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1. Introduction 

Thermal spray processes are used for the formation of metallic, ceramic and composite 
coatings. In thermal spray techniques, atomization jets or process gasses are used to melt or 
partially melt and to accelerate the feedstock powder or droplet material towards a 
prepared substrate (Davis, 2004). The feedstock itself may be in powder, rod or wire form. 
Upon impact, a bond forms with the surface, with subsequent particles causing thickness 
build-up and forming a lamellar structure. Thermal sprayed coatings are applied in various 
industrial sectors: automotive industry (Barbezat, 2005; Barbezat, 2006), marine industry 
(Wood et al., 2004), biomedical applications (Guipont et al. 2002, Liu et al., 2009) and 
aeronautical/aerospace applications (Dorfman et al., 2004; Evans et al., 2006) to name a few. 
Nevertheless, the deposition of coatings by thermal spraying technologies presents several 
disadvantages: high oxygen concentration, high porosity, non-uniform microstructure due to 
unmelted particles, quenching and thermal stresses, complex processes difficulties to retain the 
initial microstructure of the sprayed powder, low deposition efficiency. In order to minimize 
these defects and improve the properties of the coatings, techniques which control accurately 
the spray conditions (pressure and composition of the spraying chamber atmosphere, 
surrounding gas, temperature, power, etc.) have been developed (Sarafoglou et al., 2007).   

However, these problems of conventional thermal sprayed coatings can be minimized or 
eliminated by employing Cold Gas Dynamic Spraying (Cold Spray), which is the newest 
process of the thermal spray techniques. Cold Spray is a solid state process where powder 
particles are accelerated by a low temperature supersonic gas stream and are plastically 
deformed upon impact on a substrate to form a coating. The formation of coatings by means 
of cold spray, compared with the conventional sprayed coatings has the major advantage of 
the absence of macroscopic melting of the sprayed particles. This leads to coatings which do 
not present quenching and thermal stresses. Also, cold-sprayed coatings retain the initial 
microstructure of the powder.  

In thermal spray, coating adhesion strength is paramount since advanced coatings must 
remain bonded to the substrate under various and severe conditions. The same 
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requirements of high coating adhesion hold true for cold spray coatings. However, the 
bonding mechanism of cold sprayed particles has not been completely clarified. 
Experimentally, it has been shown, that the particles can bond and form a coating only if 
they exhibit a material-dependant critical velocity (Schmidt et al., 2009). This critical velocity 
depends also on surface conditions (Ajdelsztajn et al., 2006; Golesich et al., 2008). The 
appropriate preparation of substrate surface prior to cold spraying contributes to the 
formation of high adhesive coatings. The adhesion of cold sprayed coatings can be increased 
by means of conventional methods such as grit-blasting and chemical solvents etching. 
However, grit-blasting may provoke contamination of the substrate by grit inclusions, 
which in turns can decrease the fatigue resistance while chemical solvents etching generates 
hazardous waste and is environmentally unfriendly (Garcia-Alonso et al., 2011).  

Cold spray was coupled with a nano-pulsed Nd-YAG laser leading to the development of 
the Laser-Assisted Cold Spray (LACS) process which is a novel process, for the pre-
treatment of the substrate and the coatings build-up. This leads to the production of 
advanced protective coatings of high adhesion and cohesion strength. At this pioneering 
stage, LACS was used for the formation of aluminum cold-sprayed coatings substrates onto 
aluminum alloy substrates (AISI-2107) and Ni-20Cr coatings onto Inconel718 substrates. 
Coatings adhesion strength was measured by using another Nd-YAG laser (i.e. LAser Shock 
Adhesion Testing, namely LASAT®). LASATesting® was shown to be a powerful tool for 
studying local adhesion of coatings and for determining the influence of metallurgical and 
morphological interface features on adhesion  

2. Cold Spray technology  

Cold Gas Dynamic Spraying (Cold Spray) is the newest process of thermal spray techniques. 

The cold spray process was initially developed in the mid-1980s at the Institute for 

Theoretical and Applied Mechanics of the Siberian Division of the Russian Academy of 

Science (Irissou et al., 2008a) but was introduced in laboratory level to North America and 

Europe only in the 2000s. Contrary to the conventional thermal spray technologies (plasma 

spraying, HVOF, arc-spraying etc), Cold Spray is characterized by a low spraying particle 

temperature and high spraying particle velocity (Figure 1).  The main advantage of the Cold 

Spray technology, compared with the conventional thermal spraying techniques, is the 

absence of the macroscopic melting of the spraying particles. In Cold Spray technology, the 

sprayed particles are heated in temperature below their melting point and they are 

accelerated to supersonic velocities. Thus, the sprayed particles are plastically deformed 

upon impact on a substrate to form a coating. This leads to coatings where common 

problems of conventional thermal spray technologies, like high-temperature oxidation, 

evaporation, melting, crystallization, residual stresses, debonding, gas release, and other 

common problems for conventional thermal spray methods are minimized or eliminated 

(Papyrin et al., 2008). 

In cold spray, fine powders in the 5 and 50 μm range are generally used. However, in some 

cases, coarser powders can be cold sprayed under appropriate conditions (Van Steenkiste et 

al., 1999; Van Steenkiste et al., 2002; Christoulis et al., 2011; Li et al., 2008) 

In practice, the principle of the cold spray process can be described as follows. The powder is 

supplied to the nozzle by a high pressure carrier gas. The kinetic energy of the particles is 

www.intechopen.com



 
Laser-Assisted Cold Spray (LACS) 

 

61 

increased by the propellant gas which can be heated between 200°C and 850°C. In the most of 

the cases, the feeding and the propellant gases are of the same nature. The gases which are 

used are nitrogen (N2), Helium (He), compressed air, or mixtures of them (Christoulis et al., 

2011; Wong et al., 2011; Gartner et al., 2006; Sundararajan et al., 2010; Chavan et al., 2011].  

 

Fig. 1. Cold Spray technology and other conventional thermal spray techniques. 

The geometry of the De Laval nozzle (Figure 2) results to the acceleration of the mixture 
propellant gas-powder at supersonic velocities at the exit of the nozzle. Although the gas 
temperature may seem high at first glance, the divergent of the nozzle causes expansion of 
gases and therefore a significant lowering of temperature. The powder particles, which also 
have a very limited residence time in the hot gas flow, in any case remain in a solid or 
slightly viscous (surface heating). 

   

Fig. 2. Gold Spray Gun 

3. Surface pre-treatment  

The formation of advanced coatings is strongly depends on the proper substrate surface pre-
treatment prior to the thermal spraying process. Preparation steps must be undertaken 
correctly in order the coatings to perform the design expectations, otherwise, a total failure 
could occur (Davis, 2004). 

Coating adhesion is connected directly with the surface pre-treatment of the substrate. In 
thermal spray, coating adhesion strength is paramount since coatings can only fulfill its 
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function if it remains bonded to the substrate under various and severe conditions. Many 
studies are devoted to the bonding mechanisms and to the optimization and improvement 
of coating bond strength in thermal spray (Greving et al., 1994; Brandt, 1995 ; Lu et al., 2002 ; 
Araujo et al., 2005 ; Day et al., 2005). 

The same requirements of high coating adhesion hold true for cold spray coatings. 
However, the cold spray process differs from other thermal spray processes in its bonding 
mechanisms since there is no macroscopic melting of the feedstock powder. It is often 
concluded that the cold-sprayed particles adhere only on “nascent” surfaces (Ichikawa et al., 
2008) produced by the impacts of high-velocity sprayed particles which provoke the fracture 
of the pre-existing oxide layers of the substrate. However, the “cleaning” of substrate by 
sprayed particles can be characterized as an accidental method which induces the waste of 
the costly powders.  

The major surface preparation techniques which are currently carried out in thermal 
spraying technology are presented in the next two paragraphs. The first paragraph includes 
the main conventional techniques, while the second one presents the most innovate laser 
pre-treatment technologies.  

3.1 Conventional techniques 

In thermal spraying technology, coating adhesion can be increased by means of 
conventional methods (i.e grit-blasting, chemical etching, formation of bond-coatings). It 
should be mentioned that the decreasing of the substrates surface is important and it should 
be realized before grit-blasting. The decreasing of the substrate is performed to remove 
contaminants such as oil, grease, paint, rust, scale, and moisture. The decreasing of the 
surfaces is carried out either by using chemical solvents (aceton, MEEK etc) either by using 
hot vapor (Davis, 2004).   

Grit-blasting is the most common technique which is used as a preparation method in 

conventional thermal spray processes (Bahbou et al., 2004; Peredes et al., 2006 ; Bobzin et al., 

2010 ; Gonzalez-Hermosilla et al., 2010). In the case of cold spray process, it is often claimed 

that the substrates do not require any surface preparation; the substrates can be used in their 

as-received state after the necessary cleaning (Kroemmer et al., 2006; Hartmann, 2010). 

However, the grit-blasting of the substrates is accomplished in various application of cold 

spraying process in order to enhance the adhesion of the coatings  (Richer et al., 2006; 

Koivuluoto et al., 2007; Bala et al., 2010 ; Koivuluoto et al., 2010). Experimental results of 

cold-sprayed copper onto copper substrates have shown that the coatings adhesion strength 

is significantly higher on grit-blasted substrates (36.0 MPa) compared to the coatings 

adhesion strength onto as-received substrates (5.4 MPa) (Makinen et al., 2007). Contrary, in 

the case of cold sprayed titanium, experimental results have shown that the bond strength of 

titanium cold sprayed coatings is higher onto polished substrates compared to grit-blasted 

substrates (Marrocco et al., 2006). Generally, in thermal spraying technology the increase of 

the substrate roughness via grit-blasting is a common procedure. Usually coating adhesion 

is correlated with the mean arithmetic roughness (Ra) of the substrates. However, it seems 

that (Ra) is not enough (Zecchino, 2003) for the characterization of a roughened surface and 

also it has still not been clarified which characteristics of the roughness influence the 

coatings’ adhesion (Fukanuma et al., 2003). Furthermore, grit-blasting may provoke 
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contamination of the substrate by grit inclusions which can be catastrophic for some 

applications. In automotive industry, which is a predominant sector for the application of 

thermal spray technology (Barbezat, 2005; Barbezat, 2007), for the production of engine 

blocks with thermally sprayed cylinder, other techniques should be used for the preparation 

of the substrate since the grit can remain within the many internal passages of the engine 

block. The grit can come loose during operation and later cause engine breakdowns 

(Schlaefer et al., 2008). Also, it is should be referred that grit-blasting is environmentally 

unfriendly and also it can be unhealthy for the operators of grit-blasting apparatus since the 

grits have been correlated with serious diseases such as silicosis, aluminosis, lung scarring, 

pneumoconiosis, or emphysema (Petavratzi et al., 2005). 

Other techniques which are used for the pre-treatment of the substrate are the water-jet, the 

chemical etching (Pawlowski, 2008) and the macroroughening (Davis, 2004). Water-jet 

pretreatment has been used in the case of shrouded plasma sprayed MCrAlY coatings onto 

nickel superalloys (i.e Inconel 718, Rene 80 and Mar-M 509) (Pawlowski, 2008).  The surface 

of the substrate is roughened by the water-jet, and it was used since the morphology of a 

water-jet treated surface is much finer than that of a sand-blasted one (Pawlowski, 2008). 

Chemical etching with various acids (sulfuric, nitric, or hydrochloric acid) is another pre-

treatment method of the metallic substrates, which was used to modify the roughness of the 

substrate and thus to increase the adhesion of the thermal sprayed coatings. However, it is 

not used so often any more due to environmental reasons.  

Also, it should be mentioned that the application of a bond-coatings is also another pre-

treatment method of the substrate. Of course the bond coats applied over grit-blasted 

surfaces (Davis, 2004).  However bond coatings are applied in order to enhance coatings 

adhesion, in the cases that the coating cannot adhere directly to the substrate. In gas turbines 

technology, bond coatings (MCrAlY) are applied before the formation of the thermal barrier 

coatings (Padture et al., 2002; Saral et al., 2009; Zhang et al., 2009) 

3.2 Laser techniques  

Thermal spray and laser processing can be considered as half brothers since they show 

many common features due to the use of a (more or less) high-energy source for both 

(Jeandin et al., 2010). Their combination can therefore be very fruitful and prominent to 

achieve coatings, which results in their most recent and advanced applications (Jeandin et 

al., 2010).  

Laser thermal spray hybrid processes have been developed as a result of the successful 

combination of laser and thermal spray technologies. Various types of laser have been 

combined with the guns of thermal spray process. Combining laser processing to thermal 

spray resulted in a major improvement for thermal spray in 3 sub-areas, i.e. that of pre-

treatment, that of post-treatment and that of simulation of thermal and kinetic phenomena. 

In the next two paragraphs (§3.2.1 and §3.2.2), advanced laser pre-treatment methods are 

presented while section 4 is devoted to laser techniques which have been developed for the 

simulation of thermal and kinetic phenomena appeared in thermal spray technology. The 

post-treatment methods are not examined in the current chapter.  
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3.2.1 Laser heating and/or cleaning 

The laser pretreatment of the substrates can provoke the ablation and/or the heating of the 
substrates. The interaction mechanisms which will appear between laser and matter 
(substrate) depend on the substrate material, the interaction time and the power density of 
the laser (Garcia-Alonso et al., 2011). The cleaning of the substrate form dust, oil, and 
contaminants is achieved by the ablation. Also, ablation can eliminate the superficial native 
oxide layers of the substrate which prevent the metallurgical bonding between the sprayed 
particles and the substrate allowing better particles/substrate contact which results in 
improved interfacial adhesion. 

Laser pretreatment can provoke also the preheating of the substrate. Experiments have 
shown that the increased temperature of the substrate can lead to formation of coatings with 
improved properties (Gartner et al., 2006; Sundararajan et al., 2010). The preheating of the 
substrate can be achieved also by conventional methods (furnace or by passing the thermal 
spray gun over the substrate). However, the conventional methods are not fully controlled 
and also can provoke undesired phenomena (intensive oxidation or distortions of the 
material). 

In early 2000’s Zieris et al. developed the Laser Assisted Atmospheric Plasma Spraying 
(LAAPS) (Zieris et al., 2003). LAAPS has been developed by the combination of the gun of 
the Atmospheric Plasma Spraying with diode or Nd-YAG laser.  

In LAAPS technology, three different arrangements between laser beam and plasma torch 
are possible (figure 3). Depending on the application the appropriate arrangement is 
selected. In the first case (figure 3a) the laser beam precedes the plasma torch and it acts as a 
pre-treatment method. The laser creates a molten pool crater at the substrate surface and 
thus the sprayed particles impinge on the molten substrate and form a coating that is 
metallurgically bonded to the substrate (Zieris et al., 2004). In the second arrangement 
(figure 3b), the laser beam is concentric with the plasma torch while in the third 
arrangement (figure 3c), which can be characterized as a post-treatment method the laser 
beam follows the plasma torch 

 

Fig. 3. Possible arrangements for laser thermal spray spots, after R. Zieris et al., 2003 (Zieris 
et al., 2003). The rotating cylinder is the substrate where the coating is deposited.  

Two different LAAPS coatings were examined (Zieris et al., 2003); NiCrSiB onto mild steel 
substrates and Al2O3-3% TiO2 coatings onto Inconel 718 substrate. Coatings were created on 
grit-blasted substrates as well as onto laser pre-treated substrates. For NiCrSiB sprayed 
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coatings, the plasma spray gun was coupled with a laser diode (power of 2kW) and it was 
found that the adhesion strength of NiCrSiB was  ~50 MPa onto grit-blasted substrates while 
it was increase at ~260 MPa in the case of laser ablated substrates. Similarly, in the case of 
Al2O3-3% TiO2, the adhesion strength of the coating was increased by using LAAPS (~30 
MPa onto as-received substrates) instead of conventional APS (~10 MPa onto grit-blasted 
substrates). For Al2O3-3% TiO2, the plasma spray gun was coupled with Nd-YaG laser 
(power of 1 or 4 kW). Advanced coatings of AlSi30 (Zieris et al., 2004) and ZrO2-8%Y2O3 
(Dubourt et al., 2006) has been successfully deposited by employing LAAPS. 

Formerly, the PROTAL® (French acronym for “PROjection Thermique Assisté par Laser”, 
i.e: Laser Assisted Thermal Spray) technology comprises a method where pulsed laser (Q-
switched Nd-YAG laser) irradiates the substrate surface prior to the deposition of the 
sprayed particles. It should be referred that PROTAL® is employed only as a pre-treatment 
method of the substrate. Thus, this case the laser treatment always precedes the spraying 
deposition. The purpose, of the laser irradiation is to eliminate the contaminations films and 
oxide layers, to generate a surface state enhancing deposit adhesion and to limit the 
recontamination of the deposited layer by condensed vapors (Costil et al., 2004a).  

  
(a) 

 
(b) 

Fig. 4. (a) PROTAL® coupled to HVOF gun by Costil et al. (Costil et al., 2004a) (b) Two Nd-
YAG lasers coupled with a plasma spray gun by Danlos et al. (Danlos et al., 2011) 

www.intechopen.com



 
Nd YAG Laser 

 

66

The PROTAL® is equipped with two Q-switched Nd-YAG lasers operating at  = 1.064 μm 
with an average power output of 40 W each (270 mJ per pulse with adjustable frequency up 
to 150Hz) and with a pulse duration (FWHM) of approximately 10 ns. The laser beam has a 
rectangular shape with a “top-hat” energy distribution thanks to a specific optical 
arrangement (Costil et al., 2004a).  

The PROTAL® technology has been used already successfully in thermal spray technology 
(i.e. Plasma spraying, HVOF) (Barradas et al., 2004; Costil et al., 2004b) (figure 4a). Costil et 
al. (Costil et al., 2004b) have shown that in the case of plasma sprayed Ni-Al onto al-alloy 
substrate (AISI 2017), PROTAL® coatings can show higher adhesion strength compared to 
coatings formed onto substrates pretreated by conventional methods (i.e. grit-blasting).  

Recently, Danlos et al. (Danlos et al., 2011) coupled two pulsed Nd-YAG lasers with a 
plasma spray gun (figure 4b). In this configuration the first Nd-YAG laser was used in order 
to heat the substrate and the second one (PROTAL® laser head) was used to ablate the 
substrate. The heating Nd-YAG laser was a pulsed millisecond laser with a wavelength of 
1064 nm, while the ablation laser was a pulsed nanosecond laser with the same wavelength 
of 1064 nm. In order to impose both laser treatments simultaneously, the same frequency of 
60 Hz was chosen for both heating and ablation laser. By using this set-up Ni-5Al coatings 
were deposited onto two different substrate; Al-alloy substrate (AISI-2017) and Ti-alloy 
substrate (Ti-6Al-4V). The substrates were pre-treated by conventional method (decreasing 
and grit-blasting) as well as by employing the set-up of figure 4a. For this combination of 
materials, it was found that the coatings adhesion was higher onto gritblasted substrates. It 
seems that the higher surface roughness which induced by the gritblasting, can explain the 
higher adhesion level onto the gritblasted substrates [47]. 

4. Adhesion determination of thermal sprayed coatings by employing laser 
techniques 

The formation of thermal sprayed coatings can be divided into two stages: the creation of 
the first layer onto the substrate and the building-up of the coating itself onto as-sprayed 
layers. During the creation of the first layer, the adhesion of thermal sprayed particles onto 
the substrate influences strongly the bond strength of the cold sprayed coatings. The 
individual thermal sprayed particles (splat) is the basic structural building block in thermal 
sprayed coatings (Davis, 2004) and thus the study of these individual particles can give 
answers to fundamental queries about thermal sprayed coatings (Moreau et al., 1995; 
Christoulis et al., 2006; McDonald et al., 2006).  

Furthermore, on macro-scale level, the characterization of the bond strength of thermal 
sprayed coatings is of high interest. Adhesion is a property of major concern for thermal 
spray coatings, because it is necessary for the coating to adhere to the substrate throughout 
the design life of the coating system (Davis, 2004). 

Two laser techniques have been developed to determine the adhesion level, either of 
individual sprayed particles, or of thermal sprayed coatings. LASERFLEX which is 
presented in the first paragraph of this section shed light on the adhesion mechanism of 
thermal sprayed particle. At a macroscopic level characterization and quantitative 
determination of the bond strength of the cold sprayed coatings take place due to the 
development of a, one my say, unique test, i.e. Laser Shock Adhesion Test, namely LASAT®. 
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4.1 LASERFLEX (Laser Shock Flier Impact Experiments) 

LASER shock Flier impact Experiments (LASERFLEX) (Barradas et al., 2007; Ichikawa et al., 
2007a), primarily laser shock spallation can be used as an innovative technique to simulate 
experimentally the influence of “in-flight” material velocity and temperature on adhesion 
phenomena at the impact. LASERFLEX (figure 5) is a high-velocity impact simulation test 
that uses laser shock accelerated foil to impact on a substrate. Laser shock flier impact 
experiments consisted in high velocity cladding of a foil (the flier which simulates the cold-
sprayed particle) onto bulk material (which acts as a substrate). The foils are accelerated by 
the laser shock at high velocity similar to the velocity of cold sprayed particle and then the 
foils impact on “substrates” at high velocity. 

  
         (a)                                                      (b) 

Fig. 5. (a) Schematic illustration of the LASERFLEX (Barradas et al., 2007), (b) CoNiCrAlY 
flier deposited onto Inconel 615 substrate by employing LASERFLEX (Ichikawa et al., 
2007a). 

The flier is stuck to the steel sample holder horizontally due to a mere thin layer of grease, 

which left a distance to fly before reaching bulk substrate (Ichikawa et al., 2007a). For the 

shock, a one-shot laser beam from a Nd:YAG laser operating at 20 J during 20 ns focused 

on the foil in a spot of 4 mm in diameter. A transparent medium to the laser, i.e., water, 

was deposited at the surface of the sample. It led to a confining of the shock on the sample 

and increased the shock pressure and time so that the beam-matter interaction was 

extended to 50 ns.  

The LASERFLEX technique has been used for the study of deposition of Cu flier onto Al 

substrate (Barradas et al., 2007) and CoNiCrAlY flier onto Inconel 615 substrate (Ichikawa et 

al., 2007a), revealing complicated phenomena which affect the coating-substrate adhesion. 

In the case of Cu flier onto Al substrate (Barradas et al., 2007) by using LASERFLEX 

evidence of local melting at the substrate-particle interface and the creation of intermetallics. 

The simulation of cold-sprayed particles by employing LASERFLEX, revealed that also in 

cold spraying, which is a solid state process, melting in micro level scale can be present in 

the interaction mechanism particle-substrate. On the other hand, in the case of the 

CoNiCrAlY flier onto Inconel 615, LASERFLEX revealed that the adhesion requires higher 

in-flight velocity and specific phase combination at the interface between flier and substrate 

(Ichikawa et al., 2007a). In this case, there is no evidence of melting of the flier or substrate. 
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4.2 LASAT (LAser Shock Adhesion Test)  

LASAT is a laser innovative technique which has been developed for the determination of 

the adhesion and/or the cohesion of thermal sprayed coatings. LASAT has already been 

used to characterize the adhesion of thermal sprayed coatings (Barradas et al., 2004; 

Barradas et al., 2005; Boileau et al., 2005;Ichikawa et al., 2007b) and splat (isolated thermal 

sprayed particles) (Guetta et al., 2009). These experimental results have shown that 

LASATesting is a powerful tool for studying local adhesion of coatings and for determining 

the influence of metallurgical and morphological interface features on adhesion. Recently, 

LASAT was used also for other type of coatings and not only for thermal sprayed coatings. 

LASAT was applied successfully for the adhesion characterization of coatings which have 

been produced by EB-PVD (Fabre et al., 2011).   

For the potted history, one may refer to shot peening as a process which was formerly 

applied to coatings (Al clads of aircrafts parts in this case) to characterize adhesion (Jeandin 

et al., 2003). The principle of this, one may say somewhat archaic, test was to shear the 

coating-substrate interface from coating plastic deformation due to peening effect. Above a 

certain peening level, coating spalling off can occur, which corresponds to a qualitative 

approximate adhesion limit.  

In a similar way, the LASATesting was developed based on the use of a laser shock. The 

principle of the LASAT technology is presented in figure 6a. Irradiating the surface of a 

substrate with a high-power laser can generate a shock wave, the propagation of which 

leads to a tensile stress at the coating-substrate interface. This results from the crossing of 

the incident release wave with its reflected (at the reverse side, i.e. at the coating surface) 

release wave. To determine the adhesion strength, laser shocks are applied to samples at 

different levels of the incident laser power flux (figure 6b). The de-bonding limit, i.e. 

when exceeding the interface resistance, is inferred from coating surface velocity vs time 

profile obtained by Doppler laser interferometry using a VISAR (“Velocity Interferometer 

System for Any Reflector”). The adhesion strength is then given through simulation of the 

loading profile.  

Below and above the laser shock adhesion threshold, two types of different velocity profiles 

of the coating surface are respectively achieved (figure 6b). 

The two types of velocity signals show significant peaks in the velocity amplitude, which 

correspond to the interaction of the shock wave with the coating surface. In the curve typical 

of a laser flux below the threshold, the time between two subsequent peaks is that for the 

shock wave to propagate through the whole coated substrate material and go back. 

Therefore, the wave can go through the interface, which is the sign there is no interfacial 

damage. 

The second typical shape of coating surface velocity profile is that recorded for a laser flux 
which is above the threshold (figure 6b). In this case, the distance between two velocity 
peaks is shorter and the time between the two peaks corresponds to the time necessary for 
the wave to cross two times the coating only. This signal is typical of de-bonding at the 
interface as the shock wave reflects on the void which was created at the first interaction 
with the interface.  
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   (a)                                                 (b) 

Fig. 6. (a) Principle of LASAT, (b) Typical coating surface velocity vs time VISAR profiles, 
below (dotted) and above (plain) the laser shock adhesion threshold (Jeandin et al., 2003) 

This interpretation of the velocity profiles, as for soundness criteria of the interface, was 

ascertained by metallographical studies of cross-sections of as-shocked specimens. Adhesion 

tests can therefore be interpreted using velocity signal diagnostics only.  

Incidentally, LASATesting is based on a purely-mechanical process, which is different 
from (and more efficient than) other shock-based adhesion tests which, however, involve 
thermal phenomena and remain rather limited in their exploitation (Costil et al., 2001; 
Jeandin et al., 2003).  

In contrast with conventional adhesion testing, e.g. “pull-off” testing, LASATesting can 

detect, in particular, the influence of well-defined microstructural features including those 

of a small size (below 1 μm typically) and/or of a given shape. 

5. Laser-Assisted Cold Spray (LACS) 

Laser Assisted Cold Spray (LACS) process combined laser pretreatment of the substrate and 

the coatings build-up in one step for the production of advanced protective or functional 

coatings of high adhesion and cohesion strength. Nowadays, to improve adhesion strength, 

conventional substrate pre-treatment are generally performed before applying the cold 

spray coating. This include grit-blasting that is performed prior to spraying. Often time, the 

grit blasting procedure requires masking of the part to protect the regions that are not 

intended to be coated. The grit blasting procedure results in the inclusion of small grit 

particles at the interface between the coating and substrate. This limits its use when fatigue 

properties are important. In addition, grit blasting produces waste and can be harmfull to 

the operator as discussed in section 3.1. The cohesive strength is improved by thermal post-

treatments however, this adds another step in the production of a protective or functional 

coating but more importantly, in some cases, this procedure would hinder one of the 

advantages of the cold spray process which is to preserve the structure characteristics of the 

powder (i.e. nanostrcure, phases, etc.). The conventional techniques for the improvement of 
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adhesion and cohesion techniques are two, three or even four step process while the 

coupling of cold spray system with a laser permits the creation of dense coatings with high 

bond strength and cohesion in a mere one-step process.  

Bray et al. (Bray et al., 2009) coupled a laser diode of wavelength 980 nm with a cold spray 

gun (figure 7). In this case titanium powder (<45 μm) was sprayed onto mild steel 

substrates. The laser diode had a heating effect on the substrate, which was beneficial for the 

formation of the cold sprayed coatings. It was found that as the substrate temperature 

increased by the irradiation of the tlaser laser diode, the deposition efficiency of the titanium 

coatings increased, while the coatings porosity decreased.  

In another configuration (figure 8), a pulsed Nd-YAG laser was coupled with the cold-spray 
gun to result in the laser beam passing milliseconds prior to the cold-spray jet for deposition, 
(Christoulis et al., 2009; Christoulis et al. 2010). Pulsed Nd-YAG laser were operated only 
during the first pass in order to clean the substrate surface. By using the experimental set-up 
of figure 8 two coating systems were studied: Aluminum and Ni-20Cr onto an Al-based 

  
      (a)                           (b) 

Fig. 7. (a) Experimental set-up, (b) side view of experimental set-up (Bray et al., 2009). 

   
       (a)                                                               (b) 

Fig. 8. (a) Experimental set-up, (b) side view of experimental set-up (Christoulis et al., 2009) 
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alloy (AISI 2017) and a Ni-based (Inconel718) alloy respectively. The results of these 
experiments are presented in the next section. The surface preparations and sprayings 
experiments were carried out in the MAMADC cold spray laboratory located at the 
Industrial Materials Institute of the National Research Council of Canada. 

6. Application of LACS 

Al-based and Ni-based coatings were formed onto Nd-YAG laser pre-treated substrates as 
well as onto as-received substrates, and pre-treated by two conventional methods, namely 
polishing and grit-blasting. It is shown that the coating-substrate interface is significantly 
improved when pulsed laser ablation is performed at optimized parameters. 

The spraying experiments were carried out by using nitrogen (N2) as the propelling gas. The 
cold spraying conditions for both Al and Ni20Cr powders are presented in table 1. It should 
be mentioned that the spraying conditions were selected by measuring the particles mean 
velocity for various standoff distances. The particle velocity was measured by using the 
ColdSprayMeter® (Tecnar Automation Inc., St-Bruno, QC, Canada)  (Christoulis et al., 2009; 
Christoulis et al., 2010; Jeandin et al. 2010). 

Since the Nd-YAG laser was proceeding of the cold spray gun, the scanning of the substrate 
was realized in a specific way (figure 9a). The same movement geometry was chosen also 
for the conventionally prepared substrates since experiments indicate that substrate 
temperature increases during spraying due to the heated propelling gas (Irissou et al., 
2008b). So, a unique movement geometry (figure 9b) was chosen to introduce uniform heat 
input to all the substrates.  

  
(a) 

 
(b) 

Fig. 9. (a) movement geometry of coupled cold-spray gun-laser head and (b) top view of the 
pattern of both cold-sprayed particles and laser spot 
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By taking into account, the frequency of the laser, the size of the spot and the movement of 
the gun (table 1), an arithmetic exercises suffices to calculate the overlapping percentage 
(table 2).  In figure 10, it is shown the overlapped area for two sequential laser pulses for 
different laser energy and laser frequency. For both laser energies, under the lower laser 
frequency (18.75 Hz) no overlapping was created. In this case, inhomogeneous (treated and 
untreated) areas were created on the substrate (figure 10) 

 

Powder Al Ni20Cr 

Spraying Conditions
Gas pressure (MPa) 3.0 3.0 

Gas temperature (°C) 350 600 
Standoff distance (mm) 20 40 

Gun traverse speed (mm.s-1) 100 100 

Nozzle Characteristics
Type of the Nozzle PBI-33 MOC 
Exit diameter (mm) 10 6.6 

Throat diameter 2.7 2.7 
Expansion ratio 13.7 6.0 

Total length (mm) 220 175 

Table 1. Experimental Conditions 

 

Substrate Laser energy density (J.cm-2) Frequency (Hz) Overlapping of 2 pulses (%) 
As-received No laser No laser No laser 

Polished No laser No laser No laser 
Grit-blasted No laser No laser No laser 
As-received 1.0 18.75 No overlapping 
As-received 1.0 37.5 24 
As-received 1.0 150 82 
As-received 2.2 18.75 No overlapping 
As-received 2.2 37.5 47 
As-received 2.2 150 87 

Table 2. Pre-treatment of substrates by employing a Nd-YAG laser 

 

Fig. 10. Overlapping for 2 sequential Nd-YAG laser pulses 
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6.1 Al-based LACS Coatings 

6.1.1 Materials 

Fine gas-atomized aluminum powder (Alfa Aesar, Massachusetts, USA, 17-35 μm) of 

spherical morphology (figure 11a) was sprayed using a KINETICS® 3000-M System (CGT-

GmbH, Ampfing, Germany). The particle size of the powder was measured by laser 

granulometry (figure 12b). The microhardness of the powder was measured at 28±1 HV0.01. 

The aluminum powder was sprayed onto AISI 2017 aluminum-based alloy.  

6.1.2 Laser irradiation effects 

Cracks and traces, which should have been induced during the production of the hot rolled 

Al alloy material, were found on the surface of as-received substrates (figure 12a). The 

surface of the substrates were observed by employing Scanning Electron Microscope  (SEM 

(LEO 450VP, Germany)). 

The observations of the ablated substrate revealed that for low energy density (1.0 J.cm-2), 

the pulsed laser beam reacted only with the cracks provoking slight fusion at their 

borders (white arrows, Figures 3b and 3c). By comparing figures 3b and 3c, it seems that 

the increase of the laser frequency, provoked a more intensive fusion at the borders of the 

cracks.  

Also, craters were formed after laser irradiation (white circles, figures 3b and 3c). The 

craters, are correlated either with the surface defects such as micro-inclusions and small 

scratches present prior to irradiation or, with the existence of precipitated phases (Al2Cu) of 

the used AISI 2017 alloy (Costil et al., 2004). 

The increase of laser energy density to 2.2 J.cm-2 resulted in a strong change in surface 

morphology (figure 3c and 3d). Extensive substrate melting is observed. The pre-existing 

cracks disappeared and few craters (white circles, figure 3c) are still visible. Substrate 

surface seems to smoothen with the increase in the laser frequency (figure 3d), probably as a 

result of re-melting which is provoked by the high overlapping phenomenon. 

  
        (a)                                             (b) 

Fig. 11. (a) SEM of Al powder and (b) Particle distribution by laser analysis.    
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        (a)            (b) 

   
          (c)           (d) 

 
(e) 

Fig. 12. SEM top view of AISI-2017 substrate surfaces: (a) un-treated and Nd-YAG laser 
treated (b) 1.0 J.cm-2, 37.5 Hz., (c) 1.0 J.cm-2, 150 Hz., (d) 2.2 J.cm-2, 37.5 Hz, 
(e) 2.2 J.cm-2, 150 Hz. 

6.1.3 Formation of thick aluminum coatings 

Thick coatings were deposited on the substrates (see figure 13). The mean thickness of the 
cold-sprayed coatings was also quantitatively calculated via image analysis (ImageJ®) of 
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SEM images. Coating mean thicknesses were almost the same for conventionally prepared 
substrates and for low energy (1.0 J.cm-2) irradiated substrates (figure 14). 

The mean thickness of the coatings was increased significantly as soon as the laser energy 
density was increased from 1.0 to 2.2 J.cm-2. Interestingly, the difference in coating thickness  

    
       (a)            (b) 

   
        (c)                          (d) 

  
      (e)                     (f) 

Fig. 13. SEM of cross-sections of cold-sprayed Al coatings formed onto (a) as-received, (b) 
mirror-polished substrate, (c) grit-blasted substrate, (d) laser irradiated substrate (1.0 J.cm-2, 
37.5 Hz), (e) laser irradiated substrate (2.2 J.cm-2, 37.5 Hz),  (f) laser irradiated substrate (2.2 
J.cm-2, 150 Hz) 
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of coatings deposited on untreated and on laser ablated (2.2 J.cm-2, 37.5 Hz) substrate is 

around 50 µm. One can conclude that this difference corresponds well to the difference of 

average coating thickness as shown in figure 13. The improved deposition efficiency with 

high fluence laser ablation is due essentially to the adhesion of a higher fraction of particles 

during the first pass as compare to other surface pre-treatment and laser ablation conditions. 

Nevertheless, it is clear that a large fraction of the impinging particles are not deposited 

during the first pass even at higher laser ablation fluence and so they should contribute to 

the surface modification as well. 

 

Fig. 14. Thickness of Al cold sprayed coatings for different pre-treatment methods 

6.1.4 Coating-substrate interface 

The percentage of cracked interfaces was determined by means of quantitative image 

analysis (ImageJ® (Ref 47)). About 10 mm of interface was examined parallel to the spraying 

direction. The examined 10 mm-region corresponds to about 60 SEM images of high 

magnification (×1000). 

Representative interfaces between thick coating and the substrate are presented in figure 15. 

It was found that the grit blasting and polishing pre-treatment did not offer any reduction of 

cracks observed on the as-received substrates (figure 16). Surprisingly, the grit-blasting of 

the substrate contributed to the increase of the percentage of cracked interface (figure 15). 

Also, in the case of grit-blasted substrates, alumina particles entrapped onto the substrate 

were seen (figure 15c). 

Conversely, Nd-YAG laser ablation promoted a better interface with much less interfacial 

cracks (figure 16). For the highest laser energy density (2.2 J.cm-2) and under the highest 

frequency (150 Hz), cracks could barely be found in direction perpendicular to spraying and 

did not appear at all in the parallel direction (Figure 16c).  
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       (a)                (b) 

    
        (c)                 (d) 

 
(e) 

Fig. 15. SEM of cross-sections of cold-sprayed Al coatings formed onto (a) as-received 

substrate, (b) mirror-polished substrates, (c) grit-blasted substrate (d) laser irradiated 

substrate (1.0 J.cm-2, 150 Hz) (e) laser irradiated substrate (2.2 J.cm-2, 150 Hz). 

The difference of the percentage of interfacial cracks between parallel and perpendicular is 

due to the difference in the size of the particle jet compared to the size of the laser spot 

(figure 11). In the perpendicular direction, fraction of sprayed particles impact on untreated 

areas and so these particles can present weaker adhesion (Christoulis et al., 2010). On the 
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other hand, in the parallel direction, cold-sprayed particles always impact on laser pre-

treated areas, if the cross section metallographic sample is prepared properly, and thus 

along this direction a reduced percentage of interfacial cracks is observed.     

 

Fig. 16. Percentage of interfacial cracks between cold-sprayed Al coatings and substrates. 

6.1.5 TEM observations  

Thin foils of Al-coatings were prepared by FIB and they were examined with TEM.  

A typical oxide layer of about 100 nm in thickness could be observed at the coating-substrate 
interface in cold-sprayed “as-received” Al 2017 (figure 17). The EDX indicates that this oxide 
layer is in fact divided in two regions of distinct Al/O ratio. (in gray in figure 17a). The layer at 
the substrate side has the stoichiometry of alumina indicating that it is the native oxide while 
the other one at the coating side is richer in oxygen (~35 %wt Al, 65 %wt O) 

TEM analysis indicates that the oxide layer oxide at the coating side is amorphous since the 

grey contrast of this oxide layer was constant. Furthermore, EFTEM (Energy Filtered 

Transmission Electron Microscope) with GIF (Gatan Image Filter) image recorded on the 

low loss region (Plasmon) of the EELS spectrum highlights this interfacial layer, which is 

characteristic of amorphous structure (Gertsman et al., 2005).  

The transformation of the native alumina oxide to an amorphous Al oxide could be the results 
of extensive peening by the impinging particles (similar to what is observed in mechanical 
milling for example (Gaffet et al., 1997 ; Li et al., 2009). Indeed, it was reported that 
amorphyzation can occur during cold spraying (Xiong et al., 2008). It is interesting to note that 
most of the cracks observed at the interface were propagated in between the two oxides. 

In contrast, for laser-processed Al 2017, no oxygen could be detected at the interface (figure 

18) neither on STEM images nor by EDX profile. This profile was obtained with a probe size 

of 1 nm (enlarged to 3 nm at the exit side of the thin foil), 10 nm between the consecutive 

analysis spots, and a limit of detection of 1 %wt for O. It can therefore be inferred that the 
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native layer was removed by the laser treatment, and if an oxide thinner layer was formed 

prior to the particle reached the substrate, the thickness of this layer would not exceed a few 

nanometers 

6.1.6 LASAtesting 

Laser shock adhesion testing was performed both on coating formed onto as-received 
substrates and onto laser irradiated substrates (2.2 J.cm-2, 150 Hz).  

The lower adhesion of Al-coatings onto as-received substrates was confirmed by LASAT 
experiments. Coatings were totally de-bonded with the lower laser energy (1.7 GW.cm-2) 
(figure 19a). These results are confirmed also by VISAR signals (see figure 20). The velocity 
peaks corresponded to shock wave interaction with the coating surface. For both LASAT 
energies, the absence of negative peaks corresponds to the damage of coating-substrate 
interface (Barradas et al., 2005). 

Onto pre-treated substrates (2.2 J.cm-2, 150 Hz), cold-sprayed aluminum coatings presented 

higher adhesion. When low laser energy (1.7 GW.cm-2, figure 19b) was used, the coating 

remained adherent. The increase of LASAT energy (2.6 GW.cm-2, Figure 19c) provoked the 

interlamelar cracking of the Al-coatings. This revealed that the cohesion of the coatings 

(bonding of cold-sprayed Al-Al) was weaker compared with the coating-substrate adhesion. 

Similar phenomenon has been found for cold-sprayed copper on AISI 2017 substrate 

(Barradas et al., 2005). 

At higher LASAT laser energy (4.3 GW.cm-2) the coating was de-bonded from the laser pre-

treated substrate, (figure 19c). However, few particles still remained bonded reveling the 

high achieved adhesion strength. 

For laser pre-treated substrates the VISAR results are well segregated (figure 20). For low 

LASAT energy (2.6 GW.cm-2, black line) the aluminum surface velocity showed negative 

values after the first positive peak. The positive velocity peaks correspond to shock wave 

interaction with the coating surface while the negative peaks correspond to tensile stresses 

reaching the substrate surface (Barradas et al., 2005). The tensile stresses were those 

generated at the aluminum surface, after their propagation through the whole sample. On 

the other hand for high LASAT energy (4.6 GW.cm-2) only a positive peak was detected 

since the tensile wave reflected on the thus-created cracks and the surface coating velocity 

did not show negative values. The tensile stress at the interface, σ22, was calculated from 

modeling/numerical simulation of 1D and 2D shock wave effects within the coating-

substrate system and averaged over the whole laser spot (Boustie et al., 2000). Bonding 

strength value could therefore be determined from “post-mortem” observation of interfacial 

cross-sections and study of VISAR velocity profiles (figure 20) during the test, since both 

show when the coating de-bonds (figure 20). The bond strength was found to be above 629 

MPa but below 681 MPa for laser-ablated Al 2017 compared to below (one may assume 

much below) 562 MPa for as-received Al 2017. These bond strength values are significantly 

higher than what is typically reported for pull-off ASTM C633 testing which lies in the 10-80 

MPa range (Price et al., 2006; Stoltenhoff et al., 2006; Shin et al., 2008; Triantou et al., 2008), 

while for some conditions of aluminum coating applied on Aluminum 7075 alloy substrate 

the failure mode was in the glue at over 60 MPa (Irissou et al., 2007).  

www.intechopen.com



 
Nd YAG Laser 

 

80

 
 
 
 

   
          (a)         (b) 
 
 
 

  
(c) 

 
 
 
 

Fig. 17. TEM pictures of cold-sprayed Al on as-received AISI 2017 substrate (a) Bright Field 
(BF) image, (b) HAADF (High Angle Annular Dark Field) image, (c) EDX profiles along the 
white line. 
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     (a)        (b) 
 
 

 
(c) 

 
 
 
 

Fig. 18. TEM pictures of cold-sprayed Al on  laser pre-treated (2.2 J.cm-2, 150 Hz) AISI 2017 
substrate (a)Bright Field (BF) image, (b) HAADF (High Angle Annular Dark Field) image, 
(c) EDX profiles along the white line 
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          (a)                             (b) 

 
(c) 

Fig. 19. Cross-section optical image of LASATested interface of cold-sprayed Al onto (a) as-
received substrate when the applied LASAT energy was 1.7 GW.cm-2 (b) laser pre-treated 
(PROTAL 2.2 J.cm-2) substrate when the applied LASAT energy was 1.7 GW.cm-2 (c) laser pre-
treated (PROTAL 2.2 J.cm-2) substrate when the applied LASAT energy was 4.7 GW.cm-2. 

  
              (a)                                                            (b) 

Fig. 20. Velocity profiles of cold-sprayed Al surface on (a) as- received AISI 2017 substrate 
(b) laser pre-treated (2.2 J.cm-2) substrate AISI 2017 
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6.2 Ni-based LACS Coatings 

6.2.1 Materials 

The feedstock powder was commercial Ni-20Cr (Höganäs, 1616-09/PS) of spherical 
morphology (figure 21a) and with particle size ranging from 20-53 μm (figure 21b). The 
powders microhardness was measured at 192±15 HV0.05. The powder was sprayed onto 
Inconel alloy 718 substrate.  

 

  
         (a)                                                                   (b) 
 

Fig. 21. SEM of Ni-20Cr powder (Höganäs, 1616-09/PS) and (b) Particle distribution by laser 
analysis.    

6.2.2 Laser irradiation effects 

Observations of the as-received substrates revealed a superficial “cellular” structure 

(Figure 22). The modifications induced on the substrates by the nano-pulsed Nd-YAG 

laser, are presented in Figure 22 as function of the laser energy and frequency. For low 

laser energy (1.0 J.cm-2), at the lowest frequency (18.75 Hz) the laser provoked the 

partially removal of the “cellular” structure (some cells are still observed) and a new 

structure full of small craters was revealed. It seems that the laser impulses caused the 

local fusion of the substrate. The craters on the surface can be correlated either with the 

surface defects, such as micro-inclusions and small visible scratches prior to irradiation 

either with the existence of precipitated phases as it has been found in the case of al-alloy 

(Costil et al., 2004), but further studies should be done in order to verify this assumption. 

The gradual increase of the frequency from to 18.75 to 150 Hz resulted in the complete 

ablation of the initial “cellular” structure.  

The increase of the laser energy to 2.2 J.cm-2 induced more intensive melting of the 

substrate surface. The craters were reduced and it seems that the more intensive fusion 

led to their coverage. Increasing the frequency, which corresponds to the increase of 

overlapping, smoothened the substrate surface where neither the initial “cells” either their 

borders can be seen.   
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      (a)              (b) 

    
     (c)               (d) 

 
(e) 

Fig. 22. SEM top view of Inconel 718 substrate surfaces: (a) un-treated and Nd-YAG laser 
treated (b) 1.0 J.cm-2, 37.5 Hz., (c) 1.0 J.cm-2, 150 Hz., (d) 2.2 J.cm-2, 37.5 Hz, (e) 2.2 J.cm-2,  150 Hz. 

6.2.3 Formation of thick Ni-20Cr coatings 

The cross-sections of the coatings were investigated by Scanning Electron Microscopy (SEM, 

LEO 450VP). Conventional image analysis software (ImageJ®) was used to calculate the 

mean thickness. The mean thickness of the coatings was calculated by observing 12 SEM 
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images in standard magnification of x200 (figure 23). The 12 images correspond to about 6 

mm length. The mean thickness of the coatings for the different pre-treatment methods of 

the substrate is presented in figure 24.  

   
         (a)                          (b) 

   
        (c)           (d) 

  
       (e)                                                        (f) 

Fig. 23. SEM of cross-sections of Ni-20Cr cold-sprayed coatings formed onto (a) as-received 

substrate, (b) mirror-polished substrate, (c) grit-blasted substrate, (d) laser irradiated 

substrate (1.0 J.cm-2, 37.5 Hz), (e) laser irradiated substrate (2.2 J.cm-2, 37.5 Hz),  (f) laser 

irradiated substrate (2.2 J.cm-2, 150 Hz) 
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Fig. 24. Thickness of Ni-20Cr cold sprayed coatings for different pre-treatment methods 

6.2.4 Coating-substrate interface 

The percentage of cracked interfaces was determined by means of quantitative image 

analysis (ImageJ®). About 10 mm of interface was examined parallel to the spraying 

direction. The examined 10 mm-region corresponds to about 30 SEM images of high 

magnification (×500). 

Representative interfaces between thick coating and the substrate are presented in figure 25. 

It was found that the grit blasting and polishing pre-treatment did not offer any reduction of 

cracks observed on the as-received substrates (figure 16). As it was found in the case of cold-

sprayed Al coatings onto AISI 2017 substrates (figures 15 and 16) the grit-blasting of the 

substrate contributed to the increase of the percentage of cracked interface (figure 26). Also, 

in the case of grit-blasted substrates, alumina particles entrapped onto the substrate were 

seen (figure 25c). 

On the other hand, Nd-YAG laser ablation promoted a better interface with much less 

interfacial cracks (figure 26). The optimum ablation conditions for LACSsprayed Ni-20Cr 

coatings were found to be: laser energy of 2.2 J.cm-2 and laser frequency of 37.5 Hz.  Under 

these conditions the percentage of interfacial cracks between Ni-20Cr coatings and Inconel 

718 substrate was decrease at the lowest value of 7.8% (figure 26).  
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       (a)             (b) 

   
      (c)             (d) 

 
(e) 

Fig. 25. SEM of cross-sections of cold-sprayed Al coatings formed onto (a) as-received 

substrate, (b) mirror-polished substrates, (c) grit-blasted substrate (d) laser irradiated 

substrate (1.0 J.cm-2, 18.75 Hz) (e) laser irradiated substrate (2.2 J.cm-2, 37.5 Hz). 

The further increase of the laser frequency at 150 Hz for the highest laser energy (2.2 J.cm-2) 

provoked a significant increase of the interfacial cracks (50%, figure 26). Based on SEM 

top view of Inconel 718 substrate surfaces (figure 22), it is assumed that the increase of the 

laser frequency resulted in extensive melting of the substrate, which in turn could 
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increase the pores and the cracks due the change of the interaction between the sprayed 

particles and the substrate.  

 

Fig. 26. Percentage of interfacial cracks between cold-sprayed Al coatings and substrates. 

7. Conclusion 

The use of the cold spray system for the formation of the coatings has the potential to 

overcome all the drawbacks which are induced by the conventional thermal spray 

technologies. Moreover, the Laser Assisted Cold Spray is a novel process, for the 

pretreatment of the substrate and the coatings build-up, which may lead to the production 

of advanced coatings of high adhesion and cohesion strength. Nowadays, the adhesion of 

cold sprayed coatings is improved by using environmental unfriendly pretreatment 

techniques (grit-blasting and chemical solvents) while the cohesion is improved by thermal 

post-treatments which can eliminate one of the main advantages of cold spray technology; 

the formation of oxide-free coatings. The conventional techniques for the improvement of 

adhesion and cohesion techniques are two-step process while LACS permits the creation of 

dense novel coatings of high adhesion and cohesion strength in one-step process. 

Two different coating systems (Al-based coatings and Ni-based coatings) were studied by 

using a LACS system where the cold spray gun was coupled with a nano-pulsed Nd-YAG 

laser head. It was found that at optimized laser ablation conditions, coatings of higher 

thickness are formed. Also, under the optimized laser condition the interfacial cracks 

between the deposited coatings and the ablated substrates were reduced dramatically. For 

both Al-based and Ni-based coatings, cross section micrographs revealed that of a 

significant interface (coatings-substrate) length are cracked on samples prepared with 

conventional methods (grit blasting and polishing) polished or wrough substrates.   

For Ni-20Cr coatings onto Inconel 718 substrate the optimized laser conditions found to be: 
2.2 J.cm-2 Laser energy density and 37.5 Hz Laser frequency.  

In the case of al-based coatings onto AISI 2017 substrates, the optimized laser conditions 
were found to be: 2.2 J.cm-2 Laser energy density and 37.5 Hz Laser frequency. TEM studies 
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on the al-based coatings revealed that an amorphous aluminium oxide phase was created at 
the interface on the coating side while an alumina layer is still present on the substrate side. 
Most of the cracks observed at the interface were propagated in between the two oxides. The 
adhesive strength between the aluminium coating and the amorphous aluminium oxide 
layer thus seems higher than that between the two oxide layers. Pulsed laser ablation at 
optimized conditions (2 J.cm-2, 37.5 Hz) eliminated the native oxide at the substrate surface, 
leading to the formation of al-coatings with the highest level of adhesion strength for the 
examined conditions.  

The adhesion of LACSpraeyd al-based coatings was measured by employing a Nd-YAG 
laser based system (LASAT). The bond strength of Al cold-sprayed coating was numerically 
calculated from LASAT measurements and it was found to lie in between 629 and 681 MPa 
for samples prepared on laser pre-treated substrates (2.2 J.cm-2, 150 Hz) in between and 
below 562 MPa on as-received substrate. The experimental results shown that LASATesting 
is a powerful tool for studying local adhesion of coatings and for determining the influence 
of metallurgical and morphological interface features on adhesion. 

8. Outlook  

Laser Assisted Cold Spray process can shed light on an open query of cold spray 
technology. The presence of local transient melting at the interface of substrate and particles, 
and its contribution to the bonding of cold-sprayed particles has not been clarified yet.  
Experimental studies show evidence of local fusion at the substrate-particle interface 
(Barradas et al., 2007; Guetta et al., 2009) as well as interlamellar local melting (Li et al., 
2007). In these cases, an increase of adhesion of cold sprayed coatings is observed due to the 
presence of molten phases (Barradas et al., 2007). On the other hand, other experimental 
results (Ref 12) and numerical simulations (Bae et al., 2009) indicate that, during the creation 
of cold-sprayed coating, melting cannot occur at the particle-substrate interface. While, in 
the case of cold sprayed aluminum onto tin substrate, the rebound of the particles is 
associated with substrate local fusion (Zhang et al., 2003).  The presence or the absence of 
local melting seems to depend on the materials used and experimental conditions. It is 
therefore possible that local fusion can exist only under certain conditions (materials, gas 
and temperatures etc). The Laser Assisted Cold Spray can enlighten the role of the local 
melting at the interface between substrate and the sprayed particles. The laser ablation 
energy of the Nd-YAG laser should be adjusted to the appropriate level to provoke the 
melting of the substrate surface. These experiments will answer to an open fundamental 
query of cold spray technology: does the melting of the substrate enhance the adhesion 
strength of cold sprayed coating or not?  

Furthermore, the Nd-YaG laser should be used, also, during coatings’ build-up to enhance 
coatings’ cohesion. The weak cohesion of cold-sprayed particles is one of the disadvantages 
of the cold spray process. The weak cohesion decreases coatings’ properties and limits 
further industrial applications of cold spray technology. Presently, in order to improve the 
cohesion of cold-sprayed coatings, thermal post-treatment techniques are used (Hall et al., 
2006; Makinen et al., 2007; Spencer et al., 2009). After the deposition of the cold sprayed 
coating, a thermal treatment follows. This two-step process can be replaced by a single step 
process: the coupling of cold-spraying with the Nd-YaG laser; thus cold-sprayed coatings of 
both high adhesion and cohesion strength will be created.  

www.intechopen.com



 
Nd YAG Laser 

 

90

Laser-Assisted Cold Spray, should be coupled also with other type of laser which are 
suitable to create a particular structure on the substrate (Knapp et al., 2011). Among the 
various laser surface processes, laser structuring is currently one of the most developed and 
promising. Beyond the mere application to engraving, laser structuring of a substrate 
(whatever the type of material) is expected to improve bond-strength when coated with a 
layer. The latter can be obtained using cold spray in particular.   
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