
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



0

Hamiltonian Representation of
Magnetohydrodynamics for Boundary

Energy Controls

Gou Nishida1 and Noboru Sakamoto2

1RIKEN
2Nagoya University

Japan

1. Introduction

1.1 Brief summary of this chapter

This chapter shows that basic boundary control strategies for magnetohydrodynamics (MHD)

can be derived from a formal system representation, called a port-Hamiltonian system (Van

der Schaft and Maschke, 2002). The port-Hamiltonian formulation clarifies collocated

input/output pairs used for stabilizing and assigning a global stable point. The controls called

passivity-based controls (Arimoto, 1996; Ortega et al., 1998; Van der Schaft, 2000; Duindam et

al., 2009) are simple and robust to disturbances. Moreover, port-Hamiltonian systems can be

connected while keeping their consistency with respect to energy flows. Finally, we show that

port-Hamiltonian systems can be used for boundary controls. In the future, this theory might

be specialized, for instance, in order to control disruptions of Tokamak plasmas (Wesson, 2004;

Pironti and Walker, 2005; Ariola and Pironti, 2008). This chapter emphasizes the versatility of

control system representations.

1.2 Background and motivation

Control theory significantly progressed during the last two decades of the 20th century. Linear

control theory (Zhou et al., 1996) was developed for systems whose states are limited to a

neighborhood around stable points. The theory was extended to include particular classes of

distributed parameter systems and nonlinear systems (Khalil, 2001; Isidori, 1995). However,

dispite this progress, simpler and more intuitive methods like PID controls (Brogliato et al.,

2006) are still in the mainstream of practical control designs. One reason for this trend

is that advanced methods do not always remarkably produce significant improvements to

the performance of controlled systems despite their theoretical complexity; rather, they are

prone to modeling errors. The other reason is that simple methods are understandable and

adjustable online, although the resulting performance is not exactly optimal.

On the other hand, actual controlled systems can be regarded as distributed parameter

systems from a macroscopic viewpoint, e.g., as elastic continuums, and as discrete nonlinear
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2 Magnetohydrodynamics

systems from a microscopic viewpoint, e.g., as molecular dynamics systems. Moreover, their

stable points are not always unique and vary according to the environment. Multi-physics and

multi-scaling models are becoming increasingly significant in science and engineering because

of rapid advances in computational devices and micromachining technology. However, such

complexities have tended to be ignored in system modeling of conventional control designs,

because controllers have to be simple enough to be integrated with other mechanisms and be

quickly adjustable. Moreover, numerical analyses using more detailed models can be executed

off-line by trial and error and in circumstance where there are no physical size limitations on

the computational devices. Hence, it would be desirable to have a new framework of simple

control designs like PID controls, but for complex systems. The port-Hamiltonian system,

which is introduced in this chapter, is one of the most promising frameworks for this purpose.

This chapter addresses the issue of how to derive simple and versatile controls for partial

differential equations (PDEs), especially, those of MHD, from considerations about the storage

and dissipation of energy in port-Hamiltonian systems.

1.3 History of topic and relevant research

Port-Hamiltonian systems are a framework for passivity-based controls. Passivity (Van der

Schaft, 2000) is a property by which the energy supplied from the outside of systems through

input/output variables can be expressed as a function of the stored energy. The storage

function is equivalent to a Hamiltonian in dynamical systems. The collocated input/output

variable pairs, called port variables, are defined systematically in terms of port-Hamiltonian

systems, and they are used as controls and for making observations. Passivity-based controls

consist of shaping Hamiltonians and damping assignments. The Hamiltonians of these systems

can be changed by "connecting" them to other port-Hamiltonian systems by means of the port

variables. The Hamiltonian of controlled systems is equal to the sum of those of the original

system and controllers. Thus, if we can design such a changed Hamiltonian beforehand,

the connections give the Hamiltonian of the original system "shaping". Such connected

port-Hamiltonian systems with a shaped Hamiltonian can be stabilized to the minimum of

the storage function by adding dissipating elements to the port variables.

The energy preserving properties of port-Hamiltonian systems can be described in terms of a

Dirac structure (Van der Schaft, 2000; Courant, 1990), which is the generalization of symplectic

and Poisson structures (Arnold, 1989). Dirac structures enable us to model complex systems as

port-Hamiltonian representations, e.g., distributed parameter systems with nonlinearity (Van

der Schaft and Maschke, 2002), systems with higher order derivatives (Le Gorrec et al.,

2005; Nishida, 2004), thermodynamical systems (Eberard et al., 2007), discretized distributed

systems (Golo et al., 2004; Voss and Scherpen, 2011) and their coupled systems. This chapter

mainly uses the port-Hamiltonian representation of PDEs for boundary controls based on

passivity, i.e., the DPH system. The boundary integrability of DPH systems is derived from a

Stokes-Dirac structure (Van der Schaft and Maschke, 2002), which is an extended Dirac structure

in the sense of Stokes theorem. Because of this boundary integrability, the change in the

internal energy of DPH systems is equal to the energy supplied through port variables defined

on the boundary of the system domain. Hence, passivity-based controls for distributed

parameter systems can be considered to be boundary energy controls.

168 Topics in Magnetohydrodynamics
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Hamiltonian Representation of Magnetohydrodynamics for Boundary Energy Controls 3

1.4 Construction of this chapter

In Section 2, we derive the geometric formulation of MHD defined by using differential

forms (Flanders, 1963; Morita, 2001). After that, we rewrite the model in terms of DPH

systems. The modeling procedure is systematically determined by a given Hamiltonian. Next,

we explain passivity-based controls that can be applied to the DPH system of MHD, and their

energy flows by means of the bond graph (Karnopp et al., 2006). Finally, we show that the

boundary power balance equation of the DPH system is the extended energy principle of

MHD (Wesson, 2004) in the sense of dynamical systems and boundary controls.

In Section 3, we extend the DPH model of MHD to include non-Hamiltonian subsystems

corresponding to external force terms in Euler-Lagrange equations. Actual controlled systems

represented by MHD might be affected by model perturbations, e.g., disturbances or other

controllers, or model improvements. Such variations cannot always be modeled in terms

of Hamiltonian systems. Some systems of PDEs can be decomposed into a Hamiltonian

subsystem, which we call an exact subsystem, and a non-Hamiltonian subsystem, which we

call a dual-exact subsystem (Nishida et al., 2007a). Through this decomposition, a PDE system

can be described as a coupled system consisting of a port-Hamiltonian subsystem determined

by a pseudo potential and other subsystems representing, e.g., external forces, dissipations and

distributed controls.

In Section 4, we derive a boundary observer for detecting symmetry breaking (Nishida et

al., 2009) from the DPH system of conservation laws associated with MHD. For example,

Hamiltonian systems can be regarded as the conservation law with a symmetry that is the

invariance of energy with respect to the time evolution. If a symmetry is broken, the associated

conservation law becomes invalid. Symmetry breaking can be detected by checking whether

quantities are conserved with the boundary port variables of the DPH system. Furthermore,

we present a basic strategy for detecting the topological transitions of the domain of DPH

systems. The formulation using differential forms defined on Riemannian manifolds can

describe systems affected by such transitions. We use a general decomposition of differential

forms on Riemannian manifolds and of vector fields on three-dimensional Riemannian

manifolds and derive the boundary controls for creating a desired topological energy flow

from this decomposition.

The last section is devoted to a brief introduction of future work on this topic.

2. Port-Hamiltonian systems and passivity-based controls for MHD

2.1 Ideal magnetohydrodynamical equations

Magnetohydrodynamics (MHD) is a discipline involving modeling magnetically confined

plasmas (Wesson, 2004; Pironti and Walker, 2005; Ariola and Pironti, 2008). The ideal MHD

system is a coupled system consisting of a single fluid and an electromagnetic field with

certain constitutive relations.

The fluid is described by the two equations in three dimensions. The first is the mass

conservation law,
∂ρ

∂t
+∇ · (ρv) = 0, (1)

169Hamiltonian Representation of Magnetohydrodynamics for Boundary Energy Controls
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4 Magnetohydrodynamics

where ρ(t, x) ∈ R is the local mass density at time t ∈ R at the spatial position x =
(x1, x2, x3) ∈ R

3, and v(t, x) ∈ R
3 is the fluid (Eulerian) velocity at t and x. The second is

Newton’s law applied to an infinitesimal plasma element with an electromagnetic coupling,

ρ
∂v

∂t
= −ρv · ∇v −∇p + J × B, (2)

where p(t, x) ∈ R is the kinetic pressure in plasma, J(t, x) ∈ R
3 is the free current density,

B(t, x) ∈ R
3 is the magnetic field induction, and the Lorentz force term J × B means the

coupling.

The electromagnetic field satisfies the Maxwell’s equations consisting of Ampere’s law,

Faraday’s law, and Gauss’s law for the magnetic induction field:

−
∂D

∂t
= −∇× H + J, −

∂B

∂t
= ∇× E, ∇ · B = 0, (3)

where the time derivative of the electric field induction D ∈ R
3 is neglected in MHD.

The constitutive relations are given by

B = μH, E + v × B = ηJ, (4)

where μ is the magnetic permeability and η is the resistance coefficient that is assumed to be

zero in an ideal MHD system.

2.2 Geometric formulation of MHD

The main framework of this chapter is the port-Hamiltonian system for PDEs called a

distributed port-Hamiltonian (DPH) system (Van der Schaft and Maschke, 2002). DPH systems

are expressed in terms of differential forms (Flanders, 1963; Morita, 2001). Moreover, a

formulation using differential forms defined on Riemannian manifolds can describe the

relation between the vector fields of systems and the topological properties of system domains

(see Section 4). Thus, we shall rewrite the equations of MHD by using differential forms to

derive the DPH representation of MHD.

Let Y be an n-dimensional smooth Riemannian manifold. Let Z be an n-dimensional smooth

Riemannian submanifold of Y with a smooth boundary ∂Z. We assume that the time

coordinate t ∈ R is split from the spatial coordinates x = (x1, · · · , xn) ∈ Z in the local chart

of Z. We denote the space of differential k-forms on Z by Ωk(Z) for 0 ≤ k ≤ n. We denote

the infinite-dimensional vector space of all smooth vector fields in Z by X(Z). We identify the

1-from v with the vector field v♯ ∈ X(Z). The fluid equations (1) and (2) can be rewritten as

follows:
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

∂ρ

∂t
= −dev,

∂v

∂t
= −deρ + g1 + g2,

ev = iv♯ρ, eρ =
1

2
〈v♯, v♯〉+ w(∗ρ),

g1 = −(∗ρ)−1∗(∗dv ∧ ∗ev), g2 = (∗ρ)−1∗(∗ J ∧ ∗B),

(5)
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Hamiltonian Representation of Magnetohydrodynamics for Boundary Energy Controls 5

where n = 3, ρ ∈ Ω3(Z) is the mass density, v ∈ Ω1(Z) is the fluid velocity, J ∈ Ω2(Z) is the

free current density, B ∈ Ω2(Z) is the magnetic field induction, 〈v♯, v♯〉 = ‖v♯‖2 is the inner

product with respect to v♯, and we have introduced the following operators:

• d : Ωk(Z) → Ωk+1(Z) · · · The exterior differential operator d on Z is defined as

dω =
n

∑
j=1

∂ fi1···ik

∂xj
dxj ∧ dxi1 ∧ · · · ∧ dxik (6)

for ω = fi1···ik
(x) dxi1 ∧ · · · ∧ dxik ∈ Ωk(Z), where i1 · · · ik is the combination of k different

integers selected from 1 to n, and j �= i1 �= · · · �= ik.

• ∗ : Ωk(Z) → Ωn−k(Z) · · · The Hodge star operator ∗ induced in terms of a Riemannian

metric on Z is defined as

∗ω = ∑
i1<···<ik

sgn(I, J) fi1···ik
dxj1 ∧ · · · ∧ dxjn−k ∈ Ωn−k(Z) (7)

for ω = ∑i1<···<ik
fi1···ik

(x) dxi1 ∧ · · · ∧ dxik ∈ Ωk(Z), where j1 < · · · < jn−k is the

rearrangement of the complement of i1 < · · · < ik in the set {1, · · · , n} in ascending

order, and sgn(I, J) is the sign of the permutation of i1, · · · , ik, j1, · · · , jn−k generated by

interchanging of the basic forms dxi (if we interchange dxi and dxj in ω for arbitrary i and

j, the sign of ω changes, i.e., it is alternating).

• iv♯ : Ωk(Z) → Ωk−1(Z) · · · The interior product iv♯ with respect to v♯ is defined as

iv♯ω =

{

(−1)m−1 fi1···ik
gim

dxi1 ∧ · · · ∧ dxim−1 ∧ dxim+1 ∧ · · · ∧ dxik if j = im,

0 if j �= im
(8)

for v♯ = gj(x)(∂/∂xj) and ω = fi1···ik
(x)dxi1 ∧ · · · ∧ dxik .

In (5), we used the formula (v · ∇)v = (1/2)∇(v · v) + Curl v × v, and the enthalpy w(∗ρ) =
(∂/∂∗ρ) (∗ρ U(∗ρ)) is related to the pressure p(∗ρ) by (∗ρ)−1dp(∗ρ) = dw(∗ρ), where

U(ρ) is the internal energy function of the fluid satisfying p(∗ρ) = w(∗ρ)∗ρ − U(∗ρ)∗ρ.

Next, Maxwell’s equations are defined as follows:

−
∂D

∂t
= −dH + J, −

∂B

∂t
= dE, dB = 0, dD = ̺, (9)

where D ∈ Ω2(Z) is the electric field induction, H ∈ Ω1(Z) is the magnetic field intensity,

E ∈ Ω1(Z) is the electric field intensity, and ̺ ∈ Ω3(Z) is the free charge density.

The constitutive relations are written as follows:

B = μ∗H, ∗(E + iv♯ B) = ηJ. (10)

2.3 Definition of port-Hamiltonian system

Let us recall the definition of DPH systems. The advantage of these systems will be explained

from the viewpoint of passivity and boundary controls in later sections.
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6 Magnetohydrodynamics

The inner product of k-forms can be defined on Z as

〈ω, η〉 = ω ∧ ∗η, 〈ω, η〉Z =
∫

Z
〈ω, η〉 (11)

for ω, η ∈ Ωk(Z). Moreover, we can identify the 1-from v with the vector field v♯ ∈ X(Z);
therefore, (11) can be defined as the inner product of vector fields, as in (5). DPH systems are

defined by Stokes-Dirac structures (Van der Schaft and Maschke, 2002; Courant, 1990) with

respect to the inner product (11).

Definition 2.1. Let

⎧

⎪

⎪

⎨

⎪

⎪

⎩

( f p, f q, f b) ∈ Ωp(Z)× Ωq(Z)× Ωn−p(∂Z),

(ep, eq, eb) ∈ Ωn−p(Z)× Ωn−q(Z)× Ωn−q(∂Z),

( f
p
d , f

q
d ) ∈ Ωp(Z)× Ωq(Z),

(e
p
d , e

q
d) ∈ Ωn−p(Z)× Ωn−q(Z),

(12)

where all f i and ei for i ∈ {p, q, b} and all f i
d and ei

d for i ∈ {p, q} constitute the pairs with respect to

the inner product 〈 · , · 〉Z. The Stokes-Dirac structure is defined as follows:

[

f p

f q

]

=

[

0 (−1)rd

d 0

] [

ep

eq

]

−

[

f
p
d

f
q
d

]

,

[

e
p
d

e
q
d

]

=

[

ep

eq

]

,

[

f b

eb

]

=

[

ep|∂Z

(−1)peq|∂Z

]

, (13)

where r = pq + 1, p + q = n + 1, |∂Z is the restriction of differential forms to ∂Z, d f
p
d �= 0, and

d f
q
d �= 0.

A DPH system is formed by substituting the following variables obtained from a Hamiltonian

density in the above Stokes-Dirac structure.

Definition 2.2. Let H(αp, αq) ∈ Ωn(Z) be a Hamiltonian density, where αi ∈ Ωi(Z) for i ∈ {p, q}.

A DPH system is defined by substituting

f p = −
∂αp

∂t
, f q = −

∂αq

∂t
, ep =

∂H

∂αp , eq =
∂H

∂αq (14)

into (13), where ∂/∂αi means the variational derivative with respect to αi. The variables f
p
d and f

q
d

cannot be derived from any Hamiltonian.

DPH systems satisfy the following boundary integrable relation that comes from Stokes

theorem (Flanders, 1963; Morita, 2001).

Proposition 2.1 (Van der Schaft and Maschke (2002)). A DPH system satisfies the following power

balance:
∫

Z
(ep ∧ f p + eq ∧ f q) +

∫

Z

(

e
p
d ∧ f

p
d + e

q
d ∧ f

q
d

)

+
∫

∂Z
eb ∧ f b = 0. (15)

where each term ei ∧ f i for i ∈ {p, q, b} has the dimension of power.

In DPH systems, each f i and ei for i ∈ {p, q} are called port variables, and f b and eb

are called boundary port variables that are a pair of boundary inputs and outputs. We call

172 Topics in Magnetohydrodynamics
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Hamiltonian Representation of Magnetohydrodynamics for Boundary Energy Controls 7

eb ∧ f b a boundary energy flow. On the other hand, the terms e
p
d ∧ f

p
d and e

q
d ∧ f

q
d are

non-boundary-integrable; therefore, we cannot detect changes in them from the boundary

energy flows. We call e
p
d ∧ f

p
d and e

q
d ∧ f

q
d distributed energy flows.

2.4 Passivity and boundary integrability of energy flows

The advantages of DPH systems are grounded in the following stability.

Definition 2.3. Consider a system with an input vector u(t) and an output vector y(t). The system

is called passive if there exists a C0 class non-negative function V(x) such that V(0) = 0 and

V(x(t1))− V(x(t0)) ≤
∫ t1

t0

u⊤(s)y(s) ds (16)

for all inputs u(t) and an initial value x(t0), where t0 ≤ t1 and ⊤ means the transpose of vectors.

V(x) can be regarded as the internal energy of the systems, which is an extended Lyapunov

function. The inequality in (16) means that the energy always decreases; therefore, the system

is stable in the sense of Lyapunov. Controls using the relation (16) are called passivity-based

controls. Standard control systems with pairs of inputs/outputs satisfying (16) are called

port-Hamiltonian systems. In this case, V(x) corresponds with the Hamiltonian of the system.

Hence, in (15), all port variables ei
j and f i

j for i ∈ {p, q, b} and j ∈ { f , e} might be inputs and

outputs for passivity-based controls.

The boundary port variables f b
j and eb

j in (15) can be used as passivity-based boundary

controls (Van der Schaft, 2000; Duindam et al., 2009) (details are given in Section 2.6). In (15),

the first integral means the time variation of Hamiltonian; i.e., it is calculated by taking the

interior product between a possible variational vector field and the variational derivative of

Hamiltonian: iXi
dHi for i ∈ { f , e}, where Xi = ∑j(∂αj/∂t)(∂/∂αj) is the variational vector

field and αj is the variational variable. The power of the first integral can be transformed

into that of the third integral by appealing to boundary integrability of Stokes theorem. The

second integral means non-boundary-integrable energy flows. Hence, if the second integral is

zero, we can detect the variation of energies distributed on system domains from the variation

on the boundary. In this sense, the power balance (15) is the principle of passivity-based

boundary controls.

2.5 Port-Hamiltonian representation of MHD

In this section, we derive the DPH representation of MHD from the geometric formulation

presented in Section 2.2, which has been partially treated as Maxwell’s equations and as an

ideal fluid in (Van der Schaft and Maschke, 2002).

Let n = 3. The DPH representation can be systematically constructed in terms of the

Hamiltonian densities of the fluid and the electromagnetic field

H f =
∫

Z

1

2
〈v♯, v♯〉ρ + U(∗ρ)ρ, He =

∫

Z

1

2
(E ∧ D + H ∧ B) (17)

173Hamiltonian Representation of Magnetohydrodynamics for Boundary Energy Controls
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8 Magnetohydrodynamics

under constraints defined by the system equations (5), (9) and (10). Indeed, the DPH system

of MHD can be constructed as
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

[

−ρt
−vt

]

=

[

0 d

d 0

] [

eρ

ev

]

−

[

0

g1 + g2

]

,

[

f b
f

eb
f

]

=

[

eρ|∂Z

−ev|∂Z

]

,

[

−Dt

−Bt

]

=

[

0 −d

d 0

] [

E

H

]

+

[

J

0

]

,

[

f b
e

eb
e

]

=

[

E|∂Z

H|∂Z

]

,

(18)

where the subscript t means the partial derivative with respect to t, and we have defined

⎧

⎪

⎨

⎪

⎩

ev = iv♯ρ, eρ =
1

2
〈v♯, v♯〉+ w(∗ρ),

g1 = −(∗ρ)−1∗(∗dv ∧ ∗ev), g2 = (∗ρ)−1∗(∗ J ∧ ∗B),
B = μ∗H, ∗(E + iv♯ B) = ηJ,

(19)

having set p = 3, q = 1, and r = 3 · 1 + 1 for the fluid, and p = 2, q = 2, and r = 2 · 2 + 1 for

the electromagnetic field. The DPH system satisfies the following power balance equations:

∫

Z

(

−eρ ∧ ρt − ev ∧ vt
)

−
∫

Z
ev ∧ g2 −

∫

∂Z
ev ∧ eρ = 0, (20)

∫

Z
(−E ∧ Dt − H ∧ Bt)−

∫

Z
E ∧ J +

∫

∂Z
H ∧ E = 0, (21)

where ev ∧ g1 = −(∗ρ)−1ev ∧ ∗(∗dv ∧ ∗ev) = −(∗ρ)−1∗ev ∧ ∗dv ∧ ∗ev = 0 and (21) which

corresponds to Poynting’s theorem. Note that the definition of the boundary energy flow in

(21) is invariant even if Dt is assumed to be zero, as is done in the standard theory of MHD.

The first integrals of (20) and (21) correspond to the total change in energy of the system

defined on Z, and the third integral is equal to the energy flowing across ∂Z.

2.6 Passivity-based boundary controls

The basic strategy of passivity-based controls is to connect controllers through pairs of

port variables, e.g., new port-Hamiltonian systems for changing the total Hamiltonians,

or dissipative elements for stabilizing the system to the global minimum of the shaped

Hamiltonian. The passivity-based boundary controls for DPH systems are applied to the

boundary port variables f b
j and eb

j for j ∈ { f , e}. The product eb
j ∧ f b

j has the dimension of

power; therefore, f b
j and eb

j can be considered to be a generalized velocity and a generalized

force in analogy to mechanical systems (the correspondence might be the inverse in some

cases).

Applying the output f b
j magnified by a negative gain to the input eb

j means velocity feedback.

This is one of most important passivity-based controls, i.e, damping assignment. Moreover,

the boundary energy flow eb
j ∧ f b

j balances the internal energy of DPH systems; therefore, the

total energy of the controlled system decreases, and the system becomes stable in the sense of

passivity (16).

On the other hand, the Hamiltonian of the original DPH system can be changed by connecting

other DPH systems to the original. The connection by means of port variables is expressed by
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Hamiltonian Representation of Magnetohydrodynamics for Boundary Energy Controls 9

bond graph theory (Karnopp et al., 2006), which is a generalized circuit theory for describing

physical systems from the viewpoint of energy flows. For instance, the following diagram is

the bound graph representation of the DPH system of MHD:

∂Z

eb
ef b

e ✤

�❴❴

ǫ−1 : C 0✤
✤

Dt

E
❴�

EJ
✤

�❴❴

E

−dH

❴ � ✤✤

±d

:DTF 1✤
✤

H

dE
❴�

Bt

H
❴ � ✤✤

I : μ

1
E+vB

J
❴ � ✤✤ R : η−1

GY : ρ−1B

vBJ

✤

�❴❴

ρ−1 : I 1
❴❴

−g2ev

✤
�

ev

vt
❴�
✤

✤ ✤

✤

deρ

ev

❴ �
❴❴

−g1ev
✤

�

DTF

:

d

0
dev

eρ
❴�
✤

✤ ✤

✤

eρ

ρt

❴ �
C : ρ−1eρ

−ρ(dv)−1 : R ∂Z

eb
ff b

f

✤
�❴❴

(22)

where ∂Z is the boundary of the systems, and we have defined the following bond graph

elements:

• The arrow with the pair of variables e and f means the energy flow e ∧ f .

• The direction arrow indicates the sign of the energy flow.

• The causal stroke | at the edge of the arrows indicates the direction in which the effort

signal is directed.

• The n pairs of variables ei and fi around the 0-junction satisfy e1 = e2 = · · · = en and

∑
n
i=1 si fi = 0, where si = 1 if the arrow is directed towards the junction and si = −1

otherwise.

• The n pairs of variables ei and fi around the 1-junction satisfy f1 = f2 = · · · = fn and

∑
n
i=1 siei = 0.

• The C element with a parameter K means the capacitor satisfies e = K
∫ t
−∞

f dt.

• The I element with a parameter K means the inductor satisfies f = K−1
∫ t
−∞

edt.

• The R element with a parameter K means the resister satisfies e = K f .

• The GY element with a parameter M means the gyrator satisfies e2 = M f1 and e1 = M f2.

• The DTF element means the differential transformer that has a Stokes-Dirac structure. In

the case with the symbol d, e2 = de1, f1 = d f2, f b = e1|∂Z and eb = − f2|∂Z. In the case

with the symbol ±d, e2 = de1, f1 = −d f2, f b = e1|∂Z and eb = f2|∂Z.

The Hamiltonian is shaped by connecting new systems to it through the pairs of boundary

port variables ( f b
f , eb

f ) and ( f b
e , eb

e ). For example, we can connect an electromagnetic system as

a controller on the boundary ∂Z of the upper part of (22) as follows:
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10 Magnetohydrodynamics

R : η′−1

ǫ′−1 : C 0✤
✤

Dt

E
❴�

E

−dH

❴ � ✤✤

EJ

✤
�❴❴

DTF

:

±d

eb′
ef b′

e
✤

�❴❴

1✤
✤

H

dE
❴�

Bt

H
❴ � ✤✤

I : μ′ Z′

1

eb
ef b

e
✤

�❴❴

∂Z

ǫ−1 : C 0✤
✤

Dt

E
❴�

EJ
✤

�❴❴

E

−dH

❴ � ✤✤

±d

:DTF 1✤
✤

H

dE
❴�

Bt

H
❴ � ✤✤

I : μ Z

...

(23)

where Z′ is the domain of the new electromagnetic system and each system is connected

through the common boundary ∂Z = ∂Z′. In this case, the original Hamiltonian H f +He is

changed into the controlled Hamiltonian H f +He +H′
e, where H′

e is the Hamiltonian of the

new electromagnetic system. Note that the Hamiltonians can only be shaped to control the

energy flows of boundary port variables or energy levels of the original system, not to control

the distributed states in the sense of boundary value problems.

The energy flow through the boundary ∂Z = ∂Z′ can be described as

Hδt =
∫

∂Z
eb ∧ f b − eb′ ∧ f b′, (24)

where eb′ and f b′ are the pair of the boundary port variables defined on ∂Z′. In general, when

the port variable eb is regarded as an input, the power balance (15) is changed into

∫

Z
(ep ∧ f p + eq ∧ f q) +

∫

Z

{

e
p
d ∧ ( f

p
d + u

p
d) + e

q
d ∧ ( f

q
d + u

q
d)
}

+
∫

∂Z
ub ∧ f b = 0, (25)

where eb = ub is the boundary control, and u
p
d and u

q
d are the distributed controls. If f b is

regarded as an input, then the boundary control is replaced by f b = ub.

Damping terms are assigned by connecting of resisters to the pair on the system domain;

they are illustrated as R elements in the bond graph. If systems with dissipative elements

are connected to the boundary of a controlled system, it corresponds to a boundary damping

assignment that absorbs the energy of the original system through the boundary. For example,

in (25), the controls

ub = −Kb f b, u
p
d = −K

p
d αp, u

q
d = −K

q
dαq (26)

are equivalent to connecting an R element to the port variables, where Kb is the gain function

defined on ∂Z, K
p
d and K

p
d are the gain functions defined on Z, and f i = −(∂αi/∂t). For

eliminating distributed energy flows f
p
d and f

q
d that are exactly known, we can use the controls

u
p
d = − f

p
d , u

q
d = − f

q
d , (27)
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where the inputs u
p
d and u

q
d distributed on Z. Moreover, in (23), R : η′−1 distributed on Z′ is

considered as an element to create energy flowing across the boundary of the original MHD

system.

A practical problem is whether the boundary port variables eb
i and f b

i can actually be used

as inputs and outputs. In this section, we show all possible boundary port variables of

MHD regardless of whether they are actually usable or not. The input/output pairs for the

passivity-based boundary control of MHD are the boundary port variables

(eb
f , f b

f ) = (−ev|∂Z, eρ|∂Z), (eb
e , f b

e ) = (H|∂Z, E|∂Z). (28)

(eb
f , f b

f ) can be transformed as follows:

∫

∂Z
ev ∧ eρ =

∫

∂Z
iv♯ρ ∧

(

1

2
〈v♯, v♯〉+ w(∗ρ)

)

=
∫

∂Z
iv♯

(

1

2
〈v♯, v♯〉ρ + U(∗ρ)ρ

)

+
∫

∂Z
iv♯ (∗p), (29)

where the first term corresponds to the boundary energy flow of convections and the second

term means external work. Hence, the altered port variables are

(eb
f 1, f b

f 1) = (H f |∂Z, v|∂Z), (eb
f 2, f b

f 2) = (p|∂Z, v|∂Z). (30)

2.7 Port representation of balanced MHD

This section discusses the stability of the DPH systems of MHD (18) with (19) in a balanced

state. If the change in the potential energy of MHD caused by physically admissible

perturbation is positive, then the equilibrium of MHD is stable. This fact is called the energy

principle of MHD (Wesson, 2004). We derive the basic equation of the energy principle from

the DPH system.

If the 2-form dv is zero at a certain time t = t0, it continues to be zero after t0. Accordingly, (5)

can be reduced as follows:

∂ρ

∂t
= 0,

∂v

∂t
= (∗ρ)−1 {−dp(∗ρ) + ∗(∗ J ∧ ∗B)} = 0. (31)

Now, let us consider the variation in energy with respect to an infinitesimal variation in

displacement:

Wδt =
∫

Z
δx

δ

δt
{−dp(∗ρ) + ∗(∗ J ∧ ∗B)} , (32)

where the subscript δt means the variational derivative with respect to the time, and δ means

an infinitesimal variation. From (9), we obtain

δJ

δt
= d

δH

δt
, (33)
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12 Magnetohydrodynamics

where we have assumed that Dt = 0 and η = 0; therefore,

dDt = ̺t = 0, ̺t = dJ = 0, E = −iv♯ B. (34)

The DPH system of balanced MHD can be constructed as follows:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

[

−ρt
0

]

=

[

0 d

d 0

] [

wδt(∗ρ)
iv♯ρ

]

−

[

0

(∗ρ)−1dpδt

]

,

[

f b
f s

eb
f s

]

=

[

wδt(∗ρ)|∂Z

−iv♯ρ|∂Z

]

,

[

0

−Bt

]

=

[

0 −d

d 0

] [

−iv♯ B

Hδt

]

+

[

Jδt

0

]

,

[

f b
es

eb
es

]

=

[

−iv♯ B|∂Z

Hδt|∂Z

]

,

(35)

where δx = v. The DPH system (35) satisfies the power balance equations,

−
∫

Z
wδt(∗ρ) ∧ ρt +

∫

Z
iv♯ρ ∧ (∗ρ)−1dpδt −

∫

∂Z
iv♯ρ ∧ wδt(∗ρ) = 0, (36)

−
∫

Z
Hδt ∧ Bt +

∫

Z
iv♯ B ∧ Jδt −

∫

∂Z
Hδt ∧ iv♯ B = 0. (37)

As a result, we obtain the boundary port variables

( f b
f s, eb

f s) = (wδt(∗ρ)|∂Z,−iv♯ρ|∂Z), ( f b
es, eb

es) = (−iv♯ B|∂Z, Hδt|∂Z) (38)

from (35).

The energy principle is frequently used to analyze the stability of MHD. The DPH system of

MHD generates the power balance equation (37) for an analysis. The boundary port variables

of (35) correspond to those of the DPH system of dynamical MHD (18) except for the term

depending on v. Hence, (18) can be considered to be a generalized system following the

energy principle of MHD. If active controls are used in MHD systems, e.g., in Tokamaks, the

control side of the DPH system able to be used, e.g., as a boundary control for subdivided

MHD systems.

3. Construction pseudo potentials for non-Hamiltonian subsystems

3.1 DPH systems of MHD with perturbations

Section 2 discussed the energy structure of the DPH system of MHD on the basis of its

physical meaning. However, model perturbations caused by, for instance, disturbances,

additional terms derived by using system identification methods for model refinements, or

controllers designed by a control theory do not always have physical interpretations. In

this section, we show a method of determining the energy structure of such perturbations.

Precisely speaking, we decompose a given perturbation into a Hamiltonian subsystem

and a non-Hamiltonian subsystem that can be regarded as an external force in terms of

Euler-Lagrange equations (Nishida et al., 2007a).

In this section, we consider an n-dimensional smooth Riemannian manifold Y that is

homeomorphic to an n-dimensional Euclidian space (i.e., topologically same, and one can

be deformed into the other). Let Z be an n-dimensional smooth Riemannian submanifold

of Y with a smooth boundary ∂Z. The DPH system (18) of MHD defined on a domain Z is
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extended so as to have perturbations as follows:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

[

−ρt
−vt

]

=

[

0 d

d 0

] [

eρ

ev

]

−

[

0

g1 + g2

]

+

[

∆
p
f

∆
q
f

]

,

[

f b
f

eb
f

]

=

[

eρ|∂Z

−ev|∂Z

]

,

[

−Dt

−Bt

]

=

[

0 −d

d 0

] [

E

H

]

+

[

J

0

]

+

[

∆
p
e

∆
q
e

]

,

[

f b
e

eb
e

]

=

[

E|∂Z

H|∂Z

]

,

(39)

where each ∆i
j for i ∈ {p, q} and j ∈ { f , e} means a perturbation. Now, let us consider the

subsystem of DPH systems, ∆i
j(u

a
I ), where i ∈ {p, q}, j ∈ { f , e}, ua for 1 ≤ a ≤ l is the

function defined by the local coordinates xk of Y for 1 ≤ k ≤ n, and we denote all possible

derivatives up to the order r of ua by ua
I and denote the order by 0 ≤ |I| ≤ r. For example,

ua
I for r = 2 means {ua, ua

t , ua
y, ua

z , ua
tt, ua

ty, ua
tz, ua

yy, ua
yz, ua

zz} for (x1, x2, x3) = (t, y, z), and the

subscript means the partial derivative.

3.2 Decomposition of model perturbations of DPH systems

Consider the DPH system (39) of MHD with perturbations. We assume that the DPH system

includes up to second-order derivatives: r = 2. Accordingly, ∆i
j can be uniquely decomposed

into

∆i
j = dϕi

j + γi
j, (40)

where ϕi
j is a pseudo potential derived from

γi
j du = ∆ du − dϕ̃i

j, ϕi
j du = ∆ du − γi

j du, (41)

the temporal variable ϕ̃i
j is calculated as

ϕ̃i
j = hv(∆

i
j dua) =

∫ 1

0
ua · ∆i

j(xk, λua
I ) dλ, (42)

hv is the homotopy operator for ω ∈ Ωk(Z) with respect to an equilibrium point ua
cI , called a

homotopy center, defined by

hv(ω) =
∫ 1

0
iν̄ω(x, λūI) λ−1dλ, ν̄ = ∑

a,I

(ua
I − ua

cI)
∂

∂ua
I

, (43)

where ūa
I = ua

cI + λ(ua
I − ua

cI), and usually ua
cI = 0. In (40), we call dϕi

j an exact system and call

γi
j a dual exact system, which corresponds to a distributed energy variable.

For example, let us consider ∆i
j = 1+ wt + wtt for some i and j, where u1 = w and x0 = t. The

temporal variable

ϕ̃i
j = w +

1

2
wwt +

1

2
wwtt (44)
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14 Magnetohydrodynamics

is derived from hv(∆i
j dw). Hence,

dϕ̃i
j = (1 + wtt) dw, γi

j = ∆i
j dw − dϕ̃i

j = wt dw. (45)

On the other hand, from the relation

∆i
j dw = (1 + wt + wtt) dw

=

(

1 +
1

2
wt + wtt

)

dw +

(

−
1

2
w − wt

)

dwt (46)

that is transformed in terms of an integration by parts, we obtain

ϕ̃i
j = w −

1

2
w2

t . (47)

This result yields the same relation dϕ̃i
j = (1 + wtt) dw. Thus, the expression ϕ̃i

j has variations

generated by an integration by parts; therefore, we should recalculate ϕi
j as in (41).

3.3 Necessary and sufficient condition of decomposition

We can check whether a given ∆i
j is an exact system or a dual exact system from the

self-adjointness of the differential operator D∆i
j

defining ∆i
j: D∗

∆i
j
= D∆i

j
(Olver, 1993, pp.

109, 307, 329 and 364). Here, the Fréchet derivative DF of a second-order subsystem F (uI) is

an (l × k)-matrix with elements

(DF )ab(h) =

(

∂Fa

∂ub
+

n

∑
i=0

∂Fa

∂ub
xi

∂

∂xi
+

n

∑
i=0

n

∑
j=0

∂Fa

∂ub
xi xj

∂

∂xi

∂

∂xj

)

h (48)

and the adjoint operator D∗
F of DF is a (k × l)-matrix with elements

(D∗
F )ba(h) =

∂Fa

∂ub
h −

n

∑
i=0

∂

∂xi

(

∂Fa

∂ub
xi

h

)

+
n

∑
i=0

n

∑
j=0

∂

∂xi

∂

∂xj

(

∂Fa

∂ub
xi xj

h

)

(49)

for a = 1, · · · , k and b = 1, · · · , l, where h = h(uI) is any function and we assume k = l.

For example, consider ∆
q
f = 1 + νv + vt in (39), where u1 = w, wt = v and x0 = t. Then,

ϕ
q
f = 1 + vt and γ

q
f = νv, because g = νv is non-self-adjoint: D∗

g �= D g, and we have used

(48) and (49) with a = b = 1, i.e.,

D g(h) =
∂g

∂ux0

∂

∂x0
(h) = ν

∂h

∂t
, D∗

g(h) = −
∂

∂x0

(

∂g

∂ux0

h

)

= −ν
∂h

∂t
. (50)

3.4 Elimination of decomposed perturbations

The uniqueness of the decomposition is determined by the topology of Y. That is, differential

k-forms for k ≥ 1 defined on such a domain can be always described as in (40). If a pseudo
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potential can be defined for a perturbation, the perturbation can be included in the variables

ep or eq of the Stokes-Dirac structure. Hence, such a perturbation can be detected in terms of

the following boundary power balances:

∫

Z

(

−(eρ + ϕ
q
f ) ∧ ρt − (ev + ϕ

p
f ) ∧ vt

)

−
∫

Z
eρ ∧ γ

p
f −

∫

Z
ev ∧ (g2 + γ

q
f )

−
∫

∂Z
(ev + ϕ

p
f ) ∧ (eρ + ϕ

q
f ) = 0, (51)

∫

Z

{

−(E + ϕ
q
e ) ∧ Dt − (H − ϕ

p
e ) ∧ Bt

}

−
∫

Z
E ∧ (J + γ

p
e )−

∫

Z
H ∧ γ

q
e

+
∫

∂Z
(H − ϕ

p
e ) ∧ (E + ϕ

q
e ) = 0. (52)

Moreover, from these relations, we can see that the exact subsystem of perturbations can be

controlled by boundary port variables. Indeed, we can construct the boundary controls in the

fourth integrals of the power balance equations (51) and (52) as follows:

∫

∂Z
(ev + ϕ

p
f + u

q
f ) ∧ (eρ + ϕ

q
f + u

p
f ), (53)

∫

∂Z
(H − ϕ

p
e + u

q
e ) ∧ (E + ϕ

q
e + u

p
e ), (54)

where ui
j is the boundary input for compensating pseudo potentials such that

u
q
f = −ϕ

p
f , u

p
f = −ϕ

q
f , u

q
e = ϕ

p
e , u

p
e = −ϕ

q
e . (55)

On the other hand, the decomposed perturbations corresponding dual exact subsystems

cannot be eliminated by boundary controls. Hence, we should introduce the distributed

controls in the second and third integrals of the power balance equations (51) and (52) as

follows:

−
∫

Z
eρ ∧ (γ

p
f + u

p
d f )−

∫

Z
ev ∧ (g2 + γ

q
f + u

q
d f ), (56)

−
∫

Z
E ∧ (J + γ

p
e + u

p
de)−

∫

Z
H ∧ (γ

q
e + u

q
de), (57)

where ui
dj is the distributed input for eliminating dual exact subsystems such that

u
p
d f = −γ

p
f , u

q
d f = −γ

q
f , u

p
de = −γ

p
e , u

q
de = −γ

q
e . (58)

4. Boundary observer for detecting topological symmetry breaking

4.1 Symmetry and power balance equations

In this section, we first discuss the influence of topological variations in the system domains

on the power balance equation of DPH systems. We can detect such changes by checking

the boundary power balance of the original system; if there is an imbalance. According to

Noether’s theorem (Olver, 1993), conservation laws are associated with symmetries present

in systems. That is, our purpose is to construct a boundary observer for detecting symmetry
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breaking (Nishida et al., 2009). Finally, we derive a boundary control for creating desired

energy flows from topological properties of manifolds.

We shall clarify the first problem by means of the following example. Consider a DPH system

defined on a 2-dimensional domain Z. We assume that the energy flow of the system can be

split along the x- and y-axis. Next, we divide the domain Z into subdomains, i.e., Z =
⋃

i Zi,

where Zi is the i-th subdomain of Z. We denote the common boundary between Zi and Zj by

∂Zij. The following power balance holds:

Hδt =
∫

∂Zij
∑
i,j

(

ebi ∧ f bi − ebj ∧ f bj
)

= 0, (59)

where ebi and f bi are the boundary port variables defined on ∂Zi. The DPH system can be

regarded as a connected structure of DPH systems defined on Zi in terms of boundary port

variables of ∂Zij. We shall simplify the shapes of Z and each Zi to be squares as in the left

diagram below:

✤

�❴❴
✤

�❴❴
✤

�❴❴

∂Zy

❴ � ✤✤ DTF
eb

ef b
e

✤
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eb
e

f b
e

❴ � ✤✤ DTF
eb

ef b
e

✤

�❴❴

eb
e
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e
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e

f b
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DTF
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�❴❴

eb
e

f b
e

❴ � ✤✤ DTF
eb

ef b
e

✤

�❴❴

eb
e
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e
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∂Zx

→
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ef b
e

✤

�❴❴
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e

f b
e

❴ � ✤✤ DTF
eb

ef b
e

✤

�❴❴

eb
e

f b
e
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e

✤
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e
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e

✤

�❴❴
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f b
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(60)

Accordingly, we can split the original boundary ∂Z and denote the boundaries with respect to

the x- and y-axis by ∂Zx and ∂Zy, respectively. Hence, the following power balance holds:

Hδt = Hδt|∂Zx
+Hδt|∂Zy

= 0. (61)

Now, let us assume that a structural change occurs in the inner part of Z on a segment along

x-axis that we denote as ∂Z′
y in the right diagram of (60). Such changes are caused by, for

instance, energy dissipations, or energy transformations to other physical systems, and they

can be illustrated as a new element connected to ∂Z′
y in the bond graph. This means the energy

preserving symmetry is broken along the x-axis. In this case, (61) should be revised to

H′
δt = Hδt|∂Zx

+Hδt|∂Z′
y
+Hδt|∂Zy

= 0. (62)

Hence, we can detect that the power on ∂Zy: Hδt|∂Zy
= 0 becomes imbalanced if the port

variables in (61) are observable. In other words, this change can be regarded as a change in

the topology of the system domain, i.e., a deformation from Z ≃ R
n to Z \ ∂Z′

y ≃ R
n \ {0},
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where ≃ means topological equivalence (i.e., homeomorphic), \ means subtraction of sets,

and {0} is a point.

4.2 Topological decomposition of differential forms and vector fields

This section discusses the relation between the topology of the domain Z of DPH systems

and the decomposable components of vector fields on Z. After this discussion, the symmetry

breaking explained in the previous section will be extended to a change in energy flows of

DPH systems defined on compact manifolds.

In Section 2, we assumed that the system domain Z is a subdomain of a manifold that is

topologically the same as a Euclidian space. Actually, this assumption restricted the form of

diffrential forms. In this case, differential k-forms for k ≥ 1 can be decomposed into two types,

i.e., an exact form and a dual exact form as in (40). That is, differential forms ωe ∈ Ωk(Z) are

called exact forms if there exists some η ∈ Ωk−1(Z) such that ωe = dη, i.e., dωe = d(dη) = 0

because of the nature of exterior differentiation. The forms ωd ∈ Ωk(Z) such that dωd �= 0

are called dual exact forms. In general, there might also exist harmonic forms ωh ∈ Ωk(Z)
satisfying △ωh = 0, where △ = dd† + d†d is the Laplacian and d† = (−1)n(k+1)+1∗d∗ is the

adjoint operator of exterior differentiation. The components of differential forms depend on

the topology of domains. All classifications of differential forms defined on a compact domain

with a smooth boundary are given by the Hodge decomposition theorem (Morita, 2001); i.e., an

arbitrary differential form on an oriented compact Riemannian manifold can be uniquely

decomposed into an exact form, a dual exact form, and a harmonic form:

ω = ωe + ωd + ωh ∈ Ωk(Z). (63)

Moreover, a unique harmonic form on an oriented compact Riemannian manifold corresponds

to a topological quantity of the manifolds called a homology. Precisely speaking, from

Hodge theorem, Poincaré duality thorem and the duality between homology and (de Rham)

cohomology, we obtain the isomorphism Hk(Z, ∂Z) ∼= Ωn−k
h (Z) (Morita, 2001; Gross and

Kotiuga, 2004, pp. 102), where Hk(Z) is the vector space with real coefficients of the k-th

homology of Z, and Ωk
h(Z) is the space of harmonic forms.

If n = 3, the homology of Z consists of the following vector spaces:

• H0(Z) · · · The vector space is generated by such equivalence classes of points in Z as two

points are equivalent if they can be connected by a path in Z. dim H0(Z) is the number of

components of Z. Note that H0(Z) ∼= R for a connected Z and the element of H0(Z) is a

constant function.

• H1(Z) · · · The vector space is generated by such equivalence classes of oriented loops in Z

as two loops are equivalent if their difference is the boundary of an oriented surface in Z.

The number of holes of closed surfaces is called a genus. dim H1(Z) is the number of total

genus of Z.

• H2(Z) · · · The vector space is generated by such equivalence surfaces of points in Z as two

surfaces are equivalent if their difference is the boundary of some oriented subregion of Z.

dim H2(Z) is the number of the difference between components of ∂Z and those of Z.

• H3(Z) · · · dim H3(Z) is always 0.
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On the other hand, the dual space of Hk(Z) is Hn−k(Z, ∂Z), where Hk(Z, ∂Z) is called the k-th

relative homology of Z modulo ∂Z. In n = 3, the relative homology of Z modulo ∂Z consists of

the following vector spaces with real coefficients:

• H0(Z, ∂Z) · · · dim H0(Z) is always 0.

• H1(Z, ∂Z) · · · The vector space is generated by such equivalence classes of oriented paths

whose endpoints lie on ∂Z as two such paths are equivalent if their difference (possibly

paths on ∂Z) is the boundary of an oriented surface in Z.

• H2(Z, ∂Z) · · · The vector space is generated by such equivalence classes of oriented surface

whose boundaries lie on ∂Z as two such surfaces are equivalent if their difference (possibly

portions of ∂Z) is the boundary of some oriented subregion of Z.

• H3(Z, ∂Z) · · · The vector space has the oriented components of Z as a basis. Thus,

dim H3(Z, ∂Z) is the number of components of the subregions of Z whose boundaries

lie on ∂Z. Note that H3(Z, ∂Z) ∼= R for a connected Z and the element of H3(Z, ∂Z) is a

constant function.

Hence, Hk(Z, ∂Z) ∼= H3−k(Z) for 0 ≤ k ≤ 3.

As we mentioned before, the space of vector fields X can be identified with that of

1-forms Ω1 in the sense of a Riemannian metric. Thus, vector fields are affected by the

decomposition of differential forms. Indeed, the space of vector fields on a compact domain

Z in three-dimensional space with a smooth boundary can be decomposed as follows.

Theorem 4.1 (Cantarella et al. (2002)). Consider vector fields v♯ ∈ X(Z) on a compact domain Z

with a smooth boundary ∂Z in three-dimensional space. Let W denote any smooth orientable surface in

Z whose boundary ∂W lies on the boundary ∂Z: W ⊂ Z and ∂W ⊂ ∂Z, and called it a cross-sectional

surface. The space X(Z) is the direct sum of five mutually orthogonal subspaces:

X(Z) = XK(Z)�XG(Z), (64)

where v ∈ Ω1(Z), v♯ ∈ X(Z), ϕ ∈ Ω0(Z),

XK(Z) =
{

v♯ ∈ X(Z) : ∗d∗v = 0, v♯ · n♯ = 0
}

, XG(Z) =
{

v♯ ∈ X(Z) : v = dϕ
}

, (65)

which are called knots and gradients, respectively, and n♯ means all unit vector fields normal to ∂Z.

Furthermore,

XK(Z) = XFK(Z)�XHK(Z), XG(Z) = XCG(Z)�XHG(Z)�XGG(Z), (66)

where

XFK(Z) =
{

v♯ ∈ X(Z) : ∗d∗v = 0, 〈v, n〉∂Z = 0, 〈v, m〉W = 0
}

, (67)

XHK(Z) =
{

v♯ ∈ X(Z) : ∗d∗v = 0, 〈v, n〉∂Z = 0, dv = 0
}

, (68)

XCG(Z) =
{

v♯ ∈ X(Z) : v = dϕ, ∗d∗v = 0, 〈v, n〉∂Z = 0
}

, (69)
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XHG(Z) =
{

v♯ ∈ X(Z) : v = dϕ, ∗d∗v = 0, ϕ = C
}

, (70)

XGG(Z) =
{

v♯ ∈ X(Z) : v = dϕ, ϕ|∂Z = 0
}

(71)

dim H1(Z) = dimXHK(Z), dim H2(Z) = dimXHG(Z). (72)

which are respectively called fluxless knots, harmonic knots, curly gradients, harmonic gradients

and grounded gradients, and m♯ means all unit vector fields normal to W, and C is a function on ∂Z

that is locally constant.

For example, consider a vector field defined on a three-dimensional disc. There is no v♯ ∈
XHK(Z) on the disc, because the genus is 0 and dim H1(Z) = dimXHK(Z) = 0. Thus, all

rotation vector fields on the disc are v♯ ∈ XFK(Z) that is the rotating vector field whose axis

is an inner point of the disc. v♯ ∈ XCG(Z) is a constant vector field flowing across the disc;

therefore, it is divergence-free and zero flux through the one and only component of ∂Z. v♯ ∈
XGG(Z) is a radiational vector field flowing from an inner point of the disc, where the potential

ϕ is constant on ∂Z. There is no v♯ ∈ XHG(Z) on the disc, because the numbers of components

of ∂Z and Z are each 1, i.e., dimXHG(Z) = 0. However, a three-dimensional solid torus has

a hole; therefore, dimXHK(Z) = 1, but dimXHG(Z) = 0. v♯ ∈ XHK(Z) is a circulative vector

field flowing around the hole. Moreover, for a region between two concentric round spheres,

dimXHG(Z) = 1. v♯ ∈ XHK(Z) is a radiational vector field flowing from a common center in

the small sphere.

4.3 DPH systems with harmonic energy flows

In this section, we extend the DPH system of MHD to include the global energy flows

originating from topological shapes of manifolds.

Let Z be a three-dimensional smooth Riemannian submanifold of Y with a smooth boundary

∂Z. The DPH system (18) of MHD defined on a domain Z is extended to have energy

flows regarding harmonic knots and harmonic gradients that we call harmonic energy flows

as follows:
⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

[

−ρt

−vt

]

=

[

0 d

d 0

]

⎡

⎣

eρ + e
p
h f

ev + e
q
h f

⎤

⎦−

[

0

g1 + g2

]

+

⎡

⎣

f
p
h f

f
q
h f

⎤

⎦ ,

⎡

⎣

f b
f

eb
f

⎤

⎦ =

⎡

⎣

(eρ + e
p
h f )|∂Z

−(ev + e
q
h f )|∂Z

⎤

⎦ ,

[

−Dt

−Bt

]

=

[

0 −d

d 0

] [

E + e
p
he

H + e
q
he

]

+

[

J

0

]

+

[

f
p
he

f
q
he

]

,

[

f b
e

eb
e

]

=

[

(E + e
p
he)|∂Z

(H + e
q
he)|∂Z

]

,

(73)

where we defined the following harmonic forms yielding harmonic energy flows:

{

( f
p
h f , e

p
h f ) ∈ Ω3(Z)× Ω0(Z), ( f

q
h f , e

q
h f ) ∈ Ω2(Z)× Ω1(Z),

( f
p
he, e

p
he) ∈ Ω2(Z)× Ω1(Z), ( f

q
he, e

q
he) ∈ Ω2(Z)× Ω1(Z).

(74)

Note that Hk(Z) ∼= Hn−k(Z, ∂Z) ∼= Ωk
h(Z), there is the dual from of ωh with respect to 〈 , 〉Z,

called a Poincaré dual: Ωk
h(Z) ∼= Ωn−k

h (Z), and f
p
h f and e

p
h f are constant functions. The system
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(73) satisfies the power balances

∫

Z

(

−(eρ + e
p
h f ) ∧ ρt − (ev + e

q
h f ) ∧ vt

)

−
∫

Z
(eρ + e

p
h f ) ∧ f

p
h f

−
∫

Z
(ev + e

q
h f ) ∧ (g2 + f

q
h f )−

∫

∂Z
(ev + e

q
h f ) ∧ (eρ + e

p
h f ) = 0, (75)

∫

Z

{

−(E + e
p
he) ∧ Dt − (H + e

q
he) ∧ Bt

}

−
∫

Z
(E + e

p
he) ∧ (J + f

p
he)

−
∫

Z
(H + e

q
he) ∧ f

q
he +

∫

∂Z
(H + e

q
he) ∧ (E + e

p
he) = 0. (76)

4.4 Boundary detection and control of topological transitions

In fact, it is difficult to determine specific harmonic forms in (74). Hence, let us apply

the classification of vector fields to the power balance equation for detecting topological

transitions of systems and controlling energy flows.

Consider the cross-sectional surface W of Z such that W ⊂ Z and ∂W ⊂ ∂Z. Let ∂Z = ∪i∂Zi

be a set of subdivided domains of ∂Z or W in which each ∂Zi is homeomorphic to Euclidian

spaces (e.g., each component of ∂Zx and ∂Zy in (60)). In this setting, we can approximate port

variables distributed on ∂Zi, for instance, by using those on the boundary of each subdivided

domain ∂(∂Zi) if the subdivision is sufficiently fine. Let

(v♯1, v♯2, v♯3, v♯4, v♯5) ∈ XFK(Z)�XHK(Z)�XCG(Z)�XHG(Z)�XGG(Z). (77)

Then, we can rewrite (61) as follows:

Hδt = ∑
i

{

Hδt(v
♯
1) +Hδt(v

♯
2) +Hδt(v

♯
3) +Hδt(v

♯
4) +Hδt(v

♯
5)
}∣

∣

∣

∂Zi
= 0, (78)

where Hδt(v
♯
r) means the split energy flow generated by v♯r for 1 ≤ r ≤ 5. If all boundary port

variables are available as inputs and outputs, the balance of each decomposed energy flows

can be confirmed from (78).

On the other hand, desired energy flows depending on the topology of system domain can be

reinforced by servo feedback in terms of boundary port variables. If the cause of a change is

a known structural perturbation and the boundary surrounds all energy flows generated by

the perturbation, we can use the power balance defined on such appropriate boundaries to

realize an energy flow control. Indeed, the control law is

∫

∂Zj

5

∑
r=1

(eb
j (v

♯
r)− u

q
jr) ∧ ( f b

j (v
♯
r)− u

p
jr), (79)

ui
jr = gij(eb

j (v
♯
r)− ēb

j (v
♯
r)) ∧ ( f b

j (v
♯
r)− f̄ b

j (v
♯
r))

∣

∣

∂Zj , (80)

where ebi is the boundary control input or output, f bi is the boundary output or input, ēbi and

f̄ bi are the desired energy flows, and gij is the feedback gain.
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5. Conclusion

This chapter derived the boundary controls based on passivity for ideal

magnetohydrodynamics (MHD) systems in terms of distributed port-Hamiltonian (DPH)

representations. In Section 2, We first rewrote the geometric formulation of MHD as a DPH

system. Next, we explained the passivity-based controls for the DPH system of MHD by

using collocated input/output pairs, i.e., port variables for stabilizing and assigning a global

stable point. The boundary power balance equation of the DPH system could be considered

as an extended energy principle of MHD in the sense of dynamical systems and boundary

controls. In Section 3, we considered the DPH model of MHD with model perturbations.

The perturbation can be uniquely decomposed into a Hamiltonian subsystem, called an

exact subsystem, and a non-Hamiltonian subsystem, called a dual-exact subsystem. We

presented the method of creating a pseudo potential for an exact subsystem of the DPH

model. In Section 4, we explained a symmetry breaking of conservation laws associated with

the DPH system. The breaking can be detected by checking quantities with the boundary port

variables of the DPH system. Finally, we showed that the boundary port variables can detect

the topological change of the domain of DPH systems and can create desired topological

energy flows.

These results open the way to active disturbance rejections or plasma shape controls. If an

actual MHD system is not ideal or includes modeling errors, the power balance equations

should be revised. In this case, the pseudo potential construction might be used for improving

the model. The boundary control using the boundary port variables might be approximated

by the discretization of port-Hamiltonian systems (Golo et al., 2004).
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