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1. Introduction 

Computer vision is an area of the computer science which aims to make computers to have 
some functions owned by human vision system. During the research on computer vision, 
we often think about "how human see". Obviously, when a human observer views a scene, 
the observer sees not the whole complex scene, but rather a collection of objects. A common 
experience of segmentation is the way that an image can resolve itself into a figure, typically 
the significant, important object, and a ground, the background on which the figure lies. 
The capability of human beings to segment the complex scene into separated objects is so 
efficient that we regard it as a mystery. At meantime, it appeals the researchers of computer 
vision who want to let computer have the same capability. So the task, Image Segmentation, 
is presented. 
The chapter describes new achievements in the area of multimodal range and intensity 
image unsupervised segmentation. This chapter is organized as follows. Range sensors are 
described in section 2 followed by the current state of art survey in section 3. Sections 4 to 6 
describe our fast range image segmentation method for scenes comprising general faced 
objects. This range segmentation method is based on a recursive adaptive probabilistic   
detection of step discontinuities (sections 4 and 5) which are present at object face borders    
in mutually registered range and intensity data. Detected face outlines guides the 
subsequent region growing step in section 6 where the neighbouring face curves are 
grouped together. Region growing based on curve segments instead of pixels like in the 
classical approaches considerably speed up the algorithm. The exploitation of multimodal 
data significantly improves the segmentation quality. The evaluation methodology a range 
segmentation benchmarks are described in section 7.  Following sections show our 
experimental results of the proposed model (section 8), discuss its properties and conclude 
(section 9) the chapter. 

1.1 Image Segmentation

There is no single standard approach to segmentation. The definition of the goal of 
segmentation varies according to the type of the data and the application type. Different 
assumptions about the nature of the images being analyzed lead to use of different 
algorithms. One possible image segmentation definition is: "Image Segmentation is a 
process of partitioning the image into non-intersecting regions such that each region is 
homogeneous and the union of no two adjacent regions is homogeneous" (Pal & Pal, 1993). 

Source: Vision Systems: Segmentation and Pattern Recognition, ISBN 987-3-902613-05-9,
Edited by: Goro Obinata and Ashish Dutta, pp.546, I-Tech, Vienna, Austria, June 2007

O
pe

n 
A

cc
es

s 
D

at
ab

as
e 

w
w

w
.i-

te
ch

on
lin

e.
co

m



Vision Systems - Segmentation and Pattern Recognition 26

The segmentation process is perhaps the most important step in image analysis since its 
performance directly affects the performance of the subsequent processing steps in image 
analysis and it significantly determines the resulting image interpretation. Despite its 
utmost importance, segmentation still remains as an unsolved problem in the general sense 
as it lacks a general mathematical theory. The two main difficulties of the segmentation 
problem are its underconstrained nature and the lack of definition of the "correct" 
segmentation. Perhaps as a consequence of these shortcomings, a plethora of segmentation 
algorithms has been proposed in the literature. These algorithms range from simple ad hoc 
schemes to more sophisticated ones using object and image models. 
The area of segmentation algorithms typically suffers with the lack of benchmarking results 
and methodologies. With few rare exceptions in specific narrow applications single 
segmentation algorithm cannot be ranked and potential user has to experimentally validate 
several segmentation algorithms for his particular application. 

1.2 Range Image Segmentation 

Range images store, instead of brightness or colour information, the depth at which the ray 
associated with each pixel first intersects the object observed by a camera. In a sense, a range 
image is exactly the desired output of stereo, motion, or other shape-from vision modules. It 
provides geometric information about the object independent of the position, direction, and 
intensity of light sources illuminating the scene, or of the reflectance properties of that 
object.
Range image segmentation has been an instrument of computer vision research for nearly 30 
years. Over that period several partial results have found its way into many industrial 
applications such as geometric inspection, reverse engineering or autonomous navigation 
systems. However similarly as in the spectral image segmentation area the range image 
segmentation problem is still far from being satisfactory solved. 

2. Range Sensors 

Range sensors can be grouped into the passive and active once. A rich variety of passive 
stereo vision techniques produce three-dimensional information. Stereo vision involves two 
processes: the binocular fusion of features observed by the two cameras and the 
reconstruction of their three dimensional preimage. An alternative to classical stereo is the 
photometric stereo (Horn, 1986). Photometric stereo is a monocular 3-D shape recovery 
method assuming single illumination point at infinity, Lambertian opaque surface and 
known camera parameters, that relies on a few images (minimally 3) of the same scene taken 
under different lighting conditions. If this before mentioned knowledge is not available, i.e., 
uncalibrated stereo, more intensity images are necessary. There are usually two processing 
steps: First, the direction of the normal to the surface is estimated at each visible point. The 
set of normal directions, also known as the needle diagram, is then used to determine the 3-
D surface itself. At the limit, shape from shading requires a single image, but then solving 
for the normal direction or 3-D location of any point requires integration of data from all 
over the image. 
Active sensing techniques promise to simplify many tasks and problems in machine vision. 
Active range sensing operates by illuminating a portion of the surface under controlled 
conditions and extracting a quantity from the reflected light (angle of return in 
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triangulation, time/phase/frequency delay in time of flight sensors) in order to determine 
the position of the illuminated surface area. This position is normally expressed in the form 
of a single 3-D point.  
An active range sensor - a range camera - is a device which can acquire a raster (two-
dimensional grid, or image) of depth measurements, as measured from a plane 
(orthographic) or single point (perspective) on the camera (Forsyth & Ponce, 2003). In an 
intensity image, the greyscale or colour of imaged points is recorded, but the depths of the 
points imaged are ambiguous. In a range image, the distances to points imaged are recorded 
over a quantized range. For display purposes, the distances are often coded in greyscale, 
usually that the darker a pixel is, the closer it is to the camera. 

Intensity Image    Range Image 

   
Fig. 1. Example of registered intensity and range image 

2.1. Triangulation Based (Structured Light) Range Sensors 

Triangulation based range finders date back to the early seventies. They function along the 
same principles as passive stereo vision systems, one of the cameras being replaced by a 
source of controlled illumination (structured light). For example, a laser and a pair of 
rotating mirrors may be used to sequentially scan a surface. In this case, as in conventional 
stereo, the position of the bright spot where the laser beam strikes the surface of interest is 
found as the intersection of the beam with the projection ray joining the spot to its image. 
Contrary to the stereo case, however, the laser spot can normally be identified without 
difficulty since it is in general much brighter than the other scene points (in particular when 
a filter tuned to the laser wavelength is inserted in front of the camera), altogether avoiding 
the correspondence problem. 
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Fig. 2. Optical triangulation using laser beam for illumination. 

Alternatively, the laser beam can be transformed by a cylindrical lens into a plane of light 
(Fig. 2.). This simplifies the mechanical design of the range finder since it only requires one 
rotating mirror. More importantly, perhaps, it shortens the time required to acquire a range 
image since a laser stripe, the equivalent of a whole image column, can be acquired at each 
frame.
A structured light scanner uses two optical paths, one for a CCD sensor and one for some 
form of projected light, and computes depth via triangulation. ABW GmbH and K2T Inc. are 
two companies which produce commercially available structured light scanners. Both of 
these cameras use multiple images of striped light patterns to determine depth. two 
example structured light patterns used by the K2T GRF-2 range camera are shown in Fig. 3. 

      
Fig. 3. Example images of two of the eight structured light patterns used by the K2T GRF-2 
range camera. 



Multimodal Range Image Segmentation 29

Variants of these techniques include using multiple cameras to improve measurement 
accuracy and exploiting (possibly time coded) two dimensional light patterns to improve 
data acquisition speed. The main drawbacks of the active triangulation technology are 
relatively low acquisition speed and missing data at parts of the scene visible to the CCD  
sensor and not visible to the light projector. The resulting pixels in the range image, called 
shadow pixels, do not contain valid range measurements. Next difficulties arise from 
missing or erroneous data due to specularities. It is actually common to all active ranging 
techniques: a purely specular surface will not reflect any light in the direction of the camera 
unless it happens to lie in the corresponding mirror direction. Worse, the reflected beam 
may induce secondary reflections giving false depth measurements. 

2.2. Time of Flight Range Sensors

The second main approach to active ranging involves a signal transmitter, a receiver, and 
electronics for measuring the time of flight of the signal during its round trip from the range 
sensor to the surface of interest (Dubrawski & Sawwa, 1996). This is the principle used in the 
ultrasound domain by the Polaroid range finder, commonly used in autofocus cameras from 
that brand and in mobile robots, despite the fact that the ultrasound wavelength band is 
particularly susceptible to false targets due to specular reflections. Time of flight laser range 
finders are normally equipped with a scanning mechanism, and the transmitter and receiver 
are often coaxial, eliminating the problem of missing data common in triangulation 
approaches. There are three main classes of time of flight laser range sensors: 

• pulse time delay RS 
Pulse time delay sensor emits very brief, very intense pulses of light. The amount of 
time the pulse takes to reach the target and return is measured and converted to a 
distance measurement. The accuracy of these sensors is typically limited by the 
accuracy with which the time interval can be measured, and the rise time of the laser 
pulse.

• AM phase-shift RS 
AM phase-shift range finders measure the phase difference between the beam emitted 
by an amplitude-modulated laser and the reflected beam (see Fig. 4.), a quantity 
proportional to the time of flight. 

Fig. 4. Illustration of AM phase-shift range sensor measurement. 

Measured distance r can be expressed as: 

π

λ
ϕ
4

mr ∗Δ= (1)
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where Δϕ is the phase difference between emitted and reflected beam and λm is the 
wave-length of modulated function. Due to periodical nature of modulated function the 
measurement is possible only in an ambiguity interval ra=λm/2.

• FM beat RS 
FM beat sensors measure the frequency shift (or beat frequency) between a frequency-
modulated laser beam and its reflection (see Fig. 5.), another quantity proportional to 
the round trip flight time. 

 Fig. 5. Illustration of FM beat range sensor measurement. 

Measured distance r can be expressed as: 

reb

m

b fff
ff

f
cr −=

Δ∗
∗= ,  (2) 

where c is speed of light, fm mean modulation frequency, Δf the difference between 
highest and lowest frequency in modulated run, fe emitted beam frequency and fr

reflected beam frequency. 

Time of flight range finders face the same problems as any other active sensors when 
imaging specular surfaces. They can be relatively slow due to long integration time at the 
receiver end. The speed of pulse time delay sensors is also limited by the minimum 
resolvable interval between two pulses. Compared to triangulation based systems, time of 
flight sensors have the advantage of offering a greater operating range (up to tens of 
meters), which is very valuable in outdoor robotic navigation tasks. 
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3. State of the Art 

There are many spectral image segmentation algorithms published in computer vision 
literature and a number of good survey articles (Besl & Jain, 1985), (Sinha & Jain, 1994) is 
available but substantially less range image segmentation algorithms were published. 
Mutual comparison of their segmentation quality and performance is very difficult because 
of lack of sound experimental evaluation results. A rare exception in the area of planar face 
objects range segmentation is published in (Hoover et al., 1996a) together with experimental 
data available on their Internet server. Because this evaluation methodology became de facto 
standard in the area of planar range segmentation algorithms comparison, these data and 
results are used also for our algorithm evaluation. 

3.1. Range Segmentation Principles 

There are several methods for segmenting an image into regions, which, subsequently, can 
be analyzed, based on their shapes, sizes, relative positions, and other characteristics, and 
there are several possible categorizations of segmentation techniques. The most common 
categorization accepted also in this chapter sorts segmentation methods into three or four 
different philosophical perspectives. We name them after the terminology "pixel based 
segmentation, edge based segmentation, region based segmentation and hybrid 
segmentation".

3.1.1. Pixel Based Segmentation

Pixel based segmentation is the most local method to address the task of image 
segmentation. Every pixel has to be sorted to some certain class. At last, the pixels belonging 
to the same class which are contiguous will constitute one segmented region. 

3.1.2. Edge Based Segmentation

Edge based segmentation is more global than pixel based segmentation, but it is more local 
when compared to the area based segmentation. So it is on the "middle level". 
Edge based segmentation make use of the clue that "how human see" for the second time, 
because a person always has the principle that there is an edge in some certain sense 
between two segmentable objects (Zhang & Zhao, 1995), (Palmer et al., 1996). An edge pixel 
is characterized by a vector that shows a particular position, size and direction of 
discontinuity. Sometimes only the size is determined. The "direction" of the edge is 
perpendicular to the "direction" of the rim of the object. 

3.1.3. Region Based Segmentation

Among the four surveyed approaches, region based segmentation is the most global 
method. This approach groups pixels into regions based upon two criteria: proximity and 
homogeneity. Most region based methods produce these groupings either by splitting the 
image, or its regions, into smaller regions (Lee et al., 1998), merging small regions into larger 
ones (Hoover et al., 1996a), (Besl & Jain, 1988), or splitting and merging until the criteria are 
maximally satisfied (Haralick & Shapiro, 1985), (Chang, 1994), (Hijjatoleslami & Kittler, 
1998). In two-dimensional region growing, regions that have pixels that are "four-connected" 
(Fig. 6.-left), that is, directly neighboring each other in any of the four  horizontal and 
vertical directions, are considered to be in proximity to one another. Other region growing 
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algorithms extend these criteria to "eight-connected" pixels by also including the four 
diagonal directions (Fig. 6.-right). 

Four-Connected Neighbours & Eight-Connected Neighbours 
Fig. 6. Neighbourhood examples. 

The second criterion, homogeneity, is satisfied by an implementation specific function that 
quantifies the similarity between regions. This function may be based on a comparison of 
any single or combination of available region statistics.

3.1.4. Hybrid Segmentation

Hybrid techniques are trying to combine advantages of two or more previously described 
segmentation methods. They are expected to provide more accurate segmentation of 
images. Pavlidis et al. (Pavlidis & Liow, 1990) describe a method to combine segments 
obtained by using a region-growing approach, where the edges between regions are 
eliminated or modified based on contrast, gradient and shape of the boundary. Haddon and 
Boyce (Haddon & Boyce, 1990) generate regions by partitioning the image co-occurrence 
matrix and then refining them by relaxation using the edge information. Chu and Aggarwal 
(Chu & Aggarwal, 1993) present an optimization method to integrate segmentation and 
edge maps obtained from several channels, including visible, infrared, etc., where user 
specified weights and arbitrary mixing of region and edge maps are allowed. The method 
presented in this chapter can be classified as hybrid technique, because we use edge 
detection as the first step of the algorithm and segment based region growing as the second 
step.

3.2. Planar Face Segmentation Algorithms

A specially simplified range image segmentation task occurs when we may assume some 
additional prior information about the segmented scene. One of the most frequent 
assumptions is planarity of range scene objects faces. A planar surface can be characterized 
as a connected set of 3D surface points at which the two principal curvatures (alternatively, 
the Gaussian and mean curvatures) are zero. It gives the chance to simplify the model of the 
region and thus simplify the whole segmentation process. 
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3.2.1. The USF Range Segmentation Algorithm

This segmenter (Hoover et al., 1996a) works by computing a planar fit for each pixel and 
then growing regions whose pixels have similar plane equations. The pixel with the smallest 
interiorness measure is chosen as a seed point for region growing. The border of the region 
is recursively grown until no pixels join, at which time a new region is started using the next 
best available seed pixel (based on interiorness measure). Pixels are only allowed to 
participate in this process once. If a region's final size is below a threshold, then the region is 
discarded. This algorithm shows good segmentation results over test sets especially in 
under-segmentation measure and has only 5 parameters, but it is discriminated by its 
computational speed.  

3.2.2. The WSU Range Segmentation Algorithm

The WSU range image segmentation method (Hoffman & Jain, 1987), (Flynn & Jain, 1991) is 
not optimized for polyhedral objects but can accommodate natural quadric surfaces as well. 
It was modified to accept only first-order surface fits, but no other special steps were taken 
to exploit the planar nature of the scenes. Prior to any processing, the range points are 
uniformly scaled to fit within a 5×5 cube. Than jump edge pixels are identified. Surface 
normals are estimated at each range pixel with no jump edges in a neighbourhood. The six-
dimensional image is formed by concatenating the estimated surface normals to their 
corresponding pixels.  
These 6-vectors are fed to a squared-error clustering algorithm, which finds groupings in the 
data set based on similarity between the data points. Since these points reflect both position 
and orientation, the tendency is to produce clustering consisting of connected image subsets, 
with pixels in each cluster having similar orientation. The selected clustering is converted 
into an image segmentation by assigning each range pixel to the closest cluster centre in the 
clustering. A further merging step joins segments if they are adjacent and have similar 
parameters. This algorithm achieved the worst result in all segmentation quality measures 
among the four compared algorithms. The next drawback of this algorithm is high number 
of tuneable parameters and relatively high computational times. 

3.2.3. The UBP range segmentation algorithm

This segmenter (Jiang & Bunke, 1994) is based on the fact that, in the ideal case, the points 
on a scan line that belong to a planar surface form a straight 3D line segment. On the other 
hand, all points on a straight 3D line segment surely belong to the same planar surface. 
Therefore, they first divide each scan line into straight line segments and subsequently 
perform a region growing process using the set of line segments instead of the individual 
pixels.
A potential seed region for region growing is a triple of line segments on three neighbouring 
scan lines. The candidate with the largest total line segment length is chosen as the optimal 
seed region. In the subsequent region growing process, a line segment is added to the region 
if the perpendicular distance between its two end points and the plane equation of the 
region is within a dynamic threshold. This process is repeated until no more line segments 
can be added, at which time a new region is started using the next best available seed 
region. If a region's final size is below a threshold, then the region is discarded. This 
algorithm is probably the best one of all methods surveyed in (Hoover et al., 1996a). It 
achieves high number of correctly detected region over both test sets, low number of 
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undersegmented regions, but it oversegments some regions. The number of parameters is 
relatively high. This is the fastest algorithm surveyed in (Hoover et al., 1996a). 

3.2.4. The UE Range Segmentation Algorithm

The UE segmentation algorithm (Hoover et al., 1996a) is a region growing type of algorithm 
along the lines of the USF segmenter. Initial surface normals are calculated at each pixel 
using a plane fit to the data. Depth and normal discontinuity detection is performed using 
simple thresholds between neighbouring pixels. Gaussian (H) and mean (K) curvature are 
estimated at each pixel. Pixels can be labelled as belonging to particular surface types based 
on the combined signs of the (H, K) values.  Once each pixel is labelled properly with the 
signs of H and K, any eight--connected pixels of similar labelling are grouped to form initial 
regions. This segmentation map is then morphologically dilated and eroded in a specifiable 
manner to fill small Unknown areas, remove small regions, and separate thinly connected 
components. For each region in the initial segmentation above a minimal size a least squares 
surface fitting is performed. Then each region in turn is grown. The UE segmenter obtains 
slightly better measures of correct detection than does the UBP segmenter but the difference 
in processing speeds is noteworthy. The main drawback of this algorithm is high number of 
its parameters. Nearly a dozen values should be adjusted before the segmentation. 

3.2.5. Robust Adaptive Segmentation (ALKS) Algorithm

The authors of this method (Lee et al., 1998) proposed an image segmentation technique  
using the robust, adaptive least kth order squares (ALKS) estimator which minimizes the kth
order statistics of the squared of residuals. The optimal value of k is determined from the 
data, and the procedure detects the homogeneous surface patch representing the relative 
majority of the pixels. The method defines the region to be processed as the largest 
connected component of unlabelled pixels. Applies the ALKS procedure to the selected 
region and discriminates the inliers, labels the largest connected component of inliers as the 
delineated homogeneous patch and refines the model parameter estimates by a least--
squares fit to the inliers. Than it repeats these steps until the size of the largest connected 
component is less than a threshold. To eliminate the isolated outliers surrounded by inliers 
an unlabelled pixel is allocated to the class of the majority of its labelled four-connected 
neighbours. For this method we can only compare results published in the article (Lee et al., 
1998). These results show that the ALKS method tends to undersegment some faces. We 
have no information about computational times for this method. 

3.2.6. Segmentation through the integration of different strategies (PPU)

The authors of this paper (Bock & Guerra, 2001) consider the problem of segmenting range 
images into planar regions. 
The approach they present combines different strategies for grouping image elements to 
estimate the parameters of the planes that best represent the range data. The strategies differ 
not only in the way candidate planes are hypothesized but also in the objective function 
used to select the best plane among the potential candidates. The method they consider 
integrates in an effective way different strategies for plane recovery. There are mainly three 
procedures all based on random sampling. Three main procedures are invoked sequentially 
in a given order for new plane detection in iteration, the next one executed only when the 
previous ones do not detect a significant plane. Once the parameters of the best plane are 
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found at a given iteration, the plane is expanded over the entire image and all the fragments 
of the same surface in the image are labelled as belonging to the same plane. This method 
achieved the worst result in the comparison. 

3.2.7. The OU segmentation algorithm

The segmentation algorithm OU (Jiang et al., 2000) is based on the analysis of intersection of 
the scene by arbitrary planes. At first, the range image is divided into two hemi-spaces by an 
imaginary plane, and then it binarizes each pixel on the range image. On that image, the 
issue of plane detection is turned into edge detection on the binary image. Authors applied 
Hough transform for derivative image to do it, because test images contain much noise. The 
topological information in the binary image can also be used for end-point determination 
and grouping detected line segments. The imaginary plane is translated step by step and the 
set of line segments is obtained. To accelerate this algorithm, the voting space for Hough 
transform is limited using information of prior line detection. Then planes are made by 
grouping line segments: If two lines share a plane, the lines are parallel to each other and 
have a close distance. Therefore all line segments are classified into several groups using 
gradient, distance and arrangement of end--points of the lines. The topological cue of binary 
image can be also exploited. Finally the range image is filled by polygons which are 
generated from two neighbouring lines. Against the case of fragmentation of polygons the 
normal vectors of each planar surface are evaluated and unified if the difference of normal 
vectors of neighbouring planar surfaces is small enough. 

3.2.8. The UA segmentation algorithm

The segmentation algorithm UA (Jiang et al., 2000 performs a fast hierarchical processing in 
a multiresolution pyramid, or quadtree, based on (Loke & duBuf, 1998) and (Wilson & 
Spann, 1988). It must be noted that the method has only very recently been adapted for 
range images. Its current disadvantage is the information loss which is caused by linearly 
combining the components of the surface normal vector. A quadtree of L levels is built with 
at the base (level 0) the original range image on a regular grid. Low-resolution depth data at 
each higher level are determined by a low-pass filtering of depths at the lower level in no 
overlapping blocks of size 2×2. This reduces the noise, allowing the estimation of accurate 
normal vectors at the highest level L - 1. New filter technique is applied in order to increase 
the homogeneity of the data and to reduce the noise. At level L - 1, data clusters are 
determined using the local-centroid algorithm (Wilson & Spann, 1988). Thereafter, the 
segmentation at level L - 1 is obtained by setting each pixel to the label of its nearest cluster. 
Starting at level L - 1 and ending at level 1, the segmentation at each lower level is obtained 
by refining the boundary. At level 0, a component labelling is performed, because the 
segmentation may contain regions which have the same label, but which are not spatially 
connected. All regions smaller than a minimum region size are disregarded. 

3.3. Non-Planar Face Segmentation Algorithms

If the measured range scene contains general objects and we cannot use the simplifying 
planar face assumption, the segmentation task is substantially more difficult. There is very 
few non-planar range segmentation algorithms published and no benchmarking 
methodology generally accepted. 
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3.3.1. The UBC Range Segmentation Algorithm 

The UBC segmenter (Jiang & Bunke, 1998) consists of two parts: edge detection and 
grouping of edge points into closed regions. It makes use of the fact that each scan line (row, 
column or diagonal) of a range image is a curve in 3-D space. Therefore, it partitions each 
scan line into a set of curve segments by means of a splitting method. All the splitting points 
represent potential edges. The jump and crease edge strength of the edge candidates are 
evaluated by analytically computing the height difference and the angle between two 
adjacent curve segments, respectively. Each pixel can be assigned up to four edge strength 
values of each type (jump and crease) from the four scan lines passing through the pixel. 
These edge strength values are combined by taking the maximum to define the overall edge 
strength of each type. The grouping process is based on a hypochapter generation and 
verification approach. From the edge map, regions can be found by a component labelling. 
Due to the inevitable gaps in the edge chains, however, this initial grouping usually results 
in under-segmentation. To recognize the correctly segmented and under-segmented regions, 
a region test is performed for each region of the initial segmentation. If the region test is 
successful, the corresponding region is registered. Otherwise, the edge points within the 
region are dilated once, potentially closing the gaps. Then, hypochapter generation 
(component labelling) and verification (region test) are carried out for the region. This 
process is recursively done until the generated regions have been successfully verified or 
they are no longer considered because of too small a region size. The results suggest that the 
UBC segmentation algorithm substantially out-performs the BJ algorithm. However, these 
results should be interpreted carefully. The UBC segmenter has a fundamental limitation. 
The edge detection method described above is able to detect jump and crease edges but not 
smooth edges (discontinuities only in curvature). This seems to be true for all edge detectors 
reported in the literature. 

3.3.2. Variable Order Surface Fitting (BJ) Algorithm

Besl and Jain developed a segmentation algorithm (Besl & Jain, 1988) which uses signs of 
surface curvature to obtain a coarse segmentation and iteratively refines it by fitting 
bivariate polynomials to the surfaces. The algorithm begins by estimating the mean and 
Gaussian surface curvature at every pixel and uses the signs of the curvatures to classify 
each pixel as belonging to one of eight surface types. The resultant coarse segmentation is 
enhanced by an iterative region growing procedure. For every coarse region, a subregion of 
a size at or above a threshold is selected to be a seed region. Low order bivariate 
polynomials are used to produce an estimated surface fit to the seed region. Next, all pixels 
in all regions of the image that are currently outside the seed region are tested for possible 
inclusion into the current region.  The largest connected region which is composed of pixels 
in the seed region and pixels that passes the compatibility tests is chosen as the new seed 
region. Expansion continues until either there is almost zero change in region size since the 
last iteration, or when the surface fitting error becomes larger than a threshold. Finally, fit 
error is calculated, and if it falls below a threshold the region is accepted. If not, the region is 
rejected and the seed region that produced it is marked off so that it may not be used again.  

3.3.3. Industrial Research Limited Simple Surface Segmentation (IRLBC and IRLRG)

The authors of this paper (McIvor et al., 1997) described a method for the recognition of 
simple curved surface patches from dense 3--D range data, such as that provided by a 



Multimodal Range Image Segmentation 37

structured light system. Patches from planes, spheres, cylinders, and ruled surfaces are 
considered. The approach can be summarised as follows. The first step is to estimate the 
local surface geometry (the principal quadric) at each visible surface point. Then points at 
which the signs of the Gaussian and mean curvatures are inconsistent with those of a 
particular surface type are rejected from further consideration. Each remaining point is 
mapped to a point in the parameter space of the surface type. By using an unsupervised  
Bayesian classification (IRLBC method) or region growing algorithm (IRLRG method), the 
clusters in parameter space that correspond to surface patches are identified, and the 
parameters of that surface can be determined. 

4. Multimodal Range Image Segmentation 

4.1. Face Outline Detection  

We assume   mutually registered range  (yt,r) and intensity (yt,i) data Yt =  [yt,r,yt,i ]T of the 
scene to be modeled  in the unshaded part (scene part with valid range measurements)  by 
an adaptive  causal  simultaneous autoregressive model (SAR) in some chosen direction: 

 Yt = γZt + εt                (3) 

Where γ = [A1,…,Aη] is the 2 × η unknown parameter matrix  and η = card It. We denote the 
2η × 1 data vector Zt = [Yt-iT : ∀i∈It] with a multi-index t= (m,n); m, n are the  row and  
column indices, respectively. The multiindex changes according to chosen direction of  
movement  on  the  image  plane e.g. t-1=(m,n-1), t-2=(m,n-2),…,It is some contextual causal 
or unilateral neighbour index shift set. The white noise vector εt has zero mean and constant 
but unknown covariance matrix  Ω. We further assume uncorrelated noise vector 
components, i.e., E{εt,r εt,i } = 0 ∀t and the probability density of εt to have the  normal 
distribution  independent of previous data and being the same for every time t. The  task 
consists in finding the conditional prediction density p(Yt|Y(t-1)) given the known process 
history Y(t-1) = {Yt-1, Yt-2, …, Y1,Zt, Zt-1,…, Z1} and taking its conditional  mean  estimation  
for the predicted data. If the prediction error is greater than an adaptive threshold the 
algorithm assumes an object face edge pixel.  
Assuming  normality of the white noise component εt, conditional independence between  
pixels and the normal-Wishart parameter prior, we have shown (Haindl & Šimberová, 1992) 
that the conditional mean value is: 
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and V0 is a positive definite  matrix. We assume slowly changing parameters, consequently 
these equations were modified using a constant exponential "forgetting factor" α to allow 
parameter adaptation. It is easy to check (see (Haindl & Šimberová, 1992)) also the validity 
of the following recursive parameter estimator: 
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Let us define the following three conditions with adaptive thresholds (7),(8): 
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where S is the shaded (unmeasured part) of the range image. The pixel t is classified as an 
object edge pixel (a detected step discontinuity pixel) iff either the conditions  (6),(7) or (6), 
non (7),(8) hold. Both adaptive thresholds are proportional to the local mean prediction 
error estimation. 

4.2. Competing Models

Let us assume two SAR models (3) M1 and M2 with the same number of unknown 
parameters (η1 = η2 = η) and an identical neighbour index shift sets It‘. They differ only in 

their forgetting factors α1>α2. The model M1, α1 ≈1 represents homogeneous image areas 
while the second model better represents new information coming from crossing some face 
borders because it allows quicker adaptation to this new information. The optimal decision 
rule for minimizing the average probability of decision error chooses the maximum a 
posterior probability model, i.e. a model whose conditional probability given the past data is 
the highest one. Predictors used in the presented algorithm can be therefore completed as: 
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where Zt is a  data vector identical to both models and 
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The analytical solution has the following form (Haindl & Šimberová, 1992): 
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where k is a common constant. All statistics related to a model M1 (6), (11) are computed 
using the exponential forgetting constant α1 while symmetrical statistics of the model M2 are 
computed using the second constant α2.
The solution of  (11) uses the following notations: 
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The determinant |Vzz(t)| as well as λt can be evaluated recursively (Haindl & Šimberová, 
1992):
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For numerical realization of the predictor (9) see discussion in (Haindl & Šimberová, 1992). 

4.3. Face Detection

The previous step of the algorithm detects correct face outlines however some pixels on 
these edges can be either missing or edges can be incomplete. This missing information is 
estimated in a curve segment-based region growing process. Curves to be grown do not 
need to be of maximal length through the corresponding object face. Any curve segments 
can serve as initial estimation however longer curve segments speed up the region growing 
step. The only restriction imposed on them is that they are not allowed to cross face borders 
detected in the previous step of the algorithm. These curve segments can be generated in 
two mutually perpendicular directions but our current implementation uses only one of 
these directions.   
A curve is represented using the cubic spline model: 
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for the interval ri ∈ <si;si+Δ>, Δ=1 for the single-scale version of the algorithm,  i=1 for 

columnwise or i=2 for rowwise direction, and rj=sj for j ≠ i. Splines representing  segments 

in a chosen direction  are  computed  and  parameter space Ξ is created over the image 
lattice. Two curve segments si,ti in the same column (row) are merged together iff: 
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1. They have similar slope 
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2. They have similar curvature 
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Both conditions are satisfied if we require similar spline parameters aSi, bSi, cSi for segments 
to be merged. The similarity measure chosen is the squared Euclidean distance. Similarly 
two parallel neighbouring curve segments r,  r ∈ <si; si + 1> × rj ∈ <si; si + 1> × (rj + 1) are 
merged if they share similar parameters in their corresponding spline intervals (ri). A fixed 
threshold we use in the current version depends on data; it has to be large enough to allow 
for parameters changes during a curved face following but simultaneously not too large to 
merge different faces together. 

     

     
Fig. 7. Dumbbell intensity   and range image, the combined edge map and the segmentation 
result.
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5. Evaluation Methodology 

For the segmentation quality evaluation we decided to use test data and methodology 
provided by (Hoover et al., 1996a) and (Hoover et al., 1996b) authors provided not only 
range image data, but the data together with ground truth segmentation of all images and a 
tool, which measures quality of segmentation results. Although no such experimental data 
can prove properties of a segmentation algorithm this set is large enough to suggest its 
expected behaviour and enables to rank the tested algorithm with some other previously 
published ones. Last but not least it is a rare world-wide accepted methodology for 
comparing planar face range image segmentation results. 
The problem of image segmentation is a classical one and yet different definitions exist in 
the literature. Thus we begin by formally defining the problem we consider here. Let R
represents the entire image region. We may view segmentation as a process that partitions R
into n subregions R1, R2,…, Rn, such that 

1. RR
n

i

i =
=1

2. Ri is a connected region, i=1,2,…,n
3. Ri ∩ Rj = 0 for all i and j, i ≠ j
4. Pred(Ri) = TRUE for i=1,2,…,n and 
5. Pred(Ri ∩ Rj)= FALSE for i ≠ j

where Pred(Ri) is a logical predicate over the points in set Ri and 0 is the empty set. 
In some works the item 5 of this definition is modified to apply only to adjacent regions, as 
no bordering regions may well have the same properties, sometimes the item 2 is completely 
left out. Besides these inconsistencies, there are technical difficulties in using this definition 
for range image segmentation. Some range pixels do not contain accurate depth 
measurements of surfaces. This naturally leads to allowing non--surface pixels (areas), 
perhaps of various types. Regarding the above definition, non-surface areas do not satisfy 
the same predicate constraints (items 4 and 5) as regions that represent surfaces. It is also 
often convenient to use the same region label for all non-surface pixels in the range image, 
regardless of whether they are spatially connected. This violates item 2 of the above 
definition. Finally, we also require that the segmentation be ‘crisp’. No sub pixel, multiple or 
‘fuzzy’ pixel labelling are allowed. Comparison of machine segmentation (MS) of a range 
image to the ground truth (GT) is done as follows. Let M be the number of regions in the 
MS, and N be the number of regions in the GT. GT does not include any non-surface pixel 
areas. Similarly, MS does not include any pixels left unlabelled (or not assigned to a surface) 
by segmenter. Let the number of pixels in each machine-segmented region Rm (where 
m=1,…, M) be denoted PM. Similarly, let the number of pixels in each ground truth region Rn

(where n=1,…, N) be denoted Pn. Let Omn = Rm ∩ Rn be the number of pixels of both regions 
Rm and Rn whose image coordinates occupy the same range in their respective images. Thus, 
if there is no overlap between the two regions, Omn = 0, while if there is complete overlap, 
Omn = Pm = Pn.
An M × N contingency table is created, containing Omn for m=1,…, M and n=1,…, N.
Implicitly attached to each entry are the percentages of overlap with respect to the size of 
each region. Omn/Pm represents the percentage of m that the intersection of m and n covers. 
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Similarly, Omn/Pn represents the percentage of n that the intersection of m and n covers. 
These percentages are used in determining region segmentation classifications. 
We consider five types of region classification: correct detection, over-segmentation, under-

segmentation, missed and noise. Over-segmentation, or multiple detections of a single 
surface, results in an incorrect topology. Under-segmentation, or insufficient separation of 
multiple surfaces, results in a subset of the correct topology and a deformed geometry. A 
missed classification is used when a segmenter fails to find a surface which appears in the 
image (false negative). A noise classification is used when the segmenter supposes the 
existence of a surface which is not in the image (false positive). Obviously, these metrics 
could have varying importance in different applications. 
The formulas for deciding classification are based upon a threshold T, where 0.5 < T ≤ 1.0. 
The value of T can be set to reflect the strictness of definition desired. The following metrics 
define each classification: 

1. An instance of a correct detection classification 
A pair of regions Rn in the GT image and Rm in the MS image are classified as an 
instance of correct detection if 

a) Omn ≥ T × Pm (at least T percent of the pixels in region Rm in then MS image 
are marked as pixels in region Rn in the GT image), and

b) Omn ≥ T × Pn (at least T percent of the pixels in region Rn in then GT image 
are marked as pixels in   region  Rm in the MS image).

2. An instance of an over-segmentation classification 
A region Rn in the GT image and a set of regions in the MS image Rm1,…,Rmx, where 
2 ≤x ≤ M, are classified as an instance of over-segmentation if 
a) ∀ i ∈ x, Omi n ≥ T × Pm (at least T percent of the pixels in each region Rmi

in the MS   image are marked as pixels in region Rn in the GT image), and 

b)
=

x

i 1

Omi n ≥ T × Pn (at least T percent of the pixels in region Rn in the GT 

image are marked as pixels in the union of regions Rm1,…, Rmx in the MS 
image).

3. An instance of an under-segmentation classification 
A set of regions in the GT image Rn1,…, Rnx, where 2 ≤x ≤ M, and a region Rm in 
the MS image are classified as any instance of under-segmentation if 

a)
=

x

i 1

Omni ≥ T × Pm (at least T percent of the pixels in region Rm in the MS 

image are marked as pixels in the union of regions Rn1,…,Rnx in the GT image), 
and

b) ∀ i ∈ x, Om ni ≥ T × Pni (at least T percent of the pixels in each 
region Rni in the GT image are marked as pixels in region Rm in the MS image). 
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4. An instance of a missed classification 
A region Rn in the GT image that does not participate in any instance of correct 
detection, over-segmentation or under-segmentation is classified as missed. 

5. An instance of a noise classification 
A region Rm in the MS image that does not participate in any instance of correct 
detection, over-segmentation or under-segmentation is classified as noise. 

The authors of (Hoover et al., 1996a) created publicly available tool, which measures results 
of segmentation using described performance metrics. There are certainly many other 
possibilities how to compare segmentation results and some of them will result in different 
algorithms rating but above performance metrics is the only one which is generally accepted 
and hence enables mutual comparison of different published results. 

6. Results 

We tested the algorithm on a test set (Powel et al., 1998) of 39 range images from scenes 
containing planar, cylindrical, spherical, conical and toroidal object surfaces. This set was 
created by authors of (Powel et al., 1998) using a K2T structured light scanner model GRF-2. 
The scanner precision is 0.1 mm and data were quantized into a 640 × 480 × 8 bit data space. 
Single scenes have between 1 to 120 surface patches of varying sizes. We compared our 
results Fig. 8. with three previously published methods (Besl & Jain, 1988), (Jiang & Bunke, 
1998), (Haindl & Žid, 1998). As can be seen on Fig. 8. (colour version) our method 
outperforms these alternative methods. The average improvement over our previously 
published method (Haindl & Žid, 1998) in the correct segmentation criterion (Hoover et al., 
1996) is 30%. Alternatively the results were evaluated also visually comparing range data 
segmentation results with corresponding intensity images (Figs. 7., 9.). 
Visual comparison of the results demonstrates very good quality of detected borders using 
our algorithm. The borders are clean and accurately located. The segmentation algorithm 
properly found most required non-planar object surfaces in our test examples. 

Fig. 8. Range, intensity measurements and the corresponding Besl & Jain (Besl & Jain, 1988) 
(upper row), UB (Jiang & Bunke, 1998), (Haindl & Žid, 1998) and the presented method 
abacus segmentation results. 
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Fig. 9. Annuloid range,  intensity and segmentation results  images. 

7. Conclusions 

We proposed novel fast and accurate range segmentation method based on the combination 
of range & intensity profile modelling and curve-based region growing. A range profile is 
modelled using an adaptive simultaneous regression model. The recursive adaptive 
predictor uses spatial correlation from neighbouring data what results in improved 
robustness of the algorithm over rigid schemes, which are affected with outliers often 
present at the boundary of distinct shapes. A parallel implementation of the algorithm is 
straightforward, every image row and column can be processed independently by its 
dedicated processor. The region growing step is based on the cubic spline curve model. The 
algorithm performance is demonstrated on the set of test range images available on the 
University of South Florida web site. These preliminary test results of the algorithm are 
encouraging; the proposed method was mostly able to find   objects present in all our 
experimental scenes with excellent border localization precision and outperformed the 
alternative segmenters. The proposed method is fast and numerically robust so it can be 
used in an on-line virtual reality acquisition system. However further work is still needed to 
replace current fixed region growing threshold with an adaptive threshold which could 
accommodate different types of range data, to test the performance on noisy laser data as 
well as on scenes with large number of curved faces. 
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