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1. Introduction 

Total hip replacement (THR), one of the most successful and cost effective surgical 

interventions introduced in the last 50 or so years in medicine and the second most common 

elective operation in the UK (Sheldon et al., 1996, Garellick et al., 1998), owes most of its 

success to the introduction of hard-on-soft arthroplasty by Charnley. Arthroplasty (from the 

Greek ‘arthrosis’ = ‘joint’ and ‘-plasty’ = ‘the making of’) describes the surgical reconstruction 

or replacement of a malformed, degenerated or traumatised joint. THR is the treatment of 

choice for conditions that affect both the articular surfaces (i.e. acetabulum and femur) of the 

hip joint. Worldwide, approximately one million artificial hips are implanted annually (Smith 

& Learmonth, 1996). Problems with polyethylene (PE) wear debris from soft-on-hard 

articulations (causing an infiltration of macrophages, eventually leading to destruction of bone 

and soft tissue and initiating loosening of the implant) led to the development of hard-on-hard 

bearing combinations for artificial hips as the latter produce minimal wear and therefore 

implant failure is delayed. 

Until recently, THRs have been reserved primarily for the elderly and with relatively short 

post-operative life expectancies there was no need for studies investigating the long term 

effects, since on average, prosthetic joints are relatively trouble-free for 10-15 years (Havelin 

et al., 2000). However, due to their success, a greater number of THRs are nowadays 

performed on increasingly younger, more active patients. In England a substantial 

proportion of THR patients (>12%, i.e. >10.000 individuals yearly) are below 60 (NHS, 2006). 

Bearing in mind that the use of artificial hips is more rigorous in younger patients and that 

life expectancy continues to increase, it is time that the question of possible adverse long 

term effects following implantation needs to be addressed. Most importantly, concerns for 

potential carcinogenicity of THRs is reasonable to be raised, since both soluble and 

particulate wear debris originating from the prostheses are biopersistant and are found 

systemically in the human body following the operation. In this chapter I discuss the 

proposed links between hip replacements and carcinogenesis to date by summarizing the 

relevant literature while presenting important background information regarding THRs, the 

generation of wear debris from hip prostheses, its biopersistence and the extent of its 

dissemination in the human body. This review is mainly focused on materials currently 

being used as bearing surfaces in artificial hips for younger patients. 
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2. Basic anatomy of the hip joint and indications for THR therapy 

The hip joint is a multiaxial ball and socket synovial joint formed between the spherical 

head of the femur and the hollow cup-shaped acetabulum of the pelvis, which in turn forms 

at the union of 3 pelvic bones (the ileum, ischium and pubis). The depth of the acetabulum is 

increased by a fibro-cartilaginous rim (labrum) which grips the head of the femur and 

secures it in the joint. The head of the femur is attached to the femur by a thin neck region. 

Both joint surfaces are covered with a strong layer of articular hyaline cartilage, except for a 

small area in the head of the femur, the fovea or pit, from which an intracapsular ligament 

attaches directly to the acetabulum. A strong fibrous capsule is attached to the rim of the 

articular cartilage, enclosing the joint cavity. Thickened strands of this capsule form 

ligaments which support the joint. The whole joint cavity is lined by a membrane, the 

synovium, the cells of which secrete an oily fluid that lubricates the articulating surfaces and 

allows smooth movement of the ball within the socket. A network of blood vessels, lymph 

vessels and nerves is also present (Standring, 2004). The hip joint(s) form the primary 

connection between the lower limb(s) and the axial skeleton of the trunk and pelvis. Its 

primary function is to support the weight of the body in both static (e.g. standing) and 

dynamic (e.g. walking or running) postures. Its strong but loose fibrous capsule permits a 

large range of movement (second only to the shoulder). 

Joint injuries are caused either by trauma or by gradual wear and tear due to aging and/or 

congenital predisposing factors. The hip joint frequently succumbs to degenerative and 

inflammatory diseases causing severe pain and stiffness, e.g. osteoarthritis and rheumatoid 

arthritis. Osteoarthritis, the most common form of chronic joint disease, results primarily 

from destruction and/or degeneration of the cartilage at the articular surfaces with age. In 

younger people, it may be the result of congenital dysplasia and/or dislocation, damage 

caused by fracture, previous inflammation etc. In fact, any situation which puts an unusual 

stress on the joint(s) can predispose to osteoarthritis (Flugsrud et al., 2002). Rheumatoid 

arthritis is an inflammatory disease of the connective tissue. It is more common in women 

and presents mainly between the ages of 25 and 55. Affected joints become swollen and 

tender due to inflammation of the synovium and escape of synovial fluid into the joint 

cavity. Although the disease often burns itself out in time, damaged joints continue to 

disintegrate, causing severe pain and stiffness. Hip joint fractures can occur at any age 

although they are more frequent in the elderly as they are closely associated with 

osteoporosis (i.e. a reduction in bone density due to decreased bone formation and/or 

increased bone resorption resulting in brittle bones). Osteoporosis’ incidence increases with 

age and is most commonly seen in post-menopausal women but it can also begin very early 

in life. THR therapy aims to relieve pain and increases the patient’s quality of life by 

comprehensively restoring the structure and function of the hip joint via complete 

replacement of the head of the femur and the lining of the joint socket on the pelvis with 

artificial materials (Smith & Learmonth, 1996, Garellick et al., 1998).  

3. A brief history of THR and the modern artificial hips – Design & materials 

The first recorded THR was performed in 1938 by Philip Wiles, using a total hip made 

entirely of stainless steel. The acetabular cup was fixed with two screws while the femoral 

component was secured by a bolt that passed through the neck of the femur (Amstutz & 
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Grigoris, 1996). The next major development was in 1951; the McKee-Farrar total hip was 

again made entirely of stainless steel however the stem was fixed using acrylic cement. In 

the late 1950s McKee and Farrar started operating more frequently with a Cobalt-based 

alloy (CoCrMo) as the principle bearing material. Various types of prostheses, including the 

McKee-Farrar, Ring, Stanmore and Muller designs, employed this bearing surface during 

the 1950s-1960s and it was not until the 1970s that metal-on-metal (MOM) articulation lost 

favour, mainly due to the successful design of the Charnley artificial hip which completely 

replaced all the other designs (Charnley, 1972). Accelerated corrosion because of improper 

selection of materials or faulty fabrication techniques (Jacobs et al., 1998a), and concerns 

about possible carcinogenesis (Heath et al., 1971), metal sensitivity and high infection rates 

eventually led to the abandonment of MOM articulation as soon as a better option was 

available (Amstutz & Grigoris, 1996). 

While studying animal joint lubrication, Charnley realized that a cartilage substitute was 
necessary in order to allow artificial joints to function at the extreme low-friction level, as 
seen in nature. His innovative design consisted of a metal (hard) femoral component, a 
plastic (soft) acetabular component and bone cement. In 1958, he replaced an eroded 
arthritic socket with a thick walled Teflon cup, within which a small femoral head 
articulated, attached to an acrylic-fixed stem. The small (22.25mm) femoral head chosen was 
aiming for a decreased wear rate, however it had relatively poor stability (the larger the 
head of a replacement, the less likely it is to dislocate, but the more wear debris will be 
produced due to the increased articulating surface area) and failed quickly due to massive 
inflammation following PE wear production. In 1961, Charnley substituted Teflon with high 
molecular weight polyethylene (HMWPE) which is 500-1000 times more resistant to wear. In 
the 1970s, Boutin was the first to introduce alumina ceramic as a bearing surface in 
orthopaedics (Boutin, 1971). Ceramic-on-ceramic (COC) articulations produced minimal 
wear however early results were discouraging as these prostheses were very prone to 
fractures (Boutin et al., 1988). Thus, for over two decades, the Charnley Low Friction 
Arthroplasty design was the preferred system worldwide, far surpassing the other available 
options. Thousands of people were successfully relieved from their hip pain and the long-
term results became more predictable. John Charnley was knighted for his efforts (Cornell & 
Ranawat, 1986a, b) and many similar designs (pioneered by Charnley) followed.  

The current/modern artificial hips have three parts: (a) a rod or stem, which fits into the 
femur to provide stability and is usually made from metal (Ti- or CoCr-based alloys) while 
cement (poly-methyl-methacrylate) is sometimes used to fix it firmly in place; (b) a head or 
ball, which replaces the spherical head of the femur and is made of either hard, smooth 
metal (usually CoCr alloy) or ceramic (usually Al2O3) and (c) a shell or cup which replaces 
the faulty hip socket and allows bone to grow onto. Sometimes, a liner is used that locks into 
the shell and this in turn articulates with the ball. The cup can therefore be made of one or 
more materials, but the actual articulating surface that touches the ball is commonly made of 
CoCr-alloy, alumina or ultra high-molecular weight-polyethylene (UHMWPE). Each part is 
manufactured in various sizes in order to accommodate various body sizes and types. In 
some designs the stem and ball are one piece whilst other designs are modular, allowing 
additional customization for a better fit. In the U.S., all implant devices must be approved 
by the Food & Drugs Authority (FDA) and similar purpose governing bodies exist 
worldwide. In the U.K. approval must be given by the Medicines & Healthcare products 
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Regulatory Agency (MHRA) prior to clinical use of any THR implants. It is worth 
mentioning that an implant device may be approved in one country but not in another; e.g. 
COC total hips were widely used in Europe before they were made available in the U.S. (see 
www.mhra.gov.uk and www.fda.gov/Medical Devices).  

In summary, finally, surface choices in modern THRs can be divided into hard-on-soft 
metal-on-polyethylene (MOP) or ceramic-on-polyethylene (COP) and hard-on-hard metal-
on-metal (MOM) and ceramic-on-ceramic (COC) bearings. 

4. Why do implanted artificial hips fail after all? 

The ideal implant should stay in situ and function trouble-free indefinitely or at least for the 
whole of a patient’s life. However, this is not an ideal world and revision operations 
following THRs are often needed after 10-15 years if not sooner (Jacobs et al., 1998b). So why 
do hip prostheses fail? Initial acute complications following THRs include improper 
placement, cement extrusion and dislocation. Although dislocation can also occur as a late 
complication, it is most common in the immediate postoperative period (Manaster, 1996). 
Late complications include failure of any of the components of the prosthesis, mechanical 
(aseptic) loosening, bone fracture, heterotopic ossification (bone formation), loosening 
following infection and osteolysis (also termed aggressive granulomatosis or debris 
synovitis) (Tigges et al., 1994). In approximately 20% of patients, the artificial hip becomes 
loose within 20 years after implantation (Doorn et al., 1996a, Doorn et al., 1996b) while 
aseptic loosening in THR accounts for approximately 75% of revision procedures (Amstutz 
et al., 1992). In an early study, Dobbs et al evaluated the survival of THR prostheses by 
measuring whether they were still in situ; MOM articulations were found to have lower 
survival rates than MOP ones (53% and 88% respectively); nonetheless, the predominant 
reason for failure/revision in both cases appeared to be loosening of the prostheses’ 
components and authors blamed wear production for triggering osteolysis (Dobbs, 1980).  

Initially termed ‘cement disease’ (Jones & Hungerford, 1987), osteolysis is now understood 
to be a biological response to particulate wear debris and may originate at several locations 
around a THR. Willert was among the first to hypothesize that aseptic loosening of THRs 
was caused by the local macrophage response to wear debris (Willert, 1977). Goldring et al 
subsequently described the synovial-like nature of the bone-implant interface in patients 
with loose THRs and showed that cells within the periprosthetic membrane had the capacity 
to produce large amounts of several ‘bone resorbing factors’ (Goldring et al., 1983). 
Although these initial reports were in cemented implants, similar processes have been 
identified recently in cementless implants (Ingham & Fisher, 2005). Interestingly, Havelin et 
al reported a significant increase in the annual number of revision operations in Norway 
mainly due to an increase of wear debris production and osteolysis without loosening. This 
finding presents a different situation to what was observed in earlier years, where most 
prostheses failed after aseptic loosening of their components (Havelin et al., 2000). 

Osteolysis remains the main problem of THRs leading to revision surgery and a plethora of 

research studies have identified the generation of particulate wear debris from the 

articulating surfaces as a key factor. The amount of wear particles that are generated, their 

chemical composition, size and shape influence the induction of osteolysis (Meneghini et al., 

2005). Micron and submicron wear particles (particularly of PE) have been identified as the 
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main cause of loosening of artificial hips, following osteolysis (Ingham & Fisher, 2000). The 

current hypothesis is that particulate wear debris released from the prostheses can invoke a 

biological response in the surrounding tissue. Adjacent to THRs, one can find synovial 

tissue, fibrous tissue, lymphocytes (occasionally) and foreign-body inflammatory cells 

(macrophages and giant cells) that are present roughly in proportion to the number of 

particles surrounding the prosthesis (Schmalzried & Callaghan, 1999). The macrophages 

appear to be the most relevant and important cells with respect to this biological reaction. 

As wear particles are released, macrophages ingest them in an attempt to clear them, 

become stimulated and release cytokines. The inflammatory response is marked by the 

accumulation of more macrophages at the implant site attracted via released cytokines 

(Ingham & Fisher, 2005). A chain of cytochemical events leads to the production of foreign 

body giant cells that release chemical mediators able to activate osteoclasts (Wang et al., 

1997). During osteolysis, the activated osteoclasts resorb bone, with subsequent loss of 

integrity of the implant-bone interface, resulting in loosening of the implant and/or cyst 

formation and finally implant failure (Archibeck et al., 2000, Horowitz et al., 1993, 

Schmalzried et al., 1992, Wang et al., 1997). The number and the size of the wear particles 

appear to be the most important factors in determining the potential to elicit a biological 

response (Ingham & Fisher, 2000, 2005). Importantly, aseptic loosening and/or osteolysis 

requiring revision have also been reported for hard-on-hard, minimally wearing THRs 

using MOM and COC bearings (Harris, 1994, Yoon et al., 1998).  

5. Modes of wear and the generation of different types of wear debris from 
hip prostheses 

Wear is the removal of material that occurs as a result of the motion between two opposing 

surfaces, under load (Schmalzried & Callaghan, 1999). In THRs, these can be either the 

primary bearing surfaces of an articulating couple or secondary surfaces. The conditions 

under which the prosthesis was functioning when the wear occurred have been termed the 

wear modes. Mode 1 wear results from the motion of two primary bearing surfaces against 

each other, as intended; this is unavoidable. Mode 2 wear results from a primary bearing 

surface moving against a secondary surface that it was not intended to come in contact with 

(e.g. when a femoral head penetrates a modular PE liner and articulates with its metal 

backing). Mode 3 wear results from primary surfaces sliding against each other but with 

third body particles interposed (thus the contaminant particles directly abrade one or both 

of the primary surfaces which are in turn transiently or permanently roughened, leading to 

a higher mode 1 wear rate). Mode 4 wear results from rubbing together two secondary 

surfaces (e.g. a liner with a backing) and particulate debris generated this way can migrate 

to the primary bearing surfaces leading to third body wear. 

There are four fundamental mechanisms through which wear debris can be generated: 
adhesion, abrasion, corrosion and fatigue. Adhesion involves the bonding of opposing 
surfaces when they are pressed together under load. Adhesive wear occurs when fragments 
usually from the weaker of two relatively smooth bearing surfaces break off and adhere to 
the opposing surface. A so-called transfer film may be formed, whose disruption and 
reformation may lead to extreme fluctuations in wear rate (McKellop et al., 1981). Abrasion 
is the mechanical process of surface grinding that takes place as a result of friction. Abrasive 
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wear occurs when asperities found on a relatively hard articulating surface cut and plough 
through a softer/smoother surface during the sliding motion, forming a series of grooves in 
the smoother surface. This results in the removal of material. The same process can also take 
place when other wear particles (e.g. cement), generated elsewhere, are caught between two 
bearing surfaces and exacerbate the wear process by scratching and scoring them; wear 
produced this way is called ‘third body’ (Sedel, 1992, Hamadouche et al., 2002). Corrosion is 
the deterioration of essential properties in a material due to reactions with its surroundings. 
There are several types of corrosive processes and corrosive wear can occur in the presence 
of a ‘hostile’ environment such as the human body. Regarding bearing surfaces, corrosion 
products can form a passivation layer which is continuously worn away by the sliding 
action of the articulating surfaces; thus corrosion can progress further generating both 
soluble and particulate wear debris. Fatigue arises when local stresses exceed the fatigue 
strength of a material, leading to its failure after a certain number of loading cycles and the 
release of wear debris from its surface and/or its fracture. In articulating surfaces, fatigue 
wear occurs during repeated sliding or rolling over the same area, in the presence of local 
surface features or bearing pair incongruities (i.e. unmatches). This produces accumulations 
of concentrated local cyclic stresses which exceed the fatigue limit of either material in the 
wear couple. Such concentrated cyclic surface loading leads to the formation of surface and 
subsurface cracks which can lead to surface break-up and the release of large fragments 
(Schmalzried & Callaghan, 1999). 

Notably, deformation of any of the bearing surfaces is expected to result in increased (Mode 
1) wear. Acetabular (component) deformation can be observed as a consequence of the 
press-fit technique, which is employed to fix equatorial over-sized implant cups in place 
without cement (Squire et al., 2006). As completely spherical cups have a considerable risk 
of being pushed out of the acetabulum due to the so called ‘rebound effect’ (combination of 
strong forces all around the cup), over-sizing cups around their equator allows a more 
reliable fixation by compression forces only. Nonetheless, cup deformation could adversely 
affect the bearing clearance (Springer et al., 2011) and thus the fluid film lubrication of MOM 
bearings, possibly leading to increased adhesive and/or abrasive wear. Deformation has 
also been implicated during difficult intra operative assembly of COC bearings (Langdown 
et al., 2007). 

In general, one can discriminate between particulate and soluble wear debris. Evidently, 
particulate wear debris can be produced by any of the above described wear mechanisms 
while soluble wear can occur only by the corrosive wear mechanism and basically consist of 
soluble ionic forms of metals, either from the implant surface itself or from the surface of 
released wear particles. Particulate corrosion debris is also generated by an electrochemical 
process in which metal ions released from an implant surface subsequently form metal salt 
precipitates. Such corrosion products may be generated from any metal surface but most 
commonly originate from MOM modular interfaces (Urban et al., 2004). Importantly, the 
generation of wear debris in a prosthetic hip from different mechanisms (described above) 
can occur either simultaneously or at different times over the lifetime of the prosthesis. 

6. Wear rates and the choice of modern bearings for young patients 

In vivo measurements from tissue retrieval studies often report on the amount of the 
prostheses debris produced (either particle mass or particle number) per gram of dried 
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tissue. Such investigations have shown that the number of wear particles surrounding THRs 
can range from 8.5x108 to 5.7x1011 per gram of dry tissue (Hirakawa et al., 1996). However, 
given that the concentration of wear debris decreases with increasing distance from the 
bearing surfaces and that a great amount of wear particles may not stay adjacent to the 
prostheses but rather be carried to very distant sites (see section 7), the adequacy of such 
measurements for the calculation of wear rates in vivo is questionable. Wear rates in vivo 
can be perhaps more adequately calculated using measurements of linear or volumetric 
wear from retrieved implants. Linear wear is reported in length units and values represent 
the depth of several ridges found on randomly chosen sample areas from the surface of 
retrieved components. Volumetric wear can be calculated from numerous linear wear 
measurements, using certain equations/formulas and assuming that the femoral ball (or 
acetabular lining) is originally a perfect sphere with a radius to best fit non-worn regions of 
each component (McKellop et al., 1996). 

In vitro hip simulator studies report wear rates per million cycles (Mc), since 1 Mc is thought 
to correspond to an implant’s moderate use for a year. In fact, such studies could be 
considered more accurate, since wear debris can in fact be collected. Wear can also be 
presented as weight loss and then converted to volumetric wear using the alloy’s density. 
However, questions have arisen as to the correspondence between the wear particles 
generated in vitro and those observed clinically in vivo (Savio et al., 1994). Nevertheless, hip 
simulator studies have proven particularly useful in identifying the wear pattern/profile of 
total hip systems; thus such studies have shown that unlike MOP systems which show 
linear ratios of wear over time, modern MOM prostheses have an early high wear ratio 
phase (run-in) followed by a lower wear ratio phase (steady-state) (Anissian et al., 2001). 
The same biphasic profile is observed also with modern COC articulations (Hatton et al., 
2002) and it is speculated that the initial wear phase is due to a polishing effect resulting 
from the motion of the head against the cup (Mode 1 wear) while the following phase is 
mostly due to third body wear. Hard-on-soft Charnley type couples like MOP have a single, 
constant rate of wear production since there is no ‘polishing effect’ i.e. it is the soft lining of 
the cup that always wears out.  

PE wear rates from MOP articulations reported both in vivo and in vitro range in general 
from 30-100mm3 per year. In the U.S., COP is the most common alternative bearing 
combination used in THR patients as it has been shown to reduce wear rates when 
compared with conventional MOP by 10% to 50% for periods exceeding 10 years (Jazrawi et 
al., 1998). However, other studies have not reported significant differences between MOP 
and COP wear rates (Schmalzried et al., 1998). Anissian et al calculated the run-in and 
steady-state wear rates of modern MOM articulations to be 2.22mm3/Mc and 1.0mm3/Mc, 
respectively. However, higher wear rates have been estimated from in vivo studies. 
McKellop et al concluded that the long term maximum wear rates of any design could be 
approximately 6µm per year - corresponding to a maximum mean volumetric wear of 6mm3 
metal particles per year (McKellop et al., 1996). One reason for the differences observed 
between in vivo and in vitro reported wear rates could be the nature of the lubricant used in 
simulators. The tribologic performance of a joint largely depends on the existence of a fluid 
(lubricant) film and the amount of coverage it confers to its surfaces and lubrication has a 
major influence on the amount of abrasive and especially adhesive wear (Walker, 1971). 
Another confounding variable appears to be the presence of surface coatings, which have 
been reported on both ceramic and metallic implants (Streicher et al., 1996, Lu & McKellop, 
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1997). It may be that the bearing surfaces in a hip simulator are actually articulating on such 
(smoother) coatings instead of the implant surfaces. Using low protein serum as a synovial 
fluid substitute, adding EDTA to reduce protein precipitates and running simulator tests at 
speeds that prevent heat generation are some of the modifications thought to result in 
decreased coating phenomena (Medley et al., 1996). Chan et al concluded that low surface 
roughness and small clearance between the head and cup are necessary for adequate fluid 
film lubrication and therefore for less wear production to occur; they suggested that if these 
parameters are optimal, all other engineering and manufacturing factors do not have a 
significant effect on the production of wear debris. Their simulator tests also showed that 
the volumetric wear of MOM articulation is 2000 times smaller than that of MOP 
articulation (Chan et al., 1999).  

In more recent hip simulator studies a technique called microseparation is employed, where 

the ball and socket separate slightly during the swing phase of gait, to produce (higher) 

wear rates that are more relevant clinically (i.e. are similar to the ones reported in vivo). It 

has been proposed that microseparation could occur in any hip prosthesis and it may be 

involved in the initiation of ‘stripe’ wear, a small band of wear observed to occur around the 

rim of acetabular cups in retrieved COC hip prostheses (Mittelmeier & Heisel, 1992). Neck 

and socket impingement is another way of generating stripe wear (Nizard et al., 1992). 

Nevelos et al, by introducing microseparation of the COC prostheses, reproduced for the 

first time clinically relevant wear rates (typically 1-5mm3 per annum), wear patterns and 

mechanisms (Nevelos et al., 1999). Other microseparation studies reported wear rates of 1-

2mm3/Mc (1.24mm3/Mc for modern prostheses and 1.74m m3/Mc for the first generation 

ones). The wear stripe often seen clinically on the femoral head was reproduced on both 

prosthesis types. The degree of rim contact depended on clearance and the authors 

postulated that clinically, microseparation may depend on factors like components’ 

alignment, position, soft tissue tension and muscle forces. Interestingly, two size-ranges of 

particles were found under in vitro microseparation testing: small (nanometre scale) and 

large (micrometre scale) particles (Tipper et al., 2002). Nanometre sized ceramic wear 

particles were first described in periprosthetic tissues in a study that also revealed a bimodal 

size distribution of alumina ceramic particles in vivo (Hatton et al., 2002). 

According to the above, it is evident that hard-on-soft Charnley type bearings demonstrate 

more wear for the same time period than hard-on-hard bearings (MOM and COC) as 

predicted, but are less susceptible to catastrophic failure. Modern hard-on-hard surfaces are 

mainly only sensitive to failure due to surgical technique (e.g. fixation, component 

positioning). Artificial hips that produce little wear are thought to be more durable and have 

a lesser risk for osteolysis, loosening and revision; hence, given a correct surgical 

implantation technique, modern hard-on-hard bearings are the preferred choice for 

younger, more active patients who have good quality bone tissue (Figure 1). Judging by 

wear debris production rate alone, ceramics provide the most desirable bearing surfaces 

(Savio et al., 1994) with alumina COC THRs having the lowest wear rates of any bearing 

surface combinations (Boutin et al., 1988). It has been calculated that the debris produced 

from an alumina-alumina THR where the femoral head is not too small, no stress risers 

occur from implantation, the acetabular cup is aligned properly, and an adequate clearance 

is maintained between the ceramic components may be as little as 1/4000 that of an 

equivalent MOP design (Sedel, 1992, Hamadouche & Sedel, 2000, Hamadouche et al., 2002). 
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Fig. 1. Volumetric wear rates (estimates) of modern THR cup and head combinations. Data 
taken from Heisel et al., 2004. 

Savio et al reviewed and compared descriptions of wear debris from many in vivo 

(revisions, autopsies) and in vitro (hip simulators) sources. The authors concluded that the 

type (composition) of THR materials plays a critical role in regards to the size, shape, 

volume and number of particles that are produced both in vivo and in vitro. More 

specifically, they hypothesised that the size of wear particles (minimum wear diameter) 

should be inversely proportional to a material’s modulus of elasticity (i.e. its hardness) and 

they have consequently predicted that ceramic wear particles should be the smallest, 

polymeric ones the largest and metallic ones of an intermediate size (Savio et al., 1994). 

Simulator tests (Chan et al., 1999) support the above hypothesis and so do analyses of 

particles that are produced in vivo (Doorn et al., 1998). Nonetheless, hard-on-hard bearings, 

although producing far smaller volumes of wear than conventional Charnley type couples, 

may produce a similar active total surface area of debris. The very small (nanometre) size of 

metallic debris released by MOM bearings (Archibeck et al., 2000), combined with the fact 

that the bioavailability of metal is thought to be a function of the total surface area of the 

released debris rather than on its volume or weight (Shanbhag et al., 1997), casts doubt on 

the supposition that the net adverse biologic response will be reduced by modern MOM 

designs even though the volumetric wear is reduced. COC articulations are also reported to 

release nanometre sized particles (Hatton et al., 2002).  

In addition to abrasive, adhesive and surface fatigue wear, metal alloys may suffer from 

corrosion. Corrosion can affect the whole surface of the implant or just a specific region (e.g. 

could be confined to an area of wear from mechanical stress). It is estimated that 30µg of 

metal ions (i.e. soluble wear) may be released from a prosthetic hip each day (Hennig et al., 

1992, Merritt & Brown, 1996). Ions are shown to react with other molecules forming several 

types of particulate corrosion wear. Jacobs et al analysed particulate corrosion products 

from retrieved implants and surrounding tissues. Particles of metal oxides, metal chlorides, 

and chromium phosphate corrosion products were identified on implants of 10 designs 
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from 6 manufacturers. The most abundant solid corrosion product was an amorphous 

chromium orthophosphate hydrate-rich material (Jacobs et al., 1995). 

7. Dissemination and biopersistance of wear debris from implanted artificial 
hips 

As mentioned, wear debris can be both soluble (ions) and particulate. Ions may only be 

formed from metal components of artificial hips as they are the result of corrosion. 

Importantly, even in COC articulations, the stem is usually made of metal (Co-based or 

Ti-based alloy) and therefore, the existence of corrosion wear (both soluble and 

particulate) is applicable to all modern prostheses. Ions may stay bound to local tissue or 

bind to protein moieties that are transported via the bloodstream and lymphatics to 

remote organs. In an early post-mortem study, an increase in the concentrations of Co and 

Cr in remote tissues (liver and spleen) of a patient with bilateral Co-based alloy total hip 

components was reported; interestingly, Cr was found in a higher level than Co (Dobbs & 

Minski, 1980). Michel et al also reported on two post-mortem specimens with CoCr alloy 

components: in both cases high levels of Co and Cr were detected in adjacent tissues 

while a wide systemic effect was observed with increased concentrations of Co found in 

the heart, liver, spleen and lymphatic tissue and of Cr in the aorta, heart, liver, pancreas 

and spleen (Michel et al., 1991). 

Elevated levels of Co and Cr ions in the serum, blood and/or urine of patients have been 

reported numerous times following both MOP and MOM THRs. In an early cohort study 

Black et al showed that Cr levels increased significantly (peaked) immediately after primary 

THRs; this peak was reduced six months post-operatively but it did not fall below control 

levels (Black et al., 1983). After a similar study, Sunderman et al suggested that a substantial 

increase of serum and urine Co levels seen in two patients was associated with loosening of 

their prosthesis (Sunderman et al., 1989). In a later retrospective study whole blood and 

serum were analysed from CoCr alloy MOP THR patients who had their artificial hips in 

place for up to 18 years. None of the devices were loose and no increase in the serum levels 

of Cr was documented, however, in 4 patients massive Co enrichments were seen as a 

consequence of implant corrosion while the levels of Co in the serum were significantly 

higher than controls up to more than 10 years postoperatively; moreover, significant Co and 

Cr enrichment was seen in several tissues and organs (Michel et al., 1991). Not surprisingly, 

joint failure can result in large increases in the amount of soluble metal ions detected in 

urine and/or blood (Jacobs et al., 1998a). According to Schaffer et al the levels of both Co 

and Cr in blood and urine increase continuously; at 2-3 years post-operatively more than a 

quarter of the patients retrospectively studied exceeded German occupational exposure 

limits (Schaffer et al., 1999). A more recent study showed a steady increase in both metal 

elements for up to 2-3 years postoperatively, depending on the type/brand of metal alloy, 

while subsequently metal levels declined although still remaining markedly above control 

levels (i.e. immediately after the operation). Thus, it has been proposed that the rises and 

declines of metal levels over time are the result of biomechanical influences on the implant’s 

tribology (Lhotka et al., 2003). Simulation experiments support this view, since the pattern 

of metal levels observed in the blood and urine of MOM patients correlate with the 

(biphasic) wear pattern of the prosthesis per se (Anissian et al., 2001).  
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Importantly, Jacobs et al reported that younger patients had significantly higher levels of 

systemic metal release than older patients and postulated a more active lifestyle as the 

underlying factor (Jacobs et al., 1998a). A recent study by Dunstan et al in young (mean age 

45 years) patients supports this view; moreover, it shows that MOM articulations released 

significantly higher levels of Co and Cr when compared to MOP ones while further 

elevation of metal levels was observed in patients with loose MOM THRs (Dunstan et al., 

2005). Several in vivo and simulator studies have presented evidence that higher patient 

activity has as a result higher wear rates. Hence, it has been proposed that wear is a function 

of use, not time (Schmalzried et al., 2000). The case of a long distance runner with a MOM 

artificial hip supports this view: Metal (Co) levels in his blood were increased following 

completion of a marathon run and returned back to baseline levels 4 weeks later (Brodner et 

al., 2003). A contradictory study, after monitoring 7 recipients of well functioning MOM 

hips during a 2 week long physical activity challenge, suggested that serum metal levels are 

not affected by patient activity; therefore periodic measurements of serum ion levels could 

be used to monitor the tribologic (lubrication, friction, and wear) performance of MOM 

bearings without adjusting for patient activity (Heisel et al., 2005). However, the low 

number of participants, the use of only one external control and the fact that patients were 

not monitored past this period of physical exercise coupled with the existence of other 

contradictory reports (e.g. the case of the marathon runner) show that a correlation between 

MOM patient activity and systemic metal release can neither be proven nor excluded. When 

Jacobs et al explored the prospects for using blood, serum and/or urine metal levels to 

monitor the performance of MOM THRs, they concluded that it would be premature to 

recommend metal concentration analysis on a routine clinical basis since interpretation of 

values requires an extensive database with correlative clinical information (Jacobs et al., 

2004). In summary, leaching of soluble wear (metal ions) following primary THR is not an 

occurrence of merely local significance, but one that affects the trace element status of the 

entire organism and over extended periods of time.  

Particulate wear from artificial hip joints is also shown to be biopersistant and capable of 

systemic dissemination. Particulate corrosion debris (metal precipitates) from modular 

MOM junctions have been found locally and in sites remote from the hip (Urban et al., 

1994). Cr phosphate particles have been found in the liver, spleen and para-aortic lymph 

nodes of patients with corroded but otherwise successful THRs (Jacobs et al., 1995). In a 

post-mortem study, Case et al reported an accumulation of wear particles in periprosthetic 

tissues and a systemic dissemination of huge numbers of sub-microscopic metal particles 

within the bone marrow, the local and distal lymph nodes, the liver and the spleen; in one 

case even in the frontal cortex of the brain. Interestingly, PE debris was not detected in these 

remote sites, despite its usual abundance in periprosthetic tissues, while the levels of metal 

were higher in the subjects that had a loose, worn implant (Case et al., 1994). A major 

parameter affecting the dissemination of particles in various tissues is their size; while 

bigger particles stay close to the periprosthetic tissues, smaller particles can travel further 

(Savio et al., 1994). Dissemination of THR metallic wear particles to the liver, spleen and 

abdominal lymph nodes was identified in other later studies (Shea et al., 1997, Urban et 

al., 2000). A recent post-mortem analysis showed that metallic particles were present in 

the liver and spleen of 73% of patients with a prior failure and revision of their THR. 

Particles generated by previous component failures were present in the liver or spleen a 
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decade or more later and suggesting that particle deposition in the organs is cumulative 

(Urban et al., 2004). 

The dissemination properties and systemic effects of ceramic wear debris remain unknown. 

Because ceramics are insoluble in biological media (i.e. there is no production of 

ions/corrosion products at physiological pH), biocompatibility concerns do not relate to 

soluble wear debris. Although there are no reports of systemic dissemination of ceramic 

particles, ceramic particles have been observed in periprosthetic tissues (Savio et al., 1994). 

Similarities of their pale colour to the normal colour of tissues may mean that dissemination 

of particles to distant sites is harder to identify in the case of ceramics. The low wear rates 

and the very recent clinical use of COC articulations might also explain the absence of such 

reports. Based on reports on their observed size and shape however, there is no reason to 

believe that ceramic particles could not systemically disseminate and accumulate with time 

in various parts of our bodies, just as metal particles do.  

8. Proposed links between total hip replacements and cancer 

Given that wear debris from THR implants can disseminate (locally and systemically) and 

are biopersistant (mainly particulates), their carcinogenic potential is a real concern; 

especially as their use in younger patients, who may have a post-operative life expectancy of 

more than 30 years, is constantly increasing. Hard-on-hard bearings (i.e. MOM and COC) 

are usually the preferable option for such patients because they have been shown to 

generate less wear debris compared to conventional Charnley-type prostheses and are 

therefore thought to have less of a risk for early implant failure. But even for successful, 

durable THRs with minimal wear rates, the production and accumulation of wear debris 

over time cannot be avoided; and notably the use of a THR implant will inevitably be more 

rigorous and last longer in younger patients. The International Agency for Research on 

Cancer (IARC), a body within the World Health Organization (WHO) responsible for 

evaluating carcinogenic risks to humans, in a recent evaluation of surgical implants and 

other foreign bodies implanted (WHO, 1999) categorized all foreign bodies of Co-based, Cr-

based and Ti-based alloys in Group 3, i.e. ‘not classifiable as to their carcinogenicity to 

humans’. Ceramic implants were also under the same group. 

8.1 Case reports, human cohort and epidemiology studies 

There are relatively few reports of malignant tumours associated with total joint 

replacement (TJR) in humans, but the number of cases is increasing. Early published reports 

included cases of malignant soft tissue tumours such as chondrosarcoma, malignant fibrous 

histiocytoma, rhabdomyosarcoma, osteosarcoma and haemangio-endothelioma associated 

with joint replacement surgery (Swann, 1984, Jacobs et al., 1992). These have led to calls for 

the establishment of a central registry for implant related tumours (Apley, 1989). In 1992, the 

editor of a well established orthopaedic journal wrote ‘the 24 tumours thus far made public 

show no pattern in their histological type or in the timing of their appearance’. Nonetheless, 

he mentioned the importance of concerted efforts under way to accumulate cases of 

malignant neoplasms associated with TJRs, so as to better define the risks prospectively 

(Goodfellow, 1992).  
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During the past 30 years there have been sporadic case reports documenting the 
development of malignant neoplasms adjacent/proximate to artificial hips. Jacobs et al 
listed 18 reported cases in which malignancy was associated with MOM THRs. In most 
cases, malignant fibrous histiocytomas were reported at or near the femoral bone. The rest 
of the cases included osteosarcomas, fibrosarcomas or epitheloid sarcomas (Jacobs et al., 
1992). Five years later, Cole et al listed 23 hip implant related tumours; malignant fibrous 
histiocytoma in ten patients and osteosarcomas in four while malignant epithelioid 
hemangio-endothelioma, chondrosarcoma, fibrosarcoma, synovial sarcoma, spindle-cell 
sarcoma, epithelioid sarcoma and an adenocarcinoma had each been reported once. 
Interestingly, only in two of these cases the acetabulum was the primary tumour site (Cole 
et al., 1997). A relatively large number of case reports have described neoplasms originating 
from bone or soft connective tissue in the region of metal implants. However, a recent 
analytical study did not report an increased risk of soft-tissue sarcoma after metal implants 
(Adams et al., 2003). Notably, the study compared the incidence of soft-tissue sarcoma after 
metal implantation to the general population’s incidence of soft-tissue sarcomas, regardless 
of their presentation site. The results could possibly be much different if the comparison was 
made to the general population’s incidence of soft-tissue sarcomas solely at the hip region. 
There are few well documented cases of malignant lymphoma following THR surgery. 
Radhi et al reported the only case of soft tissue lymphoma in the quadriceps muscle 
overlying an implanted hip 4 years postoperatively (Radhi et al., 1998). Ito and Shimizu 
reported a case of non-Hodgkin’s lymphoma expanding from the ischium to involve the 
acetabular floor of an implanted THR (Ito & Shimizu, 1999). Ganapathi et al reported a B-cell 
lymphoma at the site of a chronic discharging sinus overlying a femoral periprosthetic 
fracture; the sinus formed at the time of the primary THR and continued to discharge for 12 
years, until the patient died (Ganapathi et al., 2001). Other cases reported have developed 
after chronic osteomyelitis (Dodion et al., 1982). Lymphomas and other cancers developing 
at a site of a metallic implant may theoretically result from the carcinogenicity of the 
metallic alloy, in particular from prostheses made of CoCr. However, there is growing 
evidence that some soft tissue malignant lymphomas occur after long standing antigenic 
stimulation in patients with a defective immune system (Radhi et al., 1998). Startlingly, 
regarding ceramics and carcinogenesis, there has been only one case report on an aggressive 
soft tissue sarcoma 15 months after implantation of a ceramic Ti-stem COP THR (Schuh et 
al., 2004). However, this could be due to the fact that COC articulations have only recently 
been re-introduced for clinical use, therefore there is a limited experience with ceramics in 
comparison to metals. 

It has been suggested that given the small number of reported cases of tumours around THR 
implants over the vast number of THRs performed, an association between joint 
replacement and local malignancy may be coincidental (Goodfellow, 1992). However, if one 
considers that wear debris from hip prostheses do not stay bound to periprosthetic tissues 
but disseminate throughout the body and accumulate in tissues/organs far from the hip, it 
is evident that looking for tumours only adjacent to the prostheses to draw conclusions as to 
the carcinogenicity of THR implants is not enough. To establish whether a link exists 
between such implants and malignancy, one must look at large scale epidemiology studies. 
In 1988, Gillespie et al studied more than 1000 patients and acknowledged the incidence of 
cancer 10 years after total hip replacement. There was a 3-fold increase in the prevalence of 
leukaemia and lymphomata in patients with Co-alloy THRs along with a puzzling decrease 
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in the incidences of breast and colon cancer. The authors hypothesised that chronic 
stimulation of the immune system from soluble and particulate wear of metal-on-metal 
THRs could encourage the emergence of lymphoreticular malignancies but increased 
immune surveillance could also inhibit the development of certain epithelial cancers 
(Gillespie et al., 1988). In a follow-up study, Visuri et al reported similar findings (Visuri & 
Koskenvuo, 1991). A later cohort study (Mathiesen et al., 1995) failed to confirm an 
increased prevalence of haematological malignancies following THR however, the number 
of patients followed was small and the post-operative follow up period of the patients was 
rather short. Nyren et al included a greater number of patients but still failed to link 
haematological malignancies with MOM implants. Instead, the authors reported a small but 
significant increase in kidney and prostate cancers in patients with THR (Nyren et al., 1995). 
A more recent study with over 400 patients, compared the incidence of cancer (9.5 years 
post-operatively) in patients with MOM or MOP articulations with that of the general 
population. Supporting Gillespie’s puzzling findings, the authors reported that the total 
cancer incidence in both groups of patients was less than expected in the general population. 
Nonetheless, a significant increase in the incidence of leukaemia and lymphomas was 
shown for patients with MOM prosthesis only (Visuri et al., 1996).  

In 1996, Gillespie et al presented an overview of the 4 relevant epidemiological studies 

published before mid 1995 with conflicting results. The results of the two earlier studies 

(Gillespie et al., 1988, Visuri & Koskenvuo, 1991) suggested a sustained increase in the risk 

of lymphoma and leukaemia after THR while the results of the two more recent studies 

(Mathiesen et al., 1995, Nyren et al., 1995) did not confirm this; although in one of them an 

increased risk was observed in the first year after implantation. The authors mention that 

‘the heterogeneity may be statistical in origin, but could also have a biologic explanation in 

the greater proportion of metal on metal prostheses used before 1973 (Gillespie et al., 1996). 

Gillespie et al had also performed 2 matched cohort studies and a case control study. In 

conclusion, neither the results of the matched studies of patients (operated on after 1973) nor 

the results of the latter 2 published epidemiological studies indicated a significantly 

increased risk of lymphoma or leukaemia following THR. Nonetheless, Gillespie et al 

tactfully advised that ‘if metal on metal articulations were to be reintroduced, careful 

surveillance would be essential’. As joint replacement surgery is becoming one of the most 

common surgical procedures, the widespread epidemiological debate on the frequency of 

haematological malignancies in these patients remains to date. 

The IARC has recently reviewed the epidemiological data for the risk of malignancy after 

THR (McGregor et al., 2000). It was noted that epidemiology studies compared patients with 

orthopaedic implants with the general population, thus failing to take into consideration 

several possible confounding factors/variables (e.g. immunosuppressive therapy, 

prevalence of rheumatoid arthritis). Moreover, the follow up period of most studies was 

considered to be too short after exposure to investigate the development of cancer, as 

carcinogens usually have a long latency period (i.e. the time from exposure to a carcinogen 

until the clinical presentation of a tumour/malignancy). Asbestos particles for example are 

known to produce cancer between 22 and 37 years after exposure (Barrett, 1994). It was also 

noted that the mutagenicity and carcinogenicity of biomaterials are influenced by their exact 

composition, their surface properties, the composition and rate of release of leachable 

materials, the physical environment and degradation (which may lead to formation of 
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compounds with different mutagenic properties). Therefore, since most epidemiology 

studies of orthopaedic implants have not taken into account the type of metal alloy used in 

each case, most of this information was considered inadequate. Unfortunately, no 

epidemiological data relevant to the carcinogenicity of ceramic implants is available to date. 

Therefore, orthopaedic implants according to IARC remain non-classifiable (WHO, 1999). 

In molecular epidemiology, the occurrence of DNA damage has been explored for its links 
to the development of cancer. The frequency of cells with structural chromosomal 
aberrations in peripheral blood lymphocytes is the first genotoxicity biomarker that has 
shown a clear association with cancer risk. In two separate large (>1500 subjects) cohort 
studies, the level of chromosomal aberrations in peripheral blood lymphocytes was 
measured in healthy individuals at the start of the study, and the development of cancer 
was monitored over several decades. High levels of chromosomal aberrations were clearly 
associated with increased total cancer incidence in one cohort and increased total cancer 
mortality in the other cohort, suggesting that DNA lesions responsible for chromosomal 
aberrations are clearly associated with cancer risk (Hagmar et al., 2004). An important 
preliminary cohort study by Case et al used blood and bone marrow samples from 71 
patients at revision arthroplasty and 30 controls (prior to primary arthroplasty) to test for 
chromosomal aberrations. Cells adjacent to the prosthesis had a higher chromosomal 
aberration rate compared to that seen in iliac crest bone marrow cells from the same patients 
at revision surgery. Both samples taken at revision surgery had higher chromosomal 
aberration rates than those seen preoperatively in femoral bone marrow cells in controls. 
The authors also noted the occurrence of clonal expansion of lymphocytes in 2 out of 21 
patients studied at revision arthroplasty, which was performed more than 10 years after 
primary THR (Case et al., 1996). In a follow-up study, Doherty et al used peripheral blood 
lymphocytes from 31 MOM THR patients presenting at revision and over 30 controls (prior 
to having a THR) for cytogenetic analysis. They showed that at revision arthroplasty there 
was a 3-fold increase in aneuploidy and a 2-fold increase in random chromosomal 
translocations which could not be explained by confounding variables (smoking, gender, 
age and diagnostic radiographs). Most interestingly, metal alloy specific differences were 
seen: In the lymphocytes of Ti-alloy prostheses recipients there was a 5-fold increase in 
aneuploidy but no increase in chromosomal translocations; by contrast, in the lympocytes of 
CoCr-alloy recipients there was a 2.5 fold increase in aneuploidy and a 3.5 increase in 
chromosomal translocations. In lymphocytes from patients with stainless steel prostheses 
there was no increase in either aneuploidy or chromosomal translocations. Therefore, the 
authors suggested that although chromosomal translocations and aneuploidy can be seen in 
normal (non-THR) patients and are known to accumulate with time, genetic changes in THR 
patients may depend on the type of prosthesis (Doherty et al., 2001). Finally, in a more 
recent prospective study, Ladon et al investigated changes in metal levels and chromosome 
aberrations in patients within 2 years of receiving MOM THRs. A statistically significant 
increase of both chromosome translocations and aneuploidy was seen in peripheral blood 
lymphocytes at 6, 12 and 24 months post-operatively. The changes were generally 
progressive with time but the change in aneuploidy was much greater than in chromosome 
translocations. Although there was a significant increase of both Co and Cr ion 
concentrations, no significant correlations were found between chromosome translocation 
indices and Co or Cr concentration in whole blood while the clinical consequences of these 
observed changes remain unknown (Ladon et al., 2004). 
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8.2 Animal studies  

In vivo investigations into the carcinogenicity of orthopaedic implant related materials were 

undertaken as early as the 1950s, prompted by the clinical observation that workers in nickel 

and chromate refining/smelting plants had increased risks of nasal and lung tumours. 

Oppenheimer et al were the first to clearly establish the potential carcinogenicity of 

implants: they placed various metal foils subcutaneously in rats and observed malignant 

tumours develop (Oppenheimer et al., 1956). One year later, Heath et al observed 

rhabdomyosarcomas following intramuscular injection of Co powder in more than half of 

the rats studied (Heath, 1957). Heath et al also demonstrated the development of sarcomata 

in rats bearing CoCrMo wear particles from total joint prostheses (Heath et al., 1971). 

However, tumourigenesis due to CoCrMo could not be confirmed in later studies by 

Meachim (Meachim et al., 1982). 

Swanson et al were the first to test wear debris collected directly from orthopaedic implants. 
They used simulators to produce Vitallium (CoCrMo) powder, resuspended it in horse 
serum and injected it into rats; local sarcomas developed in 15 of 41 animals within 4-18 
months (Swanson et al., 1973). In 1977, Gaechter et al used intramuscular implantation of 
solid alloy implants but, after evaluating seven alloys (260 animals in total) for 2 years, 
failed to demonstrate a carcinogenic hazard. Notably, they recorded 19 malignant sarcomas, 
all remote from the implantation site (Gaechter et al., 1977). In a follow up study, Memoli et 
al implanted rats with a variety of alloys in solid rod, powdered and sintered aggregate 
form and observed the animals (until they died or) for 30 months. A slight increase in 
sarcomata was noted in rats bearing metal alloy implants with high contents of Co, Cr or Ni 
and the development of lymphomas with osseous involvement was also more common in 
these animals. Interestingly, tumours were more commonly seen in rats that received 
(metal) powders compared to those that received rods or sintered implants (Memoli et al., 
1986). Howie et al published a contradictory study on the effects of intra-articular CoCr-
alloy wear particles in rats, where they noted no tumours after observing the animals for 
more than 1 year (Howie & Vernon-Roberts, 1988). Although carcinogenicity of various 
(mostly metal) implant materials has been documented in several animal studies, a more 
recent study investigating the carcinogenic effects of intra-articular powder administration 
of CoCrMo and TiAlV alloys in rats disputed these early findings, suggesting that such 
particles if carcinogenic are only weakly so (Lewis et al., 1995). The authors used particulate 
wear debris created in a simulator and observed the animals for 2 years (or until there was 
evidence of tumours). The negative carcinogenesis results of this study should be 
interpreted with caution, since the number of animals used per experimental group was low 
(8-12 rats), and the observation period was rather short. Bouchard et al assessed the 
carcinogenicity of CoCrMo versus TiAlV implants in a long-term study in rats. Importantly, 
the existence of implant associated tumours correlated with loose implants; none with well 
fixed in situ implants. Histologically the tumours were categorized as dermatofibrosarcoma, 
fibrosarcoma, malignant histiocytoma, lymphoma and osteosarcoma, seen both adjacent to 
the implantation site and in remote sites - most prevalent in the pituitary and mammary 
glands. The authors suggested a foreign-body (immunological) reaction as the primary 
mechanism of carcinogenesis, as a significantly increased accumulation of chronic 
inflammatory tissues was seen around loose rather than fixed implants (Bouchard et al., 
1996). Animal studies using alumina ceramics as implant materials are virtually absent from 
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the literature, however, in one study in rats subcutaneous implantation of discs of 
aluminium oxide ceramic produced local sarcomas (Kirkpatrick et al., 2000).  

There are many limitations as to what extent the carcinogenicity of human THR implants 

can be evaluated in animal studies. First of all, there are differences in the composition of the 

materials tested, although this is not surprising given the developments in the production of 

implants over the years. There are also some differences in the methods of preparation of 

materials for administration but mainly there is great variation in the proposed routes of 

administration and the site(s) of implantation. A priori, the intra-articular route of 

administration seems to be the most appropriate for arthroplasty carcinogenesis models and 

as early as 1988 intraarticular injections had been proposed as the route of choice for such 

studies (Howie & Vernon-Roberts, 1988). Furthermore, there is observed variation as to the 

physical form (foils, solids, particles) of the materials used and an increasing trend to use 

small particulates rather than solid implants; possibly since the important role of wear 

particles for implant failure in THR was recognized. Finally, the differences in the periods of 

time that the animals were observed following implantation and in the number of animals 

that were used in each case make critical evaluation of such studies difficult. The relevance 

of animal models for evaluation of THR cancer risk in humans is still questionable, 

especially as it is well documented that different animals and even strains/species of the 

same animal have different susceptibility to tumour formation (Gibb, 1992). Several calls 

and recommendations for the ‘standardization’ of animal carcinogenicity studies have been 

made (Courtland & William, 1996). Importantly, the IARC recently states ‘despite the large 

number of animal studies, none have proven truly conclusive as to the carcinogenicity of 

implant materials, resulting only in indefinite statements at best regarding excessive tumour 

formation in animals exposed to wear debris from orthopaedic implants’ (WHO, 1999).  

8.3 In vitro studies  

A cancerous substance is termed capable of inducing a cancerous phenotype; for in vivo 
evaluations this means the induction of solid tumours and/or haematological malignancies 
while in cell culture models scientists look for cancer biomarkers and/or neoplastic 
transformation. The latter is an attainment of certain heritable characteristics from a cell, 
such as loss of contact inhibition and continuous growth/division, which can lead to clonal 
expansion. Neoplastic transformation is often the result of one or more heritable genetic 
alterations and in fact all recognized carcinogens are also genotoxic. Thus, in vitro testing of 
potential carcinogens has initially largely relied on the use of several genotoxicity tests (e.g. 
the Ames test, which measures the ability of a chemical to induce mutations in bacteria). On 
the other hand, not all acquired genetic alterations lead to neoplastic transformation (i.e. 
cancerous phenotypes) hence not all mutagens/genotoxins are carcinogens. Concerns for 
the potential carcinogenicity of THR implants relate mostly to the systemic existence of both 
soluble and particulate wear debris for long periods of time following implantation. Even 
for successful THRs the generation of mode 1 wear from the intended ball-on-socket 
articulation (see section 5) is inevitable and so is its dissemination throughout the body. 
Currently, due to their low wear rates, the preferred articulating couples for implantation in 
young patients are MOM (mainly CoCr alloy) and COC (mainly alumina). Unlike ceramics, 
there is a long clinical experience with metals. However, the genotoxicity of orthopaedic 
metal alloys has been investigated in-vitro mainly by testing their soluble ions, since until 
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recently it has always being assumed that the effects of metal particles could be attributed 
solely to their ionic form(s). Lison et al have shown this to be a misjudgement when they 
showed that Co metal particles induced DNA damage via free radicals by a mechanism 
which was independent of the existence of soluble Co (II) ions; in fact they proved that Co 
atoms from the surface of the particle were able to reduce oxygen, thus forming reactive 
oxygen species (ROS) (Lison et al., 2001). Notably, there are only a few in-vitro studies 
relevant to the potential carcinogenicity of orthopaedic metals which employed metal 
particulates rather than their ions.  

Particulate corrosion debris from metal bearings includes insoluble metal salts. Patierno et al 

actually indicated that the water-insoluble (particulate) Cr VI salts are more potent 

carcinogens than the water soluble ones, since only the particulate Cr (VI) compounds 

induced neoplastic transformation of mouse embryo cells (Patierno et al., 1988). In later 

studies, Wise et al used chromosome damage as a measurable genotoxic endpoint to study 

the genotoxicity of both particulate and soluble Cr (VI) in primary human bronchial 

fibroblasts at concentrations of low, medium and high toxicity. The scientists used lead 

chromate (PbCrO4) and sodium chromate (Na2CrO4) as prototypical particulate and soluble 

Cr VI salts, respectively, to show that the amount of chromosomal damage increased with 

increasing concentrations after 24h to both compounds (and so did the cytotoxicity levels) 

(Wise et al., 2002). Other studies have showed that metallic Co particles were able to induce 

DNA breaks and micronuclei in human peripheral lymphocytes in a dose dependent 

manner (Anard et al., 1997, Van Goethem et al., 1997). De Boeck et al showed that despite a 

relatively large interexperimental and interdonor variability, the DNA-damaging potential 

of the Co-tungsten carbide mixture was higher than that of Co metal and Co chloride which 

had comparable responses (De Boeck et al., 2003). Metallic Co and its compounds without 

tungsten carbide are classified by the IARC as being ‘possibly carcinogenic to humans’ 

(WHO, 1991) while Co metal containing tungsten carbide was recently classified as 

‘probably carcinogenic to humans’ (WHO, 2006). 

Perhaps the most relevant study to the potential carcinogenicity of CoCr-alloy wear debris 

was performed by Davies et al; using primary human fibroblasts as a cell culture model the 

authors reported on metal-specific differences in the level/types of DNA damage induced 

by synovial fluid retrieved at revision surgery from 24 patients. Synovial fluid taken during 

revision surgery from all 6 samples from CoCr MOM prostheses and 4 of 6 samples from 

CoCr MOP prostheses, but none of 6 samples from stainless steel MOP prostheses caused 

significant DNA damage. Particulate-free samples of phosphate buffered saline where CoCr 

alloy was left to corrode also caused DNA damage and the authors suggested that this 

depended mainly on a synergistic effect between the Co and Cr ions produced by corrosion 

(Davies et al., 2005). Notably, the retrieved synovial fluid is thought to contain both soluble 

and particulate CoCr-alloy wear debris. Studies from our group have shown that CoCr alloy 

particles cause genotoxic damage in primary human fibroblasts while factors such as 

particle size and cell age may influence the genotoxic outcomes (Papageorgiou et al., 2007a, 

Papageorgiou et al., 2007b). There is a lack of in vitro carcinogenicity and/or genotoxicity 

studies for particulate alumina. Alumina’s biocompatibility has been evaluated by Takami 

et al using the Ames test in bacteria; no mutagenic activity was observed in 5 tester strains of 

Salmonella typhimurium. In addition, no cytotoxicity was observed in mouse fibroblast cells 

following incubation with Al2O3 disks in cultures for up to 48 hours (Takami et al., 1997). 
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However, a more relevant study by Dopp et al reported that alumina ceramic fibres were 

genotoxic to human amniotic fluid cells causing both numerical and structural chromosomal 

aberrations (Dopp et al., 1997). More recently, our group has shown that alumina particles 

can be genotoxic to human cells in vitro (Tsaousi et al., 2010). 

The cellular mechanisms of carcinogenesis have been the subject of a vast amount of in vitro 
studies in the field of cancer research. Such studies have elucidated the cause-effect links for 
most of the recognized human carcinogens. Interestingly, out of all listed carcinogens to 
date (according to the IARC), asbestos is the only substance of a ‘particulate’ nature. Studies 
investigating the effects of particulate matter in relation to lung cancer have shown that the 
carcinogenicity of particles and/or fibres follows different rules to chemical carcinogenesis. 
Particles and fibres form a rather specific group among all toxicants, and their 
physicochemical behaviour in genotoxicity tests is usually very different from that of soluble 
chemicals, especially the nature of their interaction with DNA. During/after exposure, 
chemicals may interact directly with DNA and/or indirectly (e.g. following metabolic 
activation and/or cell signalling events). On the other hand, particulate matter is thought to 
interact with DNA only following internalization (i.e. phagocytosis), while indirect action on 
DNA is possible without the need for metabolic activation (e.g. via formation of ROS related 
to surface properties and/or interaction with mitotic spindle apparatus). Another major 
difference is seen in the kinetics of exposure. Chemicals show a classical pharmacokinetic 
behaviour: distribution, biotransformation, elimination. Particulate kinetics on the other 
hand depends on deposition, clearance, durability, overload, etc. Furthermore, particulates 
are believed to have a ‘carrier’ function in vivo (Donaldson & Stone, 2003, Speit, 2002, 
Oberdorster, 2002).  

Both CoCr alloy and ceramic THR systems are ‘not yet classifiable as to their carcinogenicity 
to humans’, although Cr (VI) is accepted around the world as a human lung carcinogen 
(WHO, 1990) and soluble Co (II) salts have recently been classified as possibly carcinogenic 
to humans (WHO, 2006). This may be in part due to the lack of enough convincing evidence 
that CoCr particulate wear debris can be genotoxic. However, for ceramic THR systems, the 
main reason is probably that they have only recently been introduced to the market. In vitro 
studies from our group have shown that both CoCr alloy and Al2O3 particles are genotoxic 
to human cells (Papageorgiou et al., 2007a, Tsaousi et al., 2010). Importantly, it has recently 
been shown that cobalt-chromium nanoparticles can damage human cells across an intact 
cellular barrier without having to cross the barrier, by intercellular signaling possibly 
through cell-cell junctions (Case et al, 2009).  

9. Conclusion 

THR is generally considered as a treatment option when pain is so severe that it impedes 
normal function despite the use of anti-inflammatory medication. As an elective procedure, 
it is a decision reached after careful consideration of its comparative benefits over its 
potential risks. When the editor of JBJS invited surgeons to submit reports of any tumour 
associated with replaced joints he wrote ‘although the benefits of joint replacement might 
outweigh any risks a thousand-fold, that is no excuse for suppressing the facts’. As modern 
non-corroded MOM and COC THRs commonly used for young patients will still inevitably 
generate particulate wear over time, it is our belief that research should focus more on its 
long-term genotoxicity and therefore carcinogenic potential. The genotoxicity of different 
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materials should also be taken into account for the design and development of all prosthetic 
implants. Finally, THR surgeons should consider lifestyle factors further than the levels of 
physical activity such as the likelihood of having children. 

10. Acknowledgements 

I would like to thank Mr James O’Shaughnessy for the artwork and Miss Stamatia Goni for 
her valuable comments and suggestions. Also thanks to Miss Veerle Verheyden and the 
School of Clinical Science, University of Bristol, for generously supporting this publication. 

11. References 

Adams, J.E.et al. 2003. Prosthetic Implant Associated Sacromas: A Case Report Emphasing 
Surface Evaluation and Spectroscopic Trace Metal Analysis. Annals of Diagnostic 
Pathology, 7, 35-46. 

Amstutz, H.C.et al. 1992. Mechanism and clinical significance of wear debris-induced 
osteolysis. Clin Orthop Relat Res, 7-18. 

Amstutz, H.C. & Grigoris, P. 1996. Metal on metal bearings in hip arthroplasty. Clin Orthop 
Relat Res, S11-34. 

Anard, D.et al. 1997. In vitro genotoxic effects of hard metal particles assessed by alkaline 
single cell gel and elution assays. Carcinogenesis, 18, 177-84. 

Anissian, H.L.et al. 2001. The wear pattern in metal-on-metal hip prostheses. J Biomed Mater 
Res, 58, 673-8. 

Apley, A.G. 1989. Malignacy and Joint Replacement: the Tip of an Iceberg? The Journal of 
Bone and Joint Surgery, 71-B, 1. 

Archibeck, M.J.et al. 2000. Alternate bearing surfaces in total joint arthroplasty: biologic 
considerations. Clin Orthop Relat Res, 12-21. 

Barrett, J.C. 1994. Cellular and molecular mechanisms of asbestos carcinogenicity: 
implications for biopersistence. Environ Health Perspect, 102 Suppl 5, 19-23. 

Black, J.et al. 1983. Serum concentrations of chromium, cobalt and nickel after total hip 
replacement: a six month study. Biomaterials, 4, 160-4. 

Bouchard, P.R.et al. 1996. Carcinogenicity of CoCrMo (F-75) implants in the rat. J Biomed 
Mater Res, 32, 37-44. 

Boutin, P. 1971. [Alumina and its use in surgery of the hip. (Experimental study)]. Presse 
Med, 79, 639-40. 

Boutin, P.et al. 1988. The use of dense alumina-alumina ceramic combination in total hip 
replacement. J Biomed Mater Res, 22, 1203-32. 

Brodner, W.et al. 2003. Serum cobalt levels after metal-on-metal total hip arthroplasty. J Bone 
Joint Surg Am, 85-A, 2168-73. 

Case, C.P.et al. 1996. Preliminary observations on possible premalignant changes in bone 
marrow adjacent to worn total hip arthroplasty implants. Clin Orthop Relat Res, 
S269-79. 

Case, C.P.et al. 1994. Widespread dissemination of metal debris from implants. J Bone Joint 
Surg Br, 76, 701-12. 

Chan, F.W.et al. 1999. The Otto Aufranc Award. Wear and lubrication of metal-on-metal hip 
implants. Clin Orthop Relat Res, 10-24. 

www.intechopen.com



 
The Genotoxic Potential of Novel Materials Used in Modern Hip Replacements for Young Patients 

 

121 

Charnley, J. 1972. The long-term results of low-friction arthroplasty of the hip performed as 
a primary intervention. J Bone Joint Surg Br, 54, 61-76. 

Cole, B.J.et al. 1997. Malignant fibrous histiocytoma at the site of a total hip replacement: 
review of the literature and case report. Skeletal Radiol, 26, 559-63. 

Cornell, C.N. & Ranawat, C.S. 1986a. The impact of modern cement techniques on 
acetabular fixation in cemented total hip replacement. J Arthroplasty, 1, 197-202. 

Cornell, C.N. & Ranawat, C.S. 1986b. Survivorship analysis of total hip replacements. 
Results in a series of active patients who were less than fifty-five years old. J Bone 
Joint Surg Am, 68, 1430-4. 

Courtland, L.G. & William, S.J. 1996. Metal Carcinogenesis in Total Joint Arthroplasty: 
Animal Models. Clinical Orthopedics and Related Research, 329S, S264-68. 

Davies, A.P.et al. 2005. Metal-specific differences in levels of DNA damage caused by 
synovial fluid recovered at revision arthroplasty. J Bone Joint Surg Br, 87, 1439-44. 

De Boeck, M.et al. 2003. In vitro genotoxic effects of different combinations of cobalt and 
metallic carbide particles. Mutagenesis, 18, 177-86. 

Dobbs, H.S. 1980. Survivorship of total hip replacements. J Bone Joint Surg Br, 62-B, 168-73. 
Dobbs, H.S. & Minski, M.J. 1980. Metal ion release after total hip replacement. Biomaterials, 1, 

193-8. 
Dodion, P.et al. 1982. Immunoblastic lymphoma at the site of an infected vitallium bone 

plate. Histopathology, 6, 807-13. 
Doherty, A.T.et al. 2001. Increased chromosome translocations and aneuploidy in peripheral 

blood lymphocytes of patients having revision arthroplasty of the hip. J Bone Joint 
Surg Br, 83, 1075-81. 

Donaldson, K. & Stone, V. 2003. Current hypotheses on the mechanisms of toxicity of 
ultrafine particles. Ann Ist Super Sanita, 39, 405-10. 

Doorn, P.F.et al. 1996a. Metal versus polyethylene wear particles in total hip replacements. 
A review. Clin Orthop Relat Res, S206-16. 

Doorn, P.F.et al. 1998. Metal wear particle characterization from metal on metal total hip 
replacements: transmission electron microscopy study of periprosthetic tissues and 
isolated particles. J Biomed Mater Res, 42, 103-11. 

Doorn, P.F.et al. 1996b. Tissue reaction to metal on metal total hip prostheses. Clin Orthop 
Relat Res, S187-205. 

Dopp, E.et al. 1997. Induction of micronuclei, hyperdiploidy and chromosomal breakage 
affecting the centric/pericentric regions of chromosomes 1 and 9 in human 
amniotic fluid cells after treatment with asbestos and ceramic fibers. Mutat Res, 377, 
77-87. 

Dunstan, E.et al. 2005. Metal ion levels after metal-on-metal proximal femoral replacements: 
a 30-year follow-up. J Bone Joint Surg Br, 87, 628-31. 

Flugsrud, G.B.et al. 2002. Risk factors for total hip replacement due to primary osteoarthritis: 
a cohort study in 50,034 persons. Arthritis Rheum, 46, 675-82. 

Gaechter, A.et al. 1977. Metal carcinogenesis: a study of the carcinogenic activity of solid 
metal alloys in rats. J Bone Joint Surg Am, 59, 622-4. 

Ganapathi, M.et al. 2001. Periprosthetic high-grade B-cell lymphoma complicating an 
infected revision total hip arthroplasty. J Arthroplasty, 16, 229-32. 

Garellick, G.et al. 1998. Life expectancy and cost utility after total hip replacement. Clin 
Orthop Relat Res, 141-51. 

www.intechopen.com



 
Orthopedic Surgery 

 

122 

Gibb, F. 1992. Differences in animal and human responses in carcinogenic metals. Progress in 
Clinical and Biological Research, 374, 369-79. 

Gillespie, W.J.et al. 1988. The incidence of cancer following total hip replacement. J Bone Joint 
Surg Br, 70, 539-42. 

Gillespie, W.J.et al. 1996. Development of hematopoietic cancers after implantation of total 
joint replacement. Clin Orthop Relat Res, S290-6. 

Goldring, S.R.et al. 1983. The synovial-like membrane at the bone-cement interface in loose 
total hip replacements and its proposed role in bone lysis. J Bone Joint Surg Am, 65, 
575-84. 

Goodfellow, J. 1992. MAlignacy and Joint Replacement. The Journal of Bone and Joint Surgery, 
74-B, 645. 

Hagmar, L.et al. 2004. Impact of types of lymphocyte chromosomal aberrations on human 
cancer risk: results from Nordic and Italian cohorts. Cancer Res, 64, 2258-63. 

Hamadouche, M.et al. 2002. Alumina-on-alumina total hip arthroplasty: a minimum 18.5-
year follow-up study. J Bone Joint Surg Am, 84-A, 69-77. 

Hamadouche, M. & SEDEL, L. 2000. Ceramics in orthopaedics. J Bone Joint Surg Br, 82, 1095-9. 
Harris, W.H. 1994. Osteolysis and particle disease in hip replacement. A review. Acta Orthop 

Scand, 65, 113-23. 
Hatton, A.et al. 2002. Alumina-alumina artificial hip joints. Part I: a histological analysis and 

characterisation of wear debris by laser capture microdissection of tissues retrieved 
at revision. Biomaterials, 23, 3429-40. 

Havelin, L.I.et al. 2000. The Norwegian Arthroplasty Register: 11 years and 73,000 
arthroplasties. Acta Orthop Scand, 71, 337-53. 

Heath, J.C. 1957. The production of malignant tumours by cobalt in the rat. British Journal of 
Cancer, 10, 668-73. 

Heath, J.C.et al. 1971. Carcinogenic properties of wear particles from prostheses made in 
cobalt-chromium alloy. Lancet, 1, 564-6. 

Heisel, C.et al. 2004. Bearing surface options for total hip replacement in young patients. 
Instr Course Lect, 53, 49-65. 

Heisel, C.et al. 2005. The relationship between activity and ions in patients with metal-on-
metal bearing hip prostheses. J Bone Joint Surg Am, 87, 781-7. 

Hennig, F.F.et al. 1992. Nickel-, chrom- and cobalt-concentrations in human tissue and body 
fluids of hip prosthesis patients. J Trace Elem Electrolytes Health Dis, 6, 239-43. 

Hirakawa, K.et al. 1996. Characterization and comparison of wear debris from failed total 
hip implants of different types. J Bone Joint Surg Am, 78, 1235-43. 

Horowitz, S.M.et al. 1993. Studies of the mechanism by which the mechanical failure of 
polymethylmethacrylate leads to bone resorption. J Bone Joint Surg Am, 75, 802-13. 

Howie, D.W. & Vernon-Roberts, B. 1988. The synovial response to intraarticular cobalt-
chrome wear particles. Clin Orthop Relat Res, 244-54. 

Ingham, E. & Fisher, J. 2000. Biological reactions to wear debris in total joint replacement. 
Proc Inst Mech Eng [H], 214, 21-37. 

Ingham, E. & Fisher, J. 2005. The role of macrophages in osteolysis of total joint replacement. 
Biomaterials, 26, 1271-86. 

Ito, H. & Shimizu, A. 1999. Malignant lymphoma at the site of a total hip replacement. 
Orthopedics, 22, 82-4. 

www.intechopen.com



 
The Genotoxic Potential of Novel Materials Used in Modern Hip Replacements for Young Patients 

 

123 

Jacobs, J.J.et al. 1998a. Corrosion of metal orthopaedic implants. J Bone Joint Surg Am, 80, 
268-82. 

Jacobs, J.J.et al. 1992. Early sarcomatous degeneration near a cementless hip replacement. A 
case report and review. J Bone Joint Surg Br, 74, 740-4. 

Jacobs, J.J.et al. 2004. Can metal levels be used to monitor metal-on-metal hip arthroplasties? 
J Arthroplasty, 19, 59-65. 

Jacobs, J.J.et al. 1998b. Metal release in patients who have had a primary total hip 
arthroplasty. A prospective, controlled, longitudinal study. J Bone Joint Surg Am, 80, 
1447-58. 

Jacobs, J.J.et al. 1995. Local and distant products from modularity. Clin Orthop Relat Res, 
94-105. 

Jazrawi, L.M.et al. 1998. Alternative bearing surfaces for total joint arthroplasty. J Am Acad 
Orthop Surg, 6, 198-203. 

Jones, L.C. & Hungerford, D.S. 1987. Cement disease. Clin Orthop Relat Res, 192-206. 
Kirkpatrick, C.J.et al. 2000. Biomaterial-induced sarcoma: A novel model to study 

preneoplastic change. Am J Pathol, 156, 1455-67. 
Ladon, D.et al. 2004. Changes in metal levels and chromosome aberrations in the peripheral 

blood of patients after metal-on-metal hip arthroplasty. J Arthroplasty, 19, 78-83. 
Langdown, A.J.et al. 2007. Incomplete seating of the liner with the Trident acetabular 

system: a cause for concern? J Bone Joint Surg Br, 89, 291-5. 
Lewis, C.G.et al. 1995. Intraarticular carcinogenesis bioassays of CoCrMo and TiAlV alloys 

in rats. J Arthroplasty, 10, 75-82. 
Lhotka, C.et al. 2003. Four-year study of cobalt and chromium blood levels in patients 

managed with two different metal-on-metal total hip replacements. J Orthop Res, 21, 
189-95. 

Lison, D.et al. 2001. Update on the genotoxicity and carcinogenicity of cobalt compounds. 
Occup Environ Med, 58, 619-25. 

Lu, Z. & Mckellop, H. 1997. Frictional heating of bearing materials tested in a hip joint wear 
simulator. Proc Inst Mech Eng [H], 211, 101-8. 

Manaster, B.J. 1996. From the RSNA refresher courses. Total hip arthroplasty: radiographic 
evaluation. Radiographics, 16, 645-60. 

Mathiesen, E.B.et al. 1995. Total hip replacement and cancer. A cohort study. J Bone Joint 
Surg Br, 77, 345-50. 

Mcgregor, D.B.et al. 2000. Evaluation of the carcinogenic risks to humans associated with 
surgical implants and other foreign bodies - a report of an IARC Monographs 
Programme Meeting. International Agency for Research on Cancer. Eur J Cancer, 36, 
307-13. 

Mckellop, H.et al. 1981. Friction and wear properties of polymer, metal, and ceramic 
prosthetic joint materials evaluated on a multichannel screening device. J Biomed 
Mater Res, 15, 619-53. 

Mckellop, H.et al. 1996. In vivo wear of three types of metal on metal hip prostheses during 
two decades of use. Clin Orthop Relat Res, S128-40. 

Meachim, G.et al. 1982. A study of sarcogenicity associated with Co-Cr-Mo particles 
implanted in animal muscle. J Biomed Mater Res, 16, 407-16. 

Medley, J.B.et al. 1996. Comparison of alloys and designs in a hip simulator study of metal 
on metal implants. Clin Orthop Relat Res, S148-59. 

www.intechopen.com



 
Orthopedic Surgery 

 

124 

Memoli, V.A.et al. 1986. Malignant neoplasms associated with orthopedic implant materials 
in rats. J Orthop Res, 4, 346-55. 

Meneghini, R.M.et al. 2005. The biology of alternative bearing surfaces in total joint 
arthroplasty. Instr Course Lect, 54, 481-93. 

Merritt, K. & Brown, S.A. 1996. Distribution of cobalt chromium wear and corrosion 
products and biologic reactions. Clin Orthop Relat Res, S233-43. 

Michel, R.et al. 1991. Systemic effects of implanted prostheses made of cobalt-chromium 
alloys. Arch Orthop Trauma Surg, 110, 61-74. 

Mittelmeier, H. & Heisel, J. 1992. Sixteen-years' experience with ceramic hip prostheses. Clin 
Orthop Relat Res, 64-72. 

Nevelos, J.E.et al. 1999. Analysis of retrieved alumina ceramic components from Mittelmeier 
total hip prostheses. Biomaterials, 20, 1833-40. 

Nhs. 2006. Main Operations: Summary 2005-2006 [Online]. The Information Center (England). 
Available: 
http://www.hesonline.nhs.uk/Ease/servlet/ContentServer?siteID=1937&category
ID=204 [Accessed 05/10/07]. 

Nizard, R.S.et al. 1992. Ten-year survivorship of cemented ceramic-ceramic total hip 
prosthesis. Clin Orthop Relat Res, 53-63. 

Nyren, O.et al. 1995. Cancer risk after hip replacement with metal implants: a population-
based cohort study in Sweden. J Natl Cancer Inst, 87, 28-33. 

Oberdorster, G. 2002. Toxicokinetics and effects of fibrous and nonfibrous particles. Inhal 
Toxicol, 14, 29-56. 

Oppenheimer, B.S.et al. 1956. Carcinogenic effect of metals in rodents. Cancer Res, 16, 439-41. 
Papageorgiou, I.et al. 2007a. The effect of nano- and micron-sized particles of cobalt-

chromium alloy on human fibroblasts in vitro. Biomaterials, 28, 2946-58. 
Papageorgiou, I.et al. 2007b. Genotoxic effects of particles of surgical cobalt chrome alloy on 

human cells of different age in vitro. Mutat Res, 619, 45-58. 
Patierno, S.R.et al. 1988. Transformation of C3H/10T1/2 mouse embryo cells to focus 

formation and anchorage independence by insoluble lead chromate but not soluble 
calcium chromate: relationship to mutagenesis and internalization of lead chromate 
particles. Cancer Res, 48, 5280-8. 

Radhi, J.M.et al. 1998. Soft tissue malignant lymphoma at sites of previous surgery. J Clin 
Pathol, 51, 629-32. 

Savio, J.A., 3RDet al. 1994. Size and shape of biomaterial wear debris. Clin Mater, 15, 101-47. 
Schaffer, A.W.et al. 1999. Increased blood cobalt and chromium after total hip replacement. J 

Toxicol Clin Toxicol, 37, 839-44. 
Schmalzried, T.P. & Callaghan, J.J. 1999. Wear in total hip and knee replacements. J Bone 

Joint Surg Am, 81, 115-36. 
Schmalzried, T.P.et al. 1998. The multifactorial nature of polyethylene wear in vivo. J Bone 

Joint Surg Am, 80, 1234-42; discussion 42-3. 
Schmalzried, T.P.et al. 1992. Periprosthetic bone loss in total hip arthroplasty. Polyethylene 

wear debris and the concept of the effective joint space. J Bone Joint Surg Am, 74, 
849-63. 

Schmalzried, T.P.et al. 2000. The John Charnley Award. Wear is a function of use, not time. 
Clin Orthop Relat Res, 36-46. 

www.intechopen.com



 
The Genotoxic Potential of Novel Materials Used in Modern Hip Replacements for Young Patients 

 

125 

Schuh, A.et al. 2004. Malignant fibrous histiocytoma at the site of a total hip arthroplasty. 
Clin Orthop Relat Res, 218-22. 

Sedel, L. 1992. Ceramic hips. J Bone Joint Surg Br, 74, 331-2. 
Shanbhag, A.S.et al. 1997. Effects of particles on fibroblast proliferation and bone resorption 

in vitro. Clin Orthop Relat Res, 205-17. 
Shea, K.G.et al. 1997. Lymphoreticular dissemination of metal particles after primary joint 

replacements. Clin Orthop Relat Res, 219-26. 
Sheldon, T.et al. 1996. On the evidence. Provision revision. Health Serv J, 106, 34-5. 
Smith, J. & Learmonth, I.D. 1996. Your Operation: Hip Replacement, Hodder & Stoughton, 

Headway. 
Speit, G. 2002. Appropriate in vitro test conditions for genotoxicity testing of fibers. Inhal 

Toxicol, 14, 79-90. 
Springer, B.D.et al. 2011. Deformation of 1-Piece Metal Acetabular Components. J 

Arthroplasty. 
Squire, M.et al. 2006. Acetabular component deformation with press-fit fixation. J 

Arthroplasty, 21, 72-7. 
Standring, S. 2004. Gray's Anatomy: The Anatomical Basis of Clinical Practice, Churchill 

Livingstone. 
Streicher, R.M.et al. 1996. Metal-on-metal articulation for artificial hip joints: laboratory 

study and clinical results. Proc Inst Mech Eng [H], 210, 223-32. 
Sunderman, F.W., JR.et al. 1989. Cobalt, chromium, and nickel concentrations in body fluids 

of patients with porous-coated knee or hip prostheses. J Orthop Res, 7, 307-15. 
Swann, M. 1984. Malignant soft-tissue tumour at the site of a total hip replacement. The 

Journal of Bone and Joint Surgery, 66-B, 629-31. 
Swanson, S.A.et al. 1973. Laboratory tests on total joint replacement prostheses. J Bone Joint 

Surg Br, 55, 759-73. 
Takami, Y.et al. 1997. Biocompatibility of alumina ceramic and polyethylene as materials for 

pivot bearings of a centrifugal blood pump. J Biomed Mater Res, 36, 381-6. 
Tigges, S.et al. 1994. Complications of hip arthroplasty causing periprosthetic radiolucency 

on plain radiographs. AJR Am J Roentgenol, 162, 1387-91. 
Tipper, J.L.et al. 2002. Alumina-alumina artificial hip joints. Part II: characterisation of the 

wear debris from in vitro hip joint simulations. Biomaterials, 23, 3441-8. 
Tsaousi, A.et al. 2010. The in vitro genotoxicity of orthopaedic ceramic (Al(2)O(3)) and metal 

(CoCr alloy) particles. Mutation Research-Genetic Toxicology and Environmental 
Mutagenesis, 697, 1-9. 

Urban, R.M.et al. 1994. Migration of corrosion products from modular hip prostheses. 
Particle microanalysis and histopathological findings. J Bone Joint Surg Am, 76, 
1345-59. 

Urban, R.M.et al. 2000. Dissemination of wear particles to the liver, spleen, and abdominal 
lymph nodes of patients with hip or knee replacement. J Bone Joint Surg Am, 82, 
457-76. 

Urban, R.M.et al. 2004. Accumulation in liver and spleen of metal particles generated at 
nonbearing surfaces in hip arthroplasty. J Arthroplasty, 19, 94-101. 

Van Goethem, F.et al. 1997. Comparative evaluation of the in vitro micronucleus test and the 
alkaline single cell gel electrophoresis assay for the detection of DNA damaging 

www.intechopen.com



 
Orthopedic Surgery 

 

126 

agents: genotoxic effects of cobalt powder, tungsten carbide and cobalt-tungsten 
carbide. Mutat Res, 392, 31-43. 

Visuri, T. & Koskenvuo, M. 1991. Cancer risk after Mckee-Farrar total hip replacement. 
Orthopedics, 14, 137-42. 

Visuri, T.et al. 1996. Cancer risk after metal on metal and polyethylene on metal total hip 
arthroplasty. Clin Orthop Relat Res, S280-9. 

Walker, P.S.A.G., B.L 1971. The Triboloby (friction, lubrication and wear) of all metal 
artificial hip joints. Wear, 17, 285-99. 

Wang, J.Y.et al. 1997. Prosthetic metals interfere with the functions of human osteoblast cells 
in vitro. Clin Orthop Relat Res, 216-26. 

Who 1990. Volume 49: Chromium, Nickel and Welding. IARC: Monographs on the Evaluation 
of Carcinogenic Risks to Humans. 

Who 1991. Volume 52: Cobalt and Cobalt Compounds. IARC Monographs on the Evaluation of 
Carcinogenic Risks to Humans. 

Who 1999. Volume 74: Surgical Implants and Other Foreign Bodies. IARC Monographs on the 
Evaluation of Carcinogennic Risks to Humans. 

Who 2006. Cobalt in Hard Metals and Cobalt Sulfate, Gallium Arsenide, Indium Phosphide 
and Vanadium Pentoxide. . IARC Monographs on the Evaluation of Carcinogenic Risks 
to Humans. 

Willert, H.G. 1977. Reactions of the articular capsule to wear products of artificial joint 
prostheses. J Biomed Mater Res, 11, 157-64. 

Wise, J.P., SR.et al. 2002. The cytotoxicity and genotoxicity of particulate and soluble 
hexavalent chromium in human lung cells. Mutat Res, 517, 221-9. 

Yoon, T.R.et al. 1998. Osteolysis in association with a total hip arthroplasty with ceramic 
bearing surfaces. J Bone Joint Surg Am, 80, 1459-68. 

www.intechopen.com



Orthopedic Surgery

Edited by Dr Zaid Al-Aubaidi

ISBN 978-953-51-0231-1

Hard cover, 220 pages

Publisher InTech

Published online 09, March, 2012

Published in print edition March, 2012

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

Orthopaedic surgery is the widest and the strongest growing surgical specialty. It is clear, that the process of

improving treatments and patients care, requires knowledge, and this requires access to studies, expert

opinion and books. Unfortunately, the access to this knowledge is being materialized. As we believe that

access to the medical knowledge should be reachable to everyone free of charge, this book was generated to

cover the orthopaedic aspect. It will provide the reader with a mix of basic, but as well highly specialized

knowledge. In the process of editing this book, my wife Jurgita has been, as usual, the most supportive

person. I would like to thank her for being in my life. I would like to thank Mr. Greblo, the Publishing Process

Manager, for all his help and last but not least thanks to our readers, as without them this book would have no

meaning.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Aikaterini Tsaousi (2012). The Genotoxic Potential of Novel Materials Used in Modern Hip Replacements for

Young Patients, Orthopedic Surgery, Dr Zaid Al-Aubaidi (Ed.), ISBN: 978-953-51-0231-1, InTech, Available

from: http://www.intechopen.com/books/orthopedic-surgery/the-genotoxic-potential-of-novel-materials-used-in-

modern-hip-replacements-for-young-patients



© 2012 The Author(s). Licensee IntechOpen. This is an open access article

distributed under the terms of the Creative Commons Attribution 3.0

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.


