which is divided among clusters. The members of each cluster 
are scheduled with an exclusive frequency based on the number of members in the cluster 
and the scale of overlapping among fields of view of the cluster members and thus the 
monitoring efficiency is increased. Moreover, because of the established intra cluster 
coordination and collaboration, sensing subsystem of multimedia nodes are optimized to 
avoid redundant and overlapped sensing. Thus, the capability of energy saving is 
considerably enhanced with respect to ordinary duty-cycling manners of environment 
monitoring by WMSNs. On the other hand, optimizing the data sensed by sensing 
subsystem results in conservation of energy in the transmission and processing subsystems 
since they meet less amounts of multimedia data to be transmitted and/or processed by the 
network nodes. Results show how this mechanism prolongs the network lifetime along with 
a better monitoring performance. 
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