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1. Introduction    

Today, biology and medicine need developed technologies and bioinformatics methods. 
Effective methods of analysis combine different technologies and can operate on many 
levels. Multi-step analysis needs to be performed to get information helpful in diagnosis or 
medical treatment tasks. All those processing needs the informatics approach to 
bioinformatics, proteomics and knowledge discovery methods. 

Scientists find proteomic data difficult to analyse. On the other hand, the proteomic analysis 
of tissues like blood, plasma and urine might have an invaluable contribution to biological 
and medical research. They seem to be an alternative way of searching for new diagnostic 
methods, medical treatment and drug development. For example, typical analytical 
methods have problems with dealing with cancer diseases. Proteomics is a promising 
approach to those issues. 

Proteomic signals carry an enormous amount of data. They reflect whole sequences of 
proteins responsible for various life processes of the organism. This diversity of data makes 
it hard to find specific information about, for example, the severity of the cancer. To 
discover interesting knowledge researchers need to combine a variety of techniques. One of 
the basic methods of tissue analysis is mass spectrometry. This technique measures the 
mass-to-charge ratio of charged particles. 

There are various types of mass spectrometry techniques. They differ in the types of ion 
source and mass analysers. The MALDI-TOF (Coombes et al., 2007) is a technique widely 
applicable in proteomic research. The MALDI (Matrix - Assisted Laser Desorption / 
Ionisation) is a soft ionisation technique and the TOF (time of flight) is a detector 
determining the mass of ions. Samples are mixed with a highly absorbent matrix and 
bombarded with a laser. The matrix stimulates the process of transforming laser energy into 
excitation energy (Morris et al., 2005). After this process analyte molecules are sputtered and 
spared. The mass of ions is determined on the basis of time particular ions take to drift 
through the spectrometer. Velocities and intensities of ions obtained in such a way (Morris 
et. al., 2005) are proportional to the mass-to-charge (m/z) ratio. 

The analysis of mass spectrometry data is a complex task (Plechawska 2008a; Plechawska 
2008b). The process of gaining biological information and knowledge from raw data is 
composed of several steps. A proper mass spectrometry data analysis requires creating and 
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solving a model and estimating its parameters (Plechawska 2008a). There are many types of 
models and methods which might be used. All of them, however, include mass spectrum 
preprocessing, which need to to be done before the general analysis. Preprocessing methods 
need be adjusted to data. Spectra have some noise levels which need to be removed. 
Denoising and baseline corrections are done to get rid of the noise which might be caused 
by spectrometer inaccuracy or by sample contamination. Also, normalisation should be 
performed. After these steps, peak detection and quantification can be done. Successful 
preprocessing is a condition of reliable mass spectrometry data analysis (Coombes et. al., 
2007). All elements of the mass spectral analysis are closely related. Any performed 
operation has an influence on the further quality of results. Not only the set of methods and 
parameters is important. The proper order of methods also matters. 

There is an extensive literature on mass spectrum analysis problems (Plechawska et al., 
2011). One can find several techniques of peak detection and identification. A very popular 
approach is to use local maxima and minima. Such methods (Morris et. al., 2005; Yasui et. 
al., 2003; Tibshirani et. al., 2004) usually compare local maxima with noise level. There are 
also methods (Zhang et al., 2007) considering the signal to noise ratio. This ratio needs to be 
high enough to identify a true peak with a local maximum. Such methods choose peaks with 
the highest intensities. Similar ideas (Mantini et al., 2007; Mantini et al., 2008) consider using 
predefined thresholds depending on the noise level. Peak detection is usually done on 
denoised spectra. Moreover, intervals based on local maxima and minima are calculated. 
Constituent intervals have differences between the height of the maxima and minima found. 
In addition, using the mean spectrum was proposed (Coombes et. al., 2007). Other methods 
(Fung & Enderwick, 2002) use regions which are determined to enable easier peak detection 
based on the signal to noise ratio. Peaks need to have an large enough area and appropriate  
width, which depends on starting and ending points of peaks and valleys on both sides of 
the apex. Peaks may be also considered a continuous range of points where intensities are 
high enough (Eidhammer et al., 2007). Another approach is using peak clusters to find peaks 
of the highest intensities (Zhang et al., 2007). There are also methods which try to 
distinguish true peaks from noise and contaminants. Du et al. (Du et al., 2006) for example 
use the shape of peaks. Some methods consider the mass spectrometer resolution. There are 
also methods turning spectrum decomposition into the sum of their constituent functions 
(Randolph et al., 2005)  or the sum of the Levy processes (Zhang et al., 2007). 

2. Mass spectrum modelling 

Before the main decomposition, preprocessing needs to be performed. In our analysis we 
apply the following methods: 

 Trimming is the cutting of the lower and/or upper parts of spectra according to 
specified boundaries designated by the type of analysis.  

 Binning with a defined mask is a technique reducing the number of data points in a 
single spectrum. The researcher has to keep in mind that this process additionally gives 
noise reduction. This is optional method. It should be used if the number of the 
spectrum data points is too large to perform efficient calculations. 

 Interpolation is a process which may be defined as the unification of measurements 
points along the m/z axes. It is needed in the case of dealing with a data set of spectra. 
Unification is obligatory if all spectra are to be analysed simultaneously. 
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 Baseline correction is an essential part of preprocessing. Baseline is a special type of 
noise which needs to be removed. It represents a systematic artifact formed by a cloud 
of matrix molecules hitting the detector (Morris et al., 2005). This noise is seen in the 
early part of the spectrum. Among typical methods of baseline correction one can find a 
simple frame with fixed sizes and quantilles. Our experience shows that a simple frame 
with the appropriate size is good enough. 

 Smoothing and noise reduction might be performed in several ways. One can use 

wavelet transformation (for example the widely-used undecimated discrete-wavelet 

transformation, UDWT), the least-squares digital polynomial filter (Savitzky and Golay 

filters) or nonparametric smoothing (locally-weighted linear regression with specified 

window size and type of kernel). In our analysis we usually make use of a polynomial 

filter. However it is also possible to skip noise reduction due to the specificity of the 

decomposition method. 

 Normalisation is an important preprocessing method consisting in minimising 

differences between spectra and thier peak intensities. The most popular methods are 

scaling all spectra to total ion current (TIC) value or to constant noise. We found the TIC 

value appropriate for our analysis. It is calculated as the area under the curve, usually 

using the trapezoidal method. 

 The mean spectrum calculation is useful in analysing data sets containing many mass 

spectra of the same type. The mean spectrum facilitating the simultaneous analysis of 

all spectra. Even small peaks are usually detected during mean spectrum analysis. 

Finding peaks in the mean spectrum are regarded as even more sensitive (Morris et al., 

2005). 

Most preprocessing steps need to be conducted under the supervision of the user. The 

parameters of the baseline correction especially need to be adjusted to the data. The order of 

operations is fixed. Many research studies were conducted in this area and this order has 

become a standard over the past few years. Some of operations might be skipped - but it 

should be depended on the data. 

2.1 Gaussian mixture model decomposition 

Our method of spectrum analysis is based on Gaussian Mixture decomposition. The 

Gaussian Mixture Model (GMM) (Everitt & Hand, 1981) with the appropriate number of 

components is suitable for spectrum modelling because they also might be used for noise 

modelling and determining. The idea of using GMM is that one peak is represented by a 

single distribution (Plechawska-Wojcik, 2011a). All peaks and the noise are represented by 

the mixture model. A mixture model is a combination of a finite number of distributions. 

The number of components might be estimated by the Bayesian Information Criterion (BIC).  

The fitting is done with the Expectation-Maximisation algorithm (EM) performing 
maximising the likelihood function. A typical mixture model is a combination of a finite 
number of probability distributions (eq. 1).  

 ( , ,..., , ,..., ) ( , )1 1
1

Kmixf x p p f x pK K k k k
k

   


 (1) 
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where K is the number of components in the mixture and , 1,2,...k Kk   are weights of the 

particular component, 1
1

K

k
k

 


. The Gaussian distribution is given with two parameters: 

mean  k and standard deviation k .  

The Expectation-Maximisation (EM) algorithm (Dempster et al., 1977) is a nonlinear method 
and is composed of two main steps performed in a loop. The expectation step (E) consists of 
the calculation of the distribution of hidden variables (eq. 2).  

 
( , )

( | , )
( , )1

old oldf x pold k k np k x pn old oldK f x pk k n





 

 (2) 

The maximisation step (M) calculates new mixture parameter values. Formulas adjusted to 
mass spectrometry data are given by (eq. 3).  

 

( | , )1 , 1,2,...,
( | , )1

2( ) ( | , )2 1( ) , 1,2,...,
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newN x p k x pnew n n k n old k Kk N p k x p yn n old n

oldN p k x p ynew n n n
k N








  
 

  
 

 

 (3) 

The calculated means represent the M/Z values of peaks, whereas standard deviations 
indicate the widths of peaks. Weights determine the shares of particular peaks in the 
spectrum. This method may be applied to individual spectra or to the mean spectrum 
calculated from the data set. In the case of the mean spectrum, the obtained means and 
standard deviations are treated as, respectively, M/Z values and widths of peaks in every 
single spectrum of the data set. The weights are calculated separately for each spectrum. The 
simple least-squares method might be used to obtain those weights. 

Examples of a mass spectra collection analysis are presented in Fig.1. Fig.1a,c present the 

results of our calculations for single spectra with 40 components and Fig.1b,d presents the 

results with the use of the mean spectrum. The mean spectrum is presented in Fig.2. 

2.2 Parameters of the decomposition process 

There are several aspects which need to be considered before the decomposition. The first is 
the number of components which needs to be known before carrying out the analysis. The 
best solution is to use one of the available criteria. These are  BIC (the Bayesian Information 
Criterion), AIC (the Akaike Information Criterion), ICOMP (the Information Complexity 
Criterion), AWE (the Approximate Weight of Evidence), MIR (the Minimum Information 
Ratio) and NEC (the Normalised Entropy Criterion). The proper number of components 
should minimise (or for some criteria maximise) the value of the chosen criterion. Most of  
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Fig. 1. A comparison of results obtained with and without the mean spectrum. 

 

 

Fig. 2. The mean spectrum. 
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the mentioned criteria are based on the likelihood function. We chose the BIC criterion 

because it is easy to calculate and it considers such parameters as the size of the sample and 

the value of the likelihood function. Formulas defining the mentioned criteria are presented 

in Tab1. In the presented formulas models the parameters are marked as  .  

The main disadvantage of using criteria to estimate the number of components is the fact 

that it is a time-consuming method. A single use of each criterion gives a result for the single 

number of components. To obtain reliable results the calculations need to be repeated many 

times for each single number of components. The example of using the BIC criterion for data 

presented in Fig.1 and Fig.2 is shown in Fig.3. According to Fig.3, the BIC criterion needs to 

be maximised. Results stabilise for 40 components, so this number was considered to be 

appropriate for the further analysis.  

There are also different ways of dealing with the unknown number of the components 

problem. It is possible to use different, simple method of peak detection. Such methods 

work fast, because they are based on local maxima and minima. However, it is a reliable 

method only in the case of spectra which do not have many overlapped peaks. 

 

Criterions Formulas 

BIC (the Bayesian 

Information Criterion) 

(Schwarz, 1978) 

ˆ( ) 2 log ( ) logBIC g L d n   

AIC (the Akaike 

Information Criterion) 

(Akaike, 1974) 

ˆ( ) 2 log ( ) 2AIC g L d    

ICOMP (the Information 

Complexity Criterion) 

(Bozdogan, 1993; 

Bozdogan, 1990) 

ˆ( ) 2 log ( ) 1 2

1 11 1 2 2ˆ ˆ ˆ ˆ ˆlog[ { ( ) ( ) ( ) }]1 2 21 1

ˆ ˆ( 2) log(| | log( ) log(2 )2
1 1

1
( 1)

2

ICOMP g L C C

g P
C d d tr tr tri i i i i vv

i v
g P

C p p n gp ni i
i v

d gp gp p







   

          
 

     
 

  

 

AWE (the Approximate 

Weight of Evidence) 

(Banfield & Raftery, 1993)

( ) 2 log 2 (3 /2 log )AWE g L d nC     

MIR (the Minimum 

Information Ratio) 

(Windham & Cutler, 

1993) 

1 1( ) 1 /m m m mMIR g          

NEC (the Normalized 

Entropy Criterion) 

(Celeux & Soromenho, 

1996) 

ˆ( )
( )

ˆ ˆlog ( ) log ( *)

EN r
NEC g

L L 



 

Table 1. Criteria used to estimate the number of components. 
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Fig. 3. The estimation of the number of components using BIC criterion. 

It is also possible to reduce the number of components during calculations. This correction is 

based on the values of probabilities calculated during the M step of the EM procedure. If 

they are too small (very close to 0) it usually means that the number of components is 

overstated. Essential support is also given by the model testing procedure. EM calculations 

might be suspended after a few iterations. The researcher can check the so-far obtained 

weights and means indicating the peak localisations. If he/she finds many very small 

weights, or means are found to be located very close to each other, it usually means that the 

number of specified components is too large. Suspending the EM procedure makes sense 

because of the characteristic of the algorithm. It converges very fast at the beginning and 

after that it slows down. That is why the checking of the results after 10-20 calculations fairy 

well illustrates the quality of the modelling. 

The other aspect which needs to be considered is the generation of initial parameters values. 

The EM algorithm is sensitive to the initial values. If they are poorly chosen, the quality of 

calculations might not be reliable. One option is to randomise them from the appropriate 

distribution. The better one, however, is to use the simple method of peak detection. This 

method gives less biased, more reliable results. The important thing is to add small 

Gaussian arousals to the results obtained from the peak-detection method. 

The next decomposition aspect to be mentioned is the stop criterion. According our 

simulations one good idea is to use a stop criterion based on the likelihood value (eq. 4) and 

the maximum likelihood rule (eq. 5). The maximum likelihood rule states that the higher 

value of the likelihood function, the better the parameters estimation can be gained. Using 

the maximum likelihood rule gives the certainty of stability because of monotonicity of the 

likelihood function (Fig. 4). 
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Fig. 4. The monotinicity of the likelihood rule. 

 ( , ) ( ) ( , ,..., , ) ( , )1 2
1

N
L p x L p f x x x p f x pN n

n
   


 (4) 

 arg max ( , )
1

N
p f x pn

n


 


 (5) 

Maximum likelihood itself is an efficient method of parameters estimation. However, it 

cannot be used in the problem of spectral decomposition. The problem consists in the fact 

that we do not know the assignment of the Gaussians to the respective peaks. The EM 

algorithm deals with it using hidden variables. The probabilities of assignment are 

calculated in each iteration and finally the right assignment is found.  

The decomposition with the EM algorithm is slower than using simple methods based on 

local minima and maxima. However, it copes better with spectra containing overlapped 

peaks. There are many examples of spectra which cannot be solved by such typical methods. 

Examples of decomposed spectra obtained from different methods are presented in Fig. 5. 

The next argument for Gaussian decomposition is that using an EM algorithm and a mean 
spectrum eliminates the necessity for alignment procedure processing. This operation is 
done to align detected peaks among all spectra in the dataset. Those mismatches are due to 
measurement errors. The alignment procedure needs to be performed on most of peak 
processing procedures. It is a hard and difficult process. EM decomposition is based on the 
assumption that peaks are covered with Gaussians defined by means and standard 
deviations. That is why the m/z values do not need to match exactly to Gaussians means – 
we accept slight differences between peaks among different spectra in the dataset. 

The method discussed in this chapter is based on Gaussian distributions. However, it is also 
possible to use different distributions, like Poisson, log-normal or beta. High-resolution spectra 
contain asymmetric peaks with the right skewedness. In such cases it is a good idea to use log-
normal or beta distributions (Guindani et al., 2006). MALDI-ToF spectra are low-resolution 
and there is no skewedness seen. That is why Gaussian distributions are more appropriate to 
use. The second reason we use Gaussian distributions is connected with the error of the 
spectrometer measurement. This noise can be modelled in a natural way with Gaussians. 
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Fig. 5. Results of spectra decomposed with various methods and tools: a) the Cromwell 
package b) the PrepMS tool c) the MassSpec Wavelet tool d) the PROcess package e) the 
mspeaks function (Matlab). 

Single peaks are, in fact, modelled with single Gaussians. The appropriate choice of 

distribution parameters allows the representation of peak shapes and measurement errors. It 

is also easy to write the model. It is worth paying attention to the fact that single Gaussians 

might be used only in the case of perfectly-separated peaks. In practice, the analysis of the 

real spectra is done using mixtures of Gaussian distributions. Using a mixture of Gaussian 

distributions instead of single Gaussian distributions additionally takes account of 

interactions between closely-located peaks. Mass spectra reflect a number of processes 

occurring in an organism. Those processes are usually correlated with each other. They have 

their representation in the characterising spectra, especially in the lack of separability among 

its particular peaks. This fact needs to be considered during the analysis. The application of 

mixture models allows the considering of dependences between spectral peaks. It also 

facilitates the modelling of overlapped measuring errors placed in adjacent regions of the 

spectrum. Separate-peak identification could be a case of the incorrect assessment of the 

individual Gaussians variances, because it is not possible to completely separate them. 

Mixture modelling makes it possible to detect all peaks simultaneously and correct 

measurement inaccuracies. However, mixture model parameter solving is a complicated 

task that needs the determination of many properties like the number of components, the 

type of stop criterion or calculation accuracy. 

3. Data classification 

Preprocessing steps and decomposition are the first steps in the analysis. The second is 

classification, which might be used in the process of significant peak determination. 

Classification allows the search for the distinction between ill and healthy patients. It is also 
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possible to look for the stage of disease progression or to check reactions (positive or 

negative) to medical treatment. 

Classification of mass spectra collection is an essential but also difficult task, because of the 
specificity of the data. The most common classification tasks are based on the supervised 
learning. It usually consists of categorising data into two groups (for example ill and healthy). 
There are also attempts to classify data into three or more groups. Such classification tasks are, 
however, more complicated and they are not included in this chapter.  

Classified objects are usually represented by vectors of observed, measured or calculated 

features. Supervised learning classification assumes that the unknown function  is to be 

assigned to each object of population O as a label of one class. The classification process is 

based on the learning set U which is a subset of the whole data set O. Each element io  of the 

learning set is composed of the object representation and a class label. This object 

representation is an observation vector of the features. The whole set is divided into c 

separated subsets and one-subset observations are numbered among one of the c classes. 

Such supervised learning is widely used in biomedical applications. 

3.1 Classifiers construction 

The construction of classifiers is based on several rules. Multiple different classifiers might 
be constructed on the basis of one single learning set. The ideal situation would be to choose 
the proper classifier on the basis of the number of misclassifications of the new, random 
observation. However, in reality bad classification probabilities are unknown. They might 
be estimated from a validation probe, which is a random sample, independent of the 
learning probe, where objects’ belonging to classes are unknown. The misclassification 
probability of a specific classifier is estimated with mistakes done by the classifier on the 
validation probe. Classifier evaluation should be done using observations independent of 
those from the learning probe. In other cases the classifier will be biased. 

The ultimate classifier evaluation is done with a test probe. It needs to be independent of 
other probes and it needs to have information about objects’ membership of classes. If only 
one classifier is to be tested or basis size of the set is small, the validation probe might be 
omitted. In practice, the usually-chosen proportion is the division into 50% on the learning 
probe and 25% each for the validation and test probes (Cwik & Koronacki, 2008). However, 
in practice, the division depends on the specificity of the data set. 

The classifier makes the decision about the belonging to classes on the basis of the learning 
probe. However, the trained classifier will need to operate on large datasets. These datasets 
are larger than sets used for classifier training. It makes non-zero the probability of a wrong 
decision (Stapor, 2005). The classifier is used for data other than those for which it was 
constructed. That is why the classifier quality depends on its generalisation ability. In 
practice it means that the learning properties need to be representative of all the population. 
On the other hand, nonessential properties should be omitted, because they only constitute 
features of the specific learning set. 

The most popular measures of classification quality are classification accuracy (a proportion 
of correctly-classified sets) and error rate (a proportion of misclassified sets). Important rates 
are also TP (True Positives) – the number of correctly-classified positive sets, TN (True 

www.intechopen.com



 
A Comprehensive Analysis of MALDI-TOF Spectrometry Data 

 

79 

Negatives) – the number of correctly-classified negative sets, FP (False Positives) – the 
number of incorrectly-classified positive sets, FN (False Negatives) – the number of 
incorrectly-classified negative sets. 

Among useful measures one can also find sensitivity and specificity. This sensitivity is 

defined as a proportion of truly positive and false negative results (eq. 6). It is interpreted as 

ability of a classifier to identify the phenomenon if it really exists.  

 
TP

sensitivity
FN TP




 (6) 

On the other hand the specificity is a proportion of truly negative results and the sum of 

truly negative and truly positive results (eq. 7). The specificity is interpreted as the ability to 

reject truly false results. 

 
TN

specificity
TN FP




 (7) 

Sensitivity and specificity are opposed values – an increase in the one causes a decrease in 
the other. 

The significant tool characterising a classifier’s features is the receiver-operating-

characteristic curve – known as the ROC curve. It is a chart of dependency between values: 

1-specificity and sensitivity. Such a curve is created for a specific structure of the classifier 

(specified type, parameters, number of input features). The total error of the classifier 

remains unchanged. However, its division into values FP and FN is changed, because the 

ROC curve examines the proportion between FP and FN. In the case of the random division 

of objects, the ROC curve takes the shape of a curve going from the bottom left to the upper 

right corner. The better the classification results are, the more concave the curve is. The ideal 

situation will make the ROC curve go through the upper left corner of the chart.  

An important factor in the classifier’s quality is the curve under the ROC curve, the so-called 

AUC. The closer to the value 1 AUC is, the better are the classification results. An example 

of ROC is presented in Fig 6. 

3.2 Dealing with high dimensionality 

Mass spectrometry data are characterised by high dimensionality. The number of  

observations is significantly lower than the number of features. Each patient has a few 

thousand data points or even more, whereas a typical dataset contains dozens or hundreds 

of spectra. Typical classification and data mining techniques are designed to handle low-

dimensional data, such as sales or economic indicators. Low-dimensional datasets contain 

many observations and just only a few, usually uncorrelated, features. Such data might be 

analysed using any type of method, including graphical interpretation and unsupervised 

learning. Dealing with high-dimensional data is much more difficult. The main problem is 

the correlation of features which always occur in high-dimensional data. In fact, to obtain 

statistical significance the number of observations should grow exponentially with the 

dimensionality. The existence of dependent features prevents or hinders the classification  
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Fig. 6. Example of the ROC curve. 

using typical, widely-known methods. Moreover, a large number of correlated features has 

a bad influence on the quality of the classification. This makes analysis difficult and 

diversification is hard to obtain (Stapor, 2005). A large number of features causes also large 

number of classifier parameters. It increases its complexity and susceptibility to over-

learning and decreases its flexibility. The existence of the curse of dimensionality (Mao et al., 

2000) proves that the complexity of the classifier has an impact on the classification quality. 

The more complex the classifier is, the higher should be the proportion between the number 

of observations and the number of features (Stapor, 2005). That is why high-dimensional 

data must be properly processed, including the application of dimension-reduction 

techniques. This task determines the success of the classification because of specificity of 

mass spectral data.  

Another problem of dealing with bio-medical data is signal strength. A typical signal of 

mass spectrometry data carries information concerning the functions of the whole organism. 

Moreover, the development of medical, diagnostic and prevention programmes gives 

results for significantly less patients diagnosed with late-stage diseases. For example, cancer 

diseases are usually diagnosed at the first or second clinical level. Such signals are difficult 

to identify and to extract among the many different signals of the organism. Blood, serum or 

urine contain proteins responsible for the range of typical, vital functions of the body. One 

needs to notice that those proteins are much stronger than the signals of diseases.  

One of the most frequently-used classifiers for mass spectrometry data is the Support 

Vectors Machines (SVM) proposed by V.N. Vapnik (Vapnik et al., 1992; Vapnik, 1995; 

Vapnik, 1998). The idea of this method is a classification using an appropriately-designated 

discriminant hyperplane. Searching for such a hyperplane is performed by the Mercer 

theorem and the optimisation of the quadratic objective function, with linear restrictions. 

The SVM idea is based on searching for two parallel hyperplanes. If classification groups are 
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linearly separated, those hyperplanes should delimit the widest possible area which contain 

no elements of the probe. The hyperplanes need to be based on so-called support vectors. If 

learning sub-sets are not linearly separated, a penalty is introduced. The best separation 

result is obtained for a higher dimensional space. 

The SVM rule is presented in Eq. 8.  

 0 0( ) sgn( ( ) )
sup. .

f x y x x bi ii
vect

   (8) 

where are Lagrange’s coefficients and b  is a constant value. For inseparable classes the 

additional restrictions take the form of Eq. 9.  

 
1 , 1

1 , 1

x w b yi i i
x w b yi i i





   

     
 (9) 

where i  is a constant value 0i   

Classifiers used in bioinformatics applications are solved with use of kernel functions. Such 

a construction enables one to obtain non-linear shapes of discriminant hyperplanes. One of 

the most popular kernel functions is the radial kernel (Eq. 10).  

 0 0( ) sgn( ( ) )
sup. .

f x y K x x bi i i
vect

   (10) 

Before the main classification of mass spectrometry data, dimension reduction needs to be 

performed. Input data-sets for classification usually contain several hundreds or even 

thousands of features. From the statistical point of view, using such a number of features is 

unreasonable. Reduction might be carried out in two-stages. The first is spectrum 

decomposition, which reduces dimensionality from thousands of features to hundreds. The 

second step is applying feature reduction or selection techniques. 

The first step in dimension reduction is based on applying the decomposition results. These 
results are used as a Gaussian mask, which is put on every single spectrum of the data set. 
This gives new values consisting of all spectra. Dimensions of mass spectrometry data 
decrease to the value of the GMM components number. The resultant matrix obtained after 

these steps is n k , where n  denoted the number of spectra and k  the number of 

components. The resultant matrix was the input data to the further dimension reduction and 
classification.  

There are many reduction and selection techniques available. They attempt to find the 

smallest data sub-set chosen with defined criteria among the whole data set. Too large a 

number of features has an adverse impact on the classification results. A large number of 

features causes an increase in computational complexity and lengthen calculation time. 

There are two types of dimension reduction methods: 

 feature extraction – data are subjected to certain transformation – a new data set is 
obtained 
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 feature selection – a subset of the most optimal data is chosen. 

One of commonly-known features extraction methods is the Partial Least Squares (PLS) 

method (Barnhill et al., 2002). The method also facilitates classification. Feature selection in 

the PLS method is performed with use of both X and Y data, so it considers the whole 

structure of the learning set. The idea of the PLS method is to find latent vectors. Using 

latent vectors allows simultaneous analysis and the decomposition of X and Y, including a 

covariance between X and Y. Such an approach makes PLS a special case of Principal 

Component Analysis (PCA) (Mao et al., 2000). The original version of PLS is a regression 

method dealing with continuous values. Classification of mass spectrometry data usually 

consists of assigning data to one of two groups. So, the matrix of dependent features (Y) is 

composed of only two values. It is possible to directly apply PLS to mass spectrometry or 

microarray data. However, it is better to use one of the few PLS modifications dedicated to 

binary classification. The original PLS classification components are a linear combination of 

predictor variables. Weights, however, are a nonlinear combination of predictor and 

response variables (Nguyen & Rockeb, 2004). There are approaches (Liu & Rayens, 2007; 

Boulesteix & Strimmer, 2006; Fort & Lambert-Lacroix, 2005; Nguyen & Rockeb, 2004; Man et 

al., 2004; Huang et al., 2005) applying the original PLS to categorical, binary responses. 

However, research confirms that it is better to use PLS procedures adjusted to binary 

responses (Nguyen & Rockeb, 2002). One can use a hybrid-PLS method based on singular-

value decomposition. Another approach is the hybrid-PLS method based on logistic 

regression predictors, where the PLS components are calculated as weighted averages of the 

original predictor/explanatory variables. Also, weights are dependent on sample predictor 

variances and the partial correlation coefficient (Garthwaite, 1994; Nguyen & Rockeb, 2004). 

PLS is also used in conjunction with Linear Discriminant Analysis (LDA) (Boulesteix & 

Strimmer, 2006;  Boulesteix, 2004; Liu & Rayens, 2007). Fort and Lambert-Lacroix (Fort & 

Lambert-Lacroix, 2005) proposed a combination of the PLS and Ridge penalty. 

Among the most popular features selection method one can find the SVM-RFE and 

traditional T test. The SVM-RFE (Support Vector Machine Recursive Feature Elimination) 

(Wold, 1996) method is a features-selection method. Features selection is performed with the 

propagation-backward method. The procedure starts with a full range of input features and 

features are successively removed. Only one feature is removed at a time. As a range 

criterion SVM weights coefficients are used. Therefore the SVM-RFE method is closely 

related to the SVM classification. The T test is a very common technique of feature selection. 

The most significant features are chosen according the T test. For each feature a T-test range 

is calculated. This statistics treat all features as independent and this assumption is usually 

not met. However, the T test is successfully used for protein data classification. 

3.3 Learning the classifier 

After applying dimension reduction, supervised classification is preformed with the SVM 
method. Our results (Plechawska-Wójcik, 2011) show that the best results can be obtained 
using linear SVM and SVM with the Gaussian Radial Basis Function kernel. However, 
before the learning process, proper classification parameters need to be estimated. Such an 
estimation is usually performed experimentally, for example using the Multiple Random 
Validation method.  
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Tests of classification and reduction performance need to be done for different values of the 

SVM parameters and the number of selected features. To find the most accurate values, the 

dataset must be divided into testing and learning subsets. Classification  calculations need to 

be repeated several hundred times. The classification analysis should be performed 

separately for all used dimension reduction techniques. Each of them can have a different 

number of obtained features. Besides the total error, False Negatives and False Positives 

should be also checked. 

The SVM parameters are the value of box constraints (C) for the soft margin and  the scaling 
factor (sigma). The results of multiple repetitions of SVM for different sigma values are 
presented in Fig. 7. The classification was done with SVM classifier with a radial kernel. All 
calculations were done in the Matlab environment.  

 

Fig. 7. Examples of the estimation of classification parameters. 

If parameters are already known, there is a necessity to find the optimal number of features. 

For example, if there is a 50-element learning-data set, number of features shouldn’t be 

larger than 10. The results for all three types of dimension-reduction techniques are 

presented in Fig. 8. The middle line is the obtained ratio and the upper and lower denotes 

the confidence interval. Similar results are obtained for the FN and FP values. 
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Fig. 8. Examples of the estimation of the features number. 

4. The biological interpretation of mass spectrometry data 

Another important issue in mass spectrometry data analysis is the supporting of 

biological interpretation. The ability to check the details of those components is of great 

importance to biologists. Biological interpretation tries to determine peptides and proteins 

on the basis of the m/z values list. After this identification further analysis can be 

performed. The application gives characteristics of found peptides and proteins. It is also 

able to find characteristics of genes coding the proteins and to give access to genes paths. 

The biological context module is integrated with four biological databases available 

online. 

At level0 the user is able to load data and give detailed search criteria. These criteria include 

accuracy, species, the MS platform, and the possibility of double and triple charges. 

Searching is based on M/Z values, which are transferred from classification module. 

Level1 is based on the EPO-KB (Empirical Proteomic Ontology Knowledge Base) database 

(Lustgarten et al., 2008; Lustgarten et al., 2009). The names of proteins and peptides are 

found on the basis of given M/Z values with a specified percentage tolerance. The user can 

also see the original results in the EPO-KB service. 

Level2 is a protein level and data presented here are obtained from an UniProt (Jain et al., 

2009) database. The displayed results contain detailed information about proteins, such as 
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entry name, status of reviewing process, organism, gene names and identifiers, features and 

GO annotations. It is also possible to see the original results returned by the database. 

Level3 is a genes level and it gives information about genes coding a particular protein 

chosen at a previous level2. Presented data are based on NCBI service (Wheeler, 2009). 

Searching is based on a gene identifier and it returns precise information about a particular 

gene, its role, status, lineage and related data. Level4 is based on gene pathways data. It is 

integrated with the KEGG database (Kyoto Encyclopedia of Genes and Genomes) (Kanehisa, 

2008). Level 4 gives details about gene pathways, structures, sequences, and references to 

other databases. 

An example of biological results obtained at the level of proteins is presented in Fig. 10. 

More results of the analysis performed on real data are presented in (Plechawska-Wojcik, 

2011a). 

 
 
 

 
 

Fig. 9. Schema of a biological-interpretation module. 
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Fig. 10. An example of biological analysis at the protein level. 

5. Conclusion   

The presented project is a comprehensive bioinformatics approach enabling spectra pre-

processing and analysing. The use of the Gaussian Mixture Model decomposition facilitates 

particular work with different types of spectra, especially complex, containing overlapped 

peaks. Before the analysis, one needs to choose the proper settings adjusted to the specificity 

of data. It is a condition of successful analysis. To minimise the risk of improper parameters 

selection, a parameters test should be performed.  

All elements of the mass spectrometry data analysis process are closely related. Each 

performed operation has an influence on the further quality of results. Preprocessing 

analysis is especially essential for the final results. That is why it is necessary to perform it in 

the correct order and using the proper parameter set. Some operations, however, are 

performed optionally and are chosen by the user. 

We found the peak-detection method based on Gaussian Mixture Models slower than 

common spectra analysis techniques based on local maxima and minima. However, it can 

deal with different kinds of data including spectra with overlapped peaks.  

Mixture model parameters are estimated using the Expectation-Maximisation algorithm 

with appropriately-selected parameters. It enables to obtain reproducible, reliable results. 

The decomposition  carried out in this way allows  the detection of peaks which can be 

subjected to further analysis, like protein and peptide identification, biomarker detection 

and the allocation of the tested sample to one of target groups. 
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Classification allows  the initial indication of the power of the predictive model and the 
functional analysis of detected peaks. It is, however, a difficult task, due to the high 
dimensionality and feature correlation. Many thousands of features and tens of objects 
require two-step dimensionality reduction. The first one is based on the Gaussian mask, 
imposed on all spectra of the dataset. The second is the separation of the most informative 
features, conducted by the dimensionality-reduction techniques. Due to the high correlation 
degree, the classification should be based on features. Before the classification procedure the 
classifier parameters need to be specified.  

The last step of the analysis is the biological interpretation. Biological databases integration 
facilitates the verification of the results. This test is important because of the possible False 
Discovery Rate obtained during the raw spectra analysis and classification. Such verification 
gives the possibility to verify the analysis from another angle. Biological analysis based on 
several external databases gives reliable functional analysis. Source databases are updated 
frequently. This ensures reliable, actual results. 
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