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1. Introduction   

The ubiquitous amino acid L-glutamate is thought to act as a neurotransmitter at the 

majority of synapses in the brain. It mediates the major excitatory pathways in the brain, 

and is referred to as an excitatory amino acid (EAA). The EAA plays a role in a variety of 

physiological processes, such as long-term potentiation (learning and memory), the 

development of synaptic plasticity, motor control, respiration, cardiovascular regulation, 

emotional states and sensory perception (Bliss & Collingridge, 1993). 

The excessive or inappropriate stimulation of EAA receptors leads to neural cell damage or 

loss by a mechanism known as excitotoxicity (Lucas & Newhouse, 1957; Oney, 1978). EAA 

receptors are classified in two general types (Kornhuber & Weller, 1997). Receptors that are 

directly coupled to the opening of cation channels in the cell membranes of the neuron are 

termed ‘ionotropic’, which include NMDA, AMPA, and kainate receptors. The second type 

of receptors are the G-protein or second messenger-linked ‘metabotropic’ EAA receptors. 

This second type is coupled to multiple second messenger systems that lead to enhanced 

phosphoinositide hydrolysis, activation of phospholipase D, increase or decrease in cAMP 

formation, and changes in ion channel function (Kozikowski et al., 1998). 

Metabotropic glutamate receptors belong to Class C of a superfamily of G-protein coupled 

receptors (GPCRs). Class C GPCRs possess a large extracellular domain that is responsible 

for endogenous ligand recognition (Pin et al., 2003), in addition to the seven strand 

transmembrane domain, which is characteristic of all GPCRs. The mGluRs possess a large 

bi-lobed extracellular N-terminus of ~560 amino acids which has been shown by 

mutagenesis studies to confer glutamate binding, agonist activation of the receptor, and 

subtype specificity for group selective agonists (Schoepp et al., 1999). 

Since mGluRs have neuromodulatory role in the control of both glutamatergic and 
GABAergic neurotransmission, there has been much interest to develop novel mGluR 
ligands for therapeutic purposes of a variety of neurological and psychiatric conditions. The 
mGluRs have been proposed to be involved in physiological and pathophysiological 
processes of a number of CNS disorders, including anxiety, pain, depression, 
neurodegenerative disorders, schizophrenia, epilepsy, and drug abuse. In order to 
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characterize the role of mGluRs in different physiological processes there is a need to 
identify novel compounds, which are highly potent and specific for an mGluR group or a 
subtype. Such compounds are needed to further investigate mGluR function, and as 
potential therapeutic agents for a variety of neurological diseases, which are associated with 
the abnormal activation of mGluRs. A large amount of pharmacological agents acting at 
metabotropic glutamate receptors have been described in the literature (Guitart & 
Khurdayan, 2005; Kew, 2004; Layton, 2005; Marino et al., 2005; Rudd & McCauley, 2005; 
Schoepp et al., 1999; Slassi et al., 2005; Williams & Lindsley, 2005; Yang, 2005). According to 
the mode of binding, these mGluR pharmacological agents can be classified into competitive 
and non-competitive agents. Based on the mode of action, they can be classified into 
agonists, antagonists, and positive/negative/neutral modulators (Layton, 2005). 
Competitive agonists and antagonists bind to the same orthosteric binding site as 
endogenous glutamate (Niswender et al., 2005; Ritzen et al., 2005; Rudd & McCauley, 2005), 
which is a cleft between the two lobes in the extracellular N-terminus. Their binding ability 
depends on how much they can stabilize the closed conformation (Kew, 2004). These 
ligands received earliest research interest and have been well developed (Schoepp et al., 
1999). They are all glutamate analogs or substituted glycines, which imply that they have 
poor selectivity within their group. In addition, competitive agonists and antagonists have 
structural carboxyl and amino groups, which make them too polar to penetrate the blood 
brain barrier (BBB) (Kew, 2004).  
Starting from 1996 (Annoura et al., 1996), a number of different types of non-competitive 

negative, positive and neutral allosteric modulators have been developed as mGluR ligands 

(Niswender et al., 2005; Ritzen et al., 2005). These ligands modulate mGlu receptor activity 

by binding to allosteric binding sites that are located in the seven strand transmembrane 

domain. The allosteric binding sites are structurally distinct from the classical agonist 

orthosteric binding site (Williams & Lindsley, 2005). Positive and negative modulators thus 

offer a potential for improved selectivity for individual mGluR family members compared 

to competitive agonists and antagonists at the glutamate site (Kew, 2004). Positive allosteric 

modulators (PAM)s have little or no effect on the receptor but can significantly enhance the 

effect of endogenous ligand. Correspondingly negative allosteric modulators inhibit the 

activity of orthosteric agonists in a noncompetitive manner. These ligands are structurally 

diverse and not amino acid derivatives. They are lipophilic and have much better CNS 

penetrating ability. Thus, positive and negative modulators with high subtype selectivity, 

and appropriate lipophilicity are good candidates for mGluR radiotracer development. 

There will be no competitive binding of this kind of tracers with endogenous glutamate, 

which might otherwise decrease the availability in vivo, and thus decrease the sensitivity of 

potential ligands. 

During the last fifteen years the subtype selective modulators have been identified for 

mGluR1, mGluR2, mGluR3, mGluR4, mGluR5, mGluR7 and mGluR8. Based on these 

modulators, several positron emission tomography radiotracers have been developed for in 

vivo imaging of specific mGluRs. Presently, three mGluR ligands have been used for human 

studies. They have been developed as negative allosteric modulators for mGluR5. In this 

review we intend to summarize the radiotracers which have characteristics to be developed 

as tracers for in vivo PET imaging to investigate modulation of mGluRs in normal and 

pathological conditions. Emphasis will also be given to the highly potent and subtype 

selective allosteric modulators which are candidates for radiolabeling with 18F or 11C. 
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2. Metabotropic glutamate receptors and their physiological function 

Recent molecular cloning studies have revealed the existence of eight different subtypes 
of mGluRs. The mGluR subtypes can be divided into three different groups according to 
their sequence similarities, signal transduction mechanism, and pharmacological profiles 
to agonists (Pin & Duvoisin, 1995). The first group comprising mGluR1 and mGluR5 is 
coupled to stimulating of phosphoinositide hydrolysis/Ca2+ signal transduction 
(Schoepp et al., 1994). The second group, consisting of mGluR2 and mGluR3, is negatively 
coupled through adenylate cyclase to cAMP formation (Tanabe et al., 1997). The third 
group, containing mGluR4, mGluR6, mGluR7 and mGluR8, is also negatively linked to 
adenylate cyclase activity but shows a different agonist preference (Conn & Pin, 1997; 
Tanabe et al., 1997).  
The neuroanatomical localization of Group I and Group II mGluRs in the rodent brain, as 
assessed by immunohistochemical or in situ hybridization techniques, has revealed 
overlapping, yet distinct patterns of expression of these receptors. In order to better 
characterize the roles of mGluRs in physiological processes, there is a need to identify novel 
compounds that are highly potent and specific for an mGluR group or a subtype. Such 
compounds are needed as pharmacological tools for further investigation of mGluR 
function, and as potential therapeutic agents for the treatment of diseases or conditions 
including epilepsy, cerebral ischemia, pain, spinal cord injury, ‘neurotoxicity’ and chronic 
neurodegenerative diseases (e.g. Parkinson’s and Huntington’s disease), which are 
associated with abnormal activation of mGluRs (Aguirre et al., 2001; Blakely, 2001; Calabresi 
et al., 1999; Keyvani et al., 2001; Marino et al., 2001; O’Neill, 2001; Popoli et al., 2001; Rao et 
al., 2000; Rouse et al., 2000). 
It is known that glutamate can act as a neurotoxin when energy supplies are compromised. 
This has stimulated a hypothesis that injury to neurons in some neurological conditions may 
be caused, partly, by over stimulation of glutamate receptors and/or glutamate transporters. 
These neurological conditions may be acute insult like stroke or chronic neurodegenerative 
states like Parkinson’s or Huntington’s disease or dementia. To better explore the roles of 
mGluRs in physiological and pathological processes, there is a need to learn more about 
functional behavior of these receptors in vivo.  

3. PET radiotracer development  

Positron emission tomography (PET) has become an important clinical diagnostic and 
research modality, and also a valuable technology in drug discovery and development (Cai 
et al., 2008). PET tracers have been used for the imaging and quantification of biochemical 
processes. PET tracers play a critical role for assessing in vivo distribution of specific 
receptors in normal and disease conditions to understand underlying mechanisms of 
physiology and pathology. Moreover, PET tracers serve as invaluable biomarkers during the 
clinical development of potential therapeutic mGluR modulators, in which the receptor 
occupancy of potential drug candidates in the brain is measured (Passchier et al., 2002; 
Sharma & Lindsley, 2007). In vivo receptor occupancy can help to answer many vital 
questions in the drug discovery and development process such as whether potential drugs 
reach their molecular targets, the relationship between therapeutic dose and receptor 
occupancy, the correlation between receptor occupancy and plasma drug levels, and the 
duration of time a drug remains at its target (Passchier et al., 2002). In PET imaging a small 
amount of tracer is injected into a living object. The tracer is labeled with a short-lived 
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radioisotope, which emits positrons as it decays. The positrons collide with electrons 
resulting in high-energy photons that escape from the object and are detected by the PET 
scanner. Carbon-11 (t1/2 = 20.4 min) and fluorine-18 (t1/2 = 109.7 min) are the most 
commonly used radionuclides in PET imaging (Miller et al., 2008). The characteristics of 
successful PET tracers include high affinity, high selectivity over other mGluR subtypes as 
well as other receptors, suitable pharmacological properties including lipophilicity, 
metabolic stability, no radiolabeled metabolites that can penetrate into the brain, and the 
chemical structure of the precursor to allow fast labeling. 

3.1 Allosteric modulators and radiotracers for Group I mGluRs 

The group I receptors mGluR1 and mGluR5 exhibit different patterns of expression in the 
CNS. The distribution of mGluR1 is found throughout the human brain with high levels in 
the olfactory bulb, thalamus, hippocampus, lateral septum, superior colliculus and 
cerebellum (Olive, 2009). Inhibition of mGluR1 has been suggested as potential treatment for 
various psychiatric disorders including schizophrenia, anxiety, and neuropathic pain. 
The mGluR5 is usually found in postsynaptic neurons with moderate to high density in the 
frontal cortex, caudate, putamen, nucleus accumbens, olfactory tubercle, and hippocampus, 
whereas in contrast to expression patterns of mGluR1, the density in the cerebellum is low 
(Olive, 2009). Dysfunction of mGluR5 is implicated in a variety of diseases in the CNS, 
including anxiety, depression, schizophrenia, Parkinson’s disease, and drug addiction or 
withdrawal. 

3.1.1 Allosteric modulators and radiotracers for mGluR1 

A variety of mGluR1 modulators have been reported in the literature. Competitive mGluR1 
agonists and antagonists historically have been amino acid derivatives, which display poor 
potency, lack of selectivity and unsatisfactory BBB penetration (Layton, 2005). Although a 
number of selective competitive mGluR1 ligands appear in literature, they are not good 
candidates for potential PET tracers. None of the existing orthosteric ligands has a binding 
affinity (or potency) of IC50/Ki/Kd less than 20 nM with an acceptable selectivity over other 
members in the same group. There is a consensus that identification of highly potent and 
subtype selective competitive mGluR ligands has been difficult due to a high degree of 
sequence similarity at the orthosteric binding site to which the endogenous agonist binds 
(Layton, 2005; Williams & Lindsley, 2005). Alternatively, several structural types of mGluR1 
allosteric modulators have been reported in literature, including negative and positive 
allosteric modulators which show high binding affinity, high selectivity and good 
lipophilicity (Layton, 2005). 
CPCCOEt (1) was the first reported mGluR1 negative allosteric modulator (Fig.1). Before 
2008, only compound 4 (3,5-dimethyl PPP) (Micheli et al., 2003b) and a quinoline derivative 
5 (JNJ16259685) (Lavreysen et al., 2004b; Mabire et al., 2005) had reported binding affinity 
(or potency) less than 20 nM (Table 1). 2,4-Dicarboxy-pyrrole ester 4 (3,5-dimethyl PPP), as a 
racemic mixture, is a highly potent and subtype-selective noncompetitive antagonist of 
mGluR1, having IC50 of 16 nM at rat mGluR1 and > 1000-fold selectivity over mGluR 2, 4, 
and 5 (Micheli et al., 2003b). Pharmacological studies of its two enantiomers showed that the 
S-enantiomer had the same activity as the racemic mixture, while the R-enantiomer was less 
potent (40 nM). Although compound 4 had a poor stability to rat plasma esterase (t1/2=12 
min versus 2.8 h in mice), a good CNS accumulation was observed 5 min after intravenous 
administration with a brain/plasma ratio of 20 (Micheli et al., 2003b). Compound 5 (JNJ-
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16259685) demonstrated high specificity over other mGlu receptor subtypes and a fast brain 
penetration with high receptor occupancy after subcutaneous administration (Lavreysen et 
al., 2004b). In addition to 5, a series of quinoline derivatives have been synthesized. The in 
vitro pharmacological data showed that they are highly potent noncompetitive mGluR1 
antagonists (Mabire et al., 2005) with high binding affinity. However, the quinoline 
derivatives have issues of poor aqueous solubility and poor stability to human liver 
microsomes (Layton, 2005; Mabire et al., 2005). 
Since 2008, many new compounds (Fig. 1 and Table 1) have been reported having binding 
affinity (or potency) less than 20 nM and high selectivity over other mGluRs. These 
compounds are diverse heterocyclic compounds including mono-, di- and tri-cyclic structures. 
Some of these compounds or their derivatives are amenable to radiolabeling with fluorine-18 
or carbon-11. For example, a series of potent 2-fluoro-3-pyridyl-triazol derivatives such as 
FTIDC (10) and FPTQ (11) have been developed.. These derivatives are relatively easy to label 
with fluorine-18 at 2-pyridine position. Other compounds such as 12 are amenable to 
radiolabeling with carbon-11. 
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Fig. 1. Chemical structures of mGluR1 negative modulators. 

MGluR1 expression is localized throughout the nervous system (Layton, 2005; Spooren et al., 

2003). The distribution of mGluR1 in the peripheral nervous system (Bhave et al., 2001; 

Lesage, 2004; Skerry & Genever, 2001) and in the CNS has been studied using various 

methods including radioligand autoradiography and immunohistochemical techniques 

(Lavreysen et al., 2003; Lavreysen et al., 2004a; Shigemoto & Mizuno., 2000; Simonyi et al., 

2005). MGlu1 receptors have been observed in the cerebellum, thalamus, hippocampus and  
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Compound Rat 
mGluR1 

IC50  

(nM)

Human 
mGluR1

IC50  

(nM)

Selectivity In vivo properties References 

1 
(CPCCOEt) 

 
1500-
6500 

>15 over 
mGluR2, 4, 5, 
7, 8

(Litschig et 
al., 1999; Ott 
et al., 2000) 

2 
(Bay36-
7620) 

160  
>100 over 
mGluR 2, 3, 
4, 5, 7, 8 

30% receptor 
occupancy in 
cerebellum and 
thalamus (s.i.) 

(Carroll et 
al., 2001) 

3 
(EM-TBPC) 

130  
No binding 
for rat 
mGluR5 

(Malherbe et 
al., 2003) 

4  
(3,5-

dimethyl 
PPP) 

16  
>1000 over 
mGluR2, 4, 5 

Good CNS 
exposure with 
brain/plasma ratio 
of 20 

(Micheli et 
al., 2003a; 
Micheli et 
al., 2003b) 

5 
(JNJ-

16259685) 
3 0.55 

>400 over rat 
mGluR5; 
>20,000 over 
human 
mGluR5 

Fast brain 
penetration and 
high receptor 
occupancy (s.i.) 

(Lavreysen 
et al., 2004b; 

Mabire et 
al., 2005) 

6 
 

Ki=5 3 

IC50=442 nM 
for human 
mGluR5; 
Ki=194 nM 
for rat 
mGluR5 

Demonstrated 
efficacy in various 
in vivo animal 
models 

(Zheng et 
al., 2005) 

7 
 
 

 

Ki=0.4 2.9 
>1,000 nM 
for human 
mGluR5 

Demonstrated 
activity in the rat 
spinal nerve 
ligation 
neuropathic pain 
model (SNL 
model) with ED50 
of 5.1 mg/kg. 

(Wu et al., 
2007) 

8 
 

Ki=9   

LogD=3.3; human 
liver microsomal 
metabolic stability: 
Clint<7 µl/min/mg 

(Owen et al., 
2007) 

9 
 

 127 
>100,000 nM 
for human 
mGluR5 

Solubility: 42 µM; 
microsomal 
clearance: <2.5 
L/h/kg; 
quantitative 
bioavailability  

(Wang et al., 
2007b) 
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Compound Rat 
mGluR1 

IC50  

(nM)

Human 
mGluR1

IC50  

(nM)

Selectivity In vivo properties References 

10 

(FTIDC) 

 

5.8 5.8 

6200 nM for 

human 

mGluR5; 

>1720 over 

mGluR2, 4, 6, 

7, 8 

LogD=2.1; 

demonstrated 

efficacy in (S)-3,5-

DHPG-induced 

face-washing 

behavior in mice 

(Suzuki et 

al., 2009; 

Suzuki et al., 

2007a) 

11 

(FPTQ) 
14 3.6  

 (Suzuki et 

al., 2009) 

12 

(YM-

202074) 

 

8.6 

Ki=4.8 
 

>1000 for rat 

mGluR2, 3, 4, 

6, 7; >100 for 

rat mGluR5;  

Showed efficacy 

for 

neuroprotection in 

rats suffering from 

transient focal 

cerebral ischemia;  

(Kohara et 

al., 2008) 

13 

 
Ki=6   

CSF:Cu=0.5; HLM: 

Clint=24 

µl/min/mg 

(Mantell et 

al., 2009) 

14 

 
 5.1 

7000 nM for 

human 

mGluR5; 

>10,000 nM 

for human 

mGluR2, 8 

Mouse 

brain/plasma 

concn 0.17 

nmol/g/0.19 µM; 

Rat F: 53%, T1/2: 2.3 

h, CLp: 28 

mL/min/kg; Rat 

PPI disruption 

model MED 1.0 

mg/kg, PO; Mouse 

hyperlocomotion 

model MED 0.3 

mg/kg, PO 

(Satoh et al., 

2009) 

15 

 
Ki=9.3 2.1 

>3000 nM for 

human 

mGluR5 

Rat PK, (10 

mg/kg), AUC (ng 

h/mL): 965; Brain 

concn @ 6 h 

(ng/g): 100; 

Brain/plasma: 0.9 

(Sasikumar 

et al., 2010) 

16 

(MK-5435) 

 

 4.3 

1500 nM for 

human 

mGluR5 

 
(Hostetler et 

al., 2011) 

Table 1. In vitro and in vivo pharmacological profiles for mGluR1 negative allosteric modulators. 
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Fig. 2. PET ligands for mGluR1 

spinal cord (Karakossian & Otis, 2004; Lavreysen et al., 2003; Shigemoto & Mizuno, 2000; 

Spooren et al., 2003). Tritium-labeled highly potent and subtype-selective radioligands were 

used earlier in mapping mGluR1 ex vivo (Yang, 2005). Presently, demands on PET 

radioligands are increasing due to the advantage of in vivo noninvasive imaging techniques 

to investigate pathophysiological processes. 

In 2002, a carbon-11 labeled CPCCO-Me analog was described in the literature (Yu & 

Brownell, 2002), but no animal studies were conducted. In the series of quinoline derivatives 

(represented by 5), several compounds are amenable to radiolabeling with either fluorine-18 

or carbon-11. Carbon-11 labeling would not be preferred in the methyl ether positions, in 

spite of methyl ether position is very popular in 11C-methylation, since O-demethylation of 

the methoxy groups on the quinoline moiety and the cyclohexyl ring are the major 

metabolic pathways (Mabire et al., 2005). Therefore, practical methods must be developed to 

label the methyl groups elsewhere in the molecule. Accordingly, Huang et al. successfully 

labeled a quinoline derivative, providing the first PET tracer, [11C]JNJ-16567083, suitable for 

in vivo imaging of mGluR1 (Huang et al., 2005). [11C]JNJ-16567083 (17) is an analog of JNJ-

16567083 (5). In vitro binding experiments showed that JNJ16567083 (cold compound) 

possesses high affinity for rat mGluR1 (Ki = 0.87 nM) and low affinity for mGluR5 (Ki = 2366 

nM). Ex vivo biodistribution studies in rats showed that [11C]JNJ-16567083 has high brain 

uptake and its binding in brain is specific to mGluR1. MicroPET imaging experiments in rats 

indicated that radioactivity entered the brain rapidly and was localized over time in brain 

regions with high densities of mGluR1, such as the cerebellum and striatum. Activity in 

cerebellum peaked at ~10 min after intravenous injection. Radioactivity uptake was highest 

in the cerebellum, followed by striatum and hippocampus. However, evaluation of this PET 

tracer in higher species has not been reported. 

Yanamoto et al. have labeled an mGluR1 antagonist YM-202074 (12, Ki = 4.8 nM) with 11C 

and evaluated its potential as a PET ligand for mGluR1 (Yanamoto et al., 2010). In vitro 

autoradiographic study demonstrated that [11C]YM-202074 (21, Fig.2) had high specific 

binding with mGluR1 in the rat cerebellum and its regional distribution was consistent with 

the distribution pattern of mGluR1 in the brain. However, the total accumulation of 
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[11C]YM-202074 in the brain was very low including lipophilic radiometabolites hampering 

its usefulness for in vivo imaging.  

Prahakaran et al. have reported the synthesis for in vitro and in vivo evaluation of 
[11C]MMTP (20) as a potential PET ligand for mGluR1 (Prabhakaran et al., 2010). Synthesis 
of the corresponding desmethyl precursor was achieved by demethylation of the 
methoxyphenyl compound MMTP in 90% yield. Methylation using [11C]MeOTf in presence 
of NaOH afforded [11C]MMTP in 30% yield (EOS) with >99% chemical and radiochemical 
purities and with a specific activity of 3–5 Ci/µmol (n = 6). The total synthesis time was 30 
min from EOB. In vitro autoradiography using phosphor imaging demonstrated that the 
radiotracer bound selectively mGlu1 receptors in slide-mounted sections of postmortem 
human brain containing cerebellum, hippocampus, prefrontal cortex and striatum. PET 
studies in anesthetized baboon showed that [11C]MMTP penetrates the BBB and 
accumulates in cerebellum, a region of high expression of mGluR1. 
Recently, a 18F-labeled triazole analog [18F]FTIDC (19, Ki = 3.9 nM) (Ohgami et al., 2009) was 

presented for imaging of mGluR1 showing high uptake in the rat brain. In addition, 

Fujinaga et al. have labeled a triazole analog, FPTQ (11, IC50 = 3.6 nM and 1.4 nM for human 

and mouse mGluR1, respectively) (Fujinaga et al., 2011). [18F]FPTQ (22) was synthesized by 

[18F]fluorination of the corresponding 2-bromo-3-pyridyl precursor with potassium 

[18F]fluoride. At the end of synthesis, 35-50 mCi (n = 8) of [18F]FPTQ was obtained with 

>98% radiochemical purity and 3.2-6.4 Ci/µmol specific activity using 89-108 mCi of 

[18F]fluoride. In vitro autoradiography showed that [18F]FPTQ had high specific binding with 

mGluR1 in the rat brain. Biodistribution study using a dissection method and small-animal 

PET showed that [18F]FPTQ had high uptake in the rat brain. The uptake of radioactivity in 

the cerebellum was reduced by unlabeled FPTQ and mGluR1-selective ligand JNJ-16259685 

(Fujinaga et al., 2011), indicating that [18F]FPTQ had in vivo specific binding to mGluR1. 

However, because of a low amount of radiolabeled metabolite present in the brain, this 

compound may have limiting use for in vivo imaging of mGluR1 by PET. 

Hostetler et al. have reported a PET radioligand, [18F]MK-1312 (18), which was radiolabeled 

with fluorine-18 via nucleophilic displacement of the corresponding 2-chloropyridine 

precursor with [18F]potassium fluoride (Hostetler et al., 2011). [18F]MK-1312 was synthesized 

(n = 25) in good yield (46 ± 15%) with >98% radiochemical purity and high specific activity 

(2.5 ± 1.4 Ci/µmol). In vitro autoradiographic studies with [18F]MK-1312 in rhesus monkey 

and human brain tissue slices revealed an uptake distribution consistent with the known 

distribution of mGluR1, with the highest uptake in the cerebellum, moderate uptake in the 

hippocampus, thalamus, and cortical regions, and the lowest uptake in the caudate and 

putamen. In vitro saturation binding studies in rhesus monkey and human cerebellum 

homogenates confirmed that [18F]MK-1312 binds to a single binding site with a Bmax/Kd 

ratio of 132 and 98, respectively. PET studies in rhesus monkey with [18F]MK-1312 showed 

high brain uptake and a regional distribution consistent with in vitro autoradiography 

results. Blockade of [18F]MK-1312 uptake with mGluR1 allosteric antagonist MK-5435 dose-

dependently reduced tracer uptake in all regions of gray matter. These results show that 

[18F]MK-1312 is a promising PET tracer for clinical studies to determine mGluR1 occupancy 

of MK-5435. 

In summary, several PET radioligands have been developed using highly potent and 

subtype-selective mGluR1 negative allosteric modulators. Although they showed efficacy in 

studying the distribution of mGluR1, some compounds may have limited applications 
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because of low brain uptake and/or brain penetrating radiometabolites. [18F]MK-1312 is the 

most advanced mGluR1 PET tracer, which has demonstrated efficacy in rhesus monkey. 

Although all the published mGluR1 PET tracers are radiolabeled mGluR1 negative allosteric 

modulators, mGluR1 positive allosteric modulators can also be used for developing mGluR1 

PET tracers. Several papers have been published about the functional differences between 

antagonist and agonist tracers in imaging G-protein coupled receptors, including dopamines 

D2 receptor (Hwang et al., 2004; Wilson et al., 2005), serotonin receptors (Kumar et al., 2006; 

Prabhakaran et al., 2006) and mGlu receptors. GPCRs have been postulated to exist in 

interconvertible high-affinity and low-affinity states. The high-affinity sites are G-protein 

coupled, whereas the low-affinity sites are those uncoupled with G-protein. Antagonist 

radiotracers bind with equal affinity to both the high- and low-affinity forms of the receptor, 

and they do not provide information about in vivo affinity of the receptor for antagonist. On 

the contrary, agonist radioligands bind only to high-affinity form of the receptor, thus 

giving valuable information about in vivo affinity of the receptor for agonists in normal and 

abnormal states. Concerning the binding sites of allosteric modulators in the seven strand 

transmembrane domain, there is no evidence for difference between negative and positive 

modulators in terms of their binding to high-affinity or low-affinity states of mGlu receptors 

(Kew & Kemp, 2005). Fig. 3 illustrates structures of some representative positive allosteric 

mGluR1 modulators reported (Knoflach et al., 2001; Layton, 2005; Wichmann et al., 2002). 

 

N

SO

O

F

O

H
N

O

O

24
23

O

O

H
N

26

N

O N

O

O

H
N

27

N
N

N N

O

O

H
NO

O

25
EC50 = 30 nMEC50 = 60 nM EC50 = 10 nM EC50 = 6 nM EC50 = 29 nM  

Fig. 3. Chemical structures of mGluR1 positive allosteric modulators. 

3.1.2 Allosteric modulators and radiotracers for mGluR5 

Since the first selective mGluR5 antagonist was identified in 1999 (Varney et al., 1999), a 

large number of potent, subtype selective and structurally diverse allosteric modulators 

have been described. SIB1757 (28) and SB1893 (29) were discovered through random 

screening. Subsequent optimization by replacement of the trans-olefinic tether in SIB1893 

(29) with a C≡C triple bond led to MPEP (30), which demonstrated a dramatically improved 

mGluR5 antagonist activity (Gasparini et al., 1999). Various structure-activity relationship 

(SAR) studies have been done on MPEP, in which chemical modifications were done to each 

of the three regions of the lead molecule, identifying a series of highly potent and selective 

diaryl (heteroaryl) acetylenes as mGluR5 noncompetitive antagonists. By assumption that 

the (2-methyl-1,3-thiazo-4-yl)ethynyl group is one of the best structural parts to achieve 

mGluR5 antagonist activity further SAR studies on MTEP (31) identified more high-profile 

ligands containing thiazole moiety as mGluR5 noncompetitive antagonists  such as (33) (Iso 

et al., 2006). Many PET tracers have been synthesized by radiolabeling on the derivatives of 

MPEP and MTEP. 

A major concern with acetylenes in potential drugs is the possibility of chemical or 

metabolic reactivity (Milbank et al., 2007). Terminal acetylenes are well known to be 
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mechanism-based CYP-inactivators (Testa & Jenner, 1981) and there is an increasing body of 

information suggesting that internal acetylenes can be activated by CYPs (Fontana et al., 

2005; Foroozesh et al., 1997; Shimada et al., 2007) or even undergo uncatalyzed addition of 

glutathione (Chen et al., 2002; Mutlib et al., 1999). Mutlib et al. reported that incubation of 

MPEP with triple-labeled glutathione gave compounds with molecular weights and 

fragmentations consistent with both activated and unactivated addition of GSH to the 

alkyne (Mutlib et al., 2005). These events are potential sources for hepatic or idiosyncratic 

toxicity. To avoid a potential metabolic liability, many research groups have designed and 

synthesized mGluR5 negative allosteric modulators without the acetylene structure. Some 

structures such as 37 to 48 are given in Fig. 4, which may be useful for development of a 

new PET tracer.  
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Fig. 4. Chemical structures of mGluR5 negative allosteric modulators 

Since the discovery of the first mGluR5 positive modulator, DFB (49, Fig. 5) (O'Brien et al., 
2003), Merck has reported three series of positive allosteric modulators for mGluR5, which 
are benzaldazine, benzamide and pyrazole series, exemplified by DFB, CPPHA (50) (O’Brien 
et al., 2004) and CDPPB (51) (Kinney et al., 2005; Lindsley et al., 2004), respectively. 
Subsequent structure-activity relationship study on CDPPB identified several nanomolar 
potent pyrazole ligands (De Paulis et al., 2006). Although these compounds are potent with 
an EC50 value of less than 20 nM, their poor binding affinity (Ki) and high lipophilicity  
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Compound Rat 
mGluR5 

IC50  

(nM)

Human 
mGluR5 

IC50  

(nM)

In vivo properties References 

28 
(SIB1757) 

   
(Varney et al., 

1999) 
29 

(SIB1893) 
   

(Varney et al., 
1999) 

30 
(MPEP) 

Ki = 12 2  
(Cosford et al., 

2003) 

31 
(MTEP) 

Ki = 16 
5 
 

MTEP is more potent than 
MPEP in vivo (rats) in both a 
receptor occupancy assay and 
in the fear-potentiated startle 
model of anxiety.

(Cosford et al., 
2003) 

32 
 

5   
(Bach et al., 

2006) 
33 
 

0.8
Ki = 0.9

  
(Kulkarni et al., 

2009) 
34 

ADX10059 
Series 

  
Positive data from phase II 
clinical studies in both GERD 
and acute migraine.

(Keywood et al., 
2009; Marin & 

Goadsby, 2010) 
35 

ADX48621 
Series 

  
Showed efficacy in 
nonhuman primate model of 
PD-LID.

(Emmitte, 2011) 

36 
AFQ056 

Series 
  

Reported improvements in 
certain aberrant behaviors in 
clinical trial for treating FXS. 

(Emmitte, 2011) 

37 
 

0.8 
Ki = 22 

 
Showed efficacy for 
anxiolytic activity in the 
Vogel assay.

(Milbank et al., 
2007) 

38 
(Fenobam) 

  

Using prepulse inhibition as
an outcome measure for 
treating FXS, 50% of patients 
responded according to the 
predefined criteria of efficacy.

(Berry-Kravis et 
al., 2009; Porter 

et al., 2005) 

39 32   
(Spanka et al., 

2010) 

40  16 

Showed good brain 
penetration, robust receptor 
occupancy and short half-life 
in rodent. 

(Burdi et al., 
2010) 

41 
109

Ki = 9.1
  

(Galambos et 
al., 2010) 

42 61  
Showed efficacy in the OSS 
model.

(Lindsley et al., 
2011) 

43 24  
Showed a robust anxiolytic-
like effect.

(Carcache et al., 
2011) 
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Compound Rat 
mGluR5 

IC50  

(nM)

Human 
mGluR5 

IC50  

(nM)

In vivo properties References 

44 20  Rat B/P ratio=0.16. 
(Isaac & 

Waallberg, 
2009) 

45 <3  Rat B/P ratio=0.085. 
(Granberg & 
Holm, 2009) 

46 19  Rat B/P ratio=0.26. 
(Granberg & 
Holm, 2010) 

47 Ki=6.7   
(Jimenez et al., 

2010) 

48 7.8 25  
(Henrich et al., 

2009) 

Table 2. In vitro and in vivo pharmacological profiles for mGluR5 negative allosteric modulators. 

(logP) prevent them from being good candidates for radiotracer because high lipophilicity 
decreases brain penetration. Bessis et al. reported a fourth structural series represented by 
ADX47273 (52) (Bessis et al., 2005). Recently, many mGluR5 positive allosteric modulators, 53–
60, have been reported to have an EC50 value below 20 nM (Fig. 5) (Varnes et al., 2011; Williams 
et al., 2011). However, no PET tracers have been developed from this class of compounds. 
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Fig. 5. Chemical structures of mGluR5 positive allosteric modulators 

The discoveries of noncompetitive allosteric modulators with high binding affinity and 
subtype-selectivity entitle the exploration of the physiological functions of mGluR5 in 
normal and pathological states. Although in vitro and ex vivo studies using selective mGluR5 
allosteric antagonists labeled with tritium (Cosford, 2003; Gasparini et al., 2002) have played 
important roles in elucidating the distribution and functions of mGluR5, PET tracers are 
needed for the in vivo quantitative visualization of mGluR5 in a living body and to conduct 
longitudinal studies of modulation of mGluR5 expression. 
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3.1.3 PET imaging studies of mGluR5 function 

MPEP and MTEP have provided leads to some radioligand candidates for imaging human 
mGlu5 receptors with PET in vivo. Great effort was done to identify suitable positron-
emitting radiotracers for noninvasive imaging of mGluRs. To date, more than 15 mGluR5-
selective PET ligands labeled with 18F or 11C have been reported (Fig. 6) (Ametamey et al., 
2006; De Paulis et al., 2006; Hamill et al., 2005; Honer et al., 2007; Krause et al., 2003; 
Musachio et al., 2003; Patel et al., 2005; Sanchez-Pernaute et al., 2008; Sime´on et al., 2007; 
Wang et al., 2007a; Yu, 2005; Zhu et al., 2007).  
In 2005, Hamill and colleagues from Merck demonstrated the first successful PET imaging of 
mGluR5 in rhesus monkeys using [18F]F-MTEB (61) (Hamill et al., 2005; Patel et al., 2005). 
This compound was highly selective and bound with high affinity (IC50 = 80 pM) to the 
receptor. However, the synthesis of this tracer in the cyclotron gave low yields (2-5%), which 
limited its potential utility as a ligand for clinical trials in humans. 
Brownell et al. have synthesized and radiolabeled five noncompetitive antagonists for 
mGluR5: [11C]M-MPEP (62) (Yu et al., 2005), [11C]M-PEPy (63) (Sanchez-Pernaute et al., 
2008), [11C]MPEP (64) (Yu et al., 2005), [18F]FMTEP (65) (Zhu et al., 2007) and 18F]FPEB (66) 
(Wang et al., 2007a) and conducted in vivo PET imaging studies in different disease models 
to investigate modulation of mGluR5 function. It was found in these studies that 
accumulation of pyridine derivatives [11C]M-MPEP (62), [11C]M-PEPy (63), [11C]MPEP (64) 
and [18F]FMTEP (65) into the brain was fast and the highest accumulation was reached in 1-5 
min followed by fast washout, suggesting little retention by high affinity receptor binding. 
This creates limitation to obtain statistically meaningful imaging data without overdosing 
the object with radiation or saturating the receptor binding sites with accompanying cold 
compound. These ligands have limitation, due to high lipophilicity, unfavorable brain 
uptake kinetics, or a high rate of metabolism, though they possess favorable in vitro 
pharmacological profiles. For PET ligands to be used in the central nervous system, a 
postulated lipophilicity coefficient (logD or logP) value should be between 2 and 3 for good 
brain accumulation. The compounds [11C]ABP688 (67) (Ametamey et al., 2006) and 
[18F]FPEB (66) (Patel et al., 2007; Wang et al., 2007a) have better binding profile for imaging 
studies of mGluR5. The logD value of 2.3 for [11C]ABP688 and the logP value of 2.8 for 
[18F]FPEB suggest that the two compounds are sufficiently lipophilic for the BBB 
penetrating. Both compounds have good binding properties with a Ki Value of 0.2 nM for 
[18F]FPEB and a Kd value of 1.7 nM for [11C]ABP688. The brain uptake of both compounds is 
highly selective, with high accumulation in mGluR5-rich brain regions such as the 
hippocampus, striatum and cortex. Blocking studies by coinjection of [11C]ABP688 and 
corresponding unlabeled compound revealed up to 80% specific binding in these regions, 
whereas in cerebellum, a region with negligible mGluR5 density, no  significant changes in 
radioactivity uptake were observed (Ametamey et al., 2006). Specific binding of compounds 
[11C]ABP688 and [18F]FPEB were also demonstrated with mGluR5-knockout mice which 
exhibited a homogeneous background level accumulation throughout the brain (Black et al., 
2010). The metabolism studies of [11C]ABP688 and [18F]FPEB indicated that more than 95% 
of the radioactivity found in the brain was parent compound 30 min after injection for 
[11C]ABP688 and 78% for [18F]FPEB. Both compounds have been translated to human 
studies to investigate mGluR5 function.  
Siméon and colleagues of the NIH reported a new high affinity radioligand, [18F]-SP203 (68), 

for mGluR5 (Sime´on et al., 2007). [18F]-SP203 has high affinity (IC50 = 36 pM) and potency in 

a phosphoinositol hydrolysis assay (IC50 = 0.71 pM) for mGluR5. It demonstrates a high 
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uptake in mGlu5 receptor rich regions of the rat and rhesus brain. The major advantage of 

this tracer over [18F]F-MTEB is its high radiochemical yield (87%) and easy radiosynthesis. 

This ligand is presently in NIH administrated  clinical trial. 

[11C]M-FPEP (69, KD 1.2 nM and Bmax 84.5 fmol/mg) has an even biodistribution in all brain 
regions demonstrating that this tracer lacks specific binding (Ametamey et al., 2003). 
Compound 70 showed little retention by the receptor (Krause et al., 2003). Compound 71 
(rat Ki 0.23 nM) had a good brain uptake and slow washout, with high concentration in 
striatum, frontal cortex and cerebellum of monkey (Hamill et al., 2005). However, the 
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Fig. 6. Chemical structures of mGluR5 PET tracers. 

 

 

Fig. 7. Expression of mGluR5 in the brain of a naïve (top) and a symptomatic parkinsonian 
primate, using the highly selective tracer [18F]FPEB (3-[18F]fluoro-5-(2-
pyridinylethynyl)benzonitrile). Primate Parkinson’s disease (PD) was introduced by low dose 
long-term systemic administration of MPTP. In PD monkey accumulation of [18F]FPEB was 
enhanced compared to naïve monkey in several brain areas including caudate, putamen, 
accumbens and  SN/VTA. Distribution of [18F]FPEB accumulation is illustrated at 60-70 min 
after administration of radioligand (1.2-1.5 mCi iv., specific activity 1.9 Ci/mol). 
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cerebellum is an area with fairly low mGluR5 expression indicating that 71 may have non-
specific binding. 
Four derivatives, 72-75, were developed of ABP688. PET imaging with 72 (Lucatelli et al., 
2009) did not allow visualization of mGluR5-rich brain regions in the rat brain due to fast 
washout and rapid defluorination. Compound 73 (Baumann et al., 2010a) was reported to 
have the high binding affinity to mGluR5. Further in vitro evaluation and in vivo imaging are 
needed for characterization of this ligand. Baumann et al. (Baumann et al., 2010b) reported 
that although [18F]-FTECMO (74) displayed optimal lipophilicity (log DpH7.4 = 1.6 ± 0.2) and 
high stability in rat and human plasma as well as sufficient stability in rat liver microsomes, 
PET imaging with [18F]-FTECMO in Wistar rats showed low brain uptake. Uptake of 
radioactivity into the skull was observed suggesting in vivo defluorination. Honer et al. 
reported that [18F]-FE-DABP688 (75) have optimal lipophilicity (logD  2.1±0.1) and high 
plasma stability (Honer et al., 2007). Saturation assays of [18F]-FE-DABP688 revealed a single 
high affinity binding site with a dissociation constant (Kd) of 1.6±0.4 nM and a Bmax value of 
119±24 fmol/mg protein. PET scanning indicated radioactivity uptake in mGluR5-rich 
regions such as the hippocampus, striatum and cortex, and radioactivity accumulation in 
the cerebellum, a region with negligible mGluR5 density, was significantly lower. 
Biodistribution studies showed a similar distribution pattern of [18F]-FE-DABP688 binding 
in the brain. The hippocampus-to-cerebellum and striatum-to-cerebellum ratios were 
1.81±0.16 and 1.93±0.36, respectively. Blocking studies using coinjection of [18F]-FE-. 
DABP688 and unlabeled M-MPEP (1 mg/kg) revealed more than 45% replacement in the 
hippocampus and striatum, thus demonstrating the in vivo specificity of tracer binding. This 
result shows that [18F]-FE-DABP688 may be a useful PET tracer for imaging mGluR5 

3.2 Allosteric modulators and radiotracers for group II mGluRs 
Group II mGluRs have been shown to be expressed in several brain areas. The expression 
patterns of Group II receptors in the rodent brain parallel those of mGluR5, although the 
overall abundance of mGluR2/3 receptors appears slightly reduced as compared with that 
of mGluR5 (Olive, 2009). Expression levels of mGluR2/3 receptors are high in the olfactory 
bulb and hippocampus, and moderate in the dorsal striatum, nucleus accumbens, amygdala, 
anterior thalamic nuclei, cerebral cortex and cerebellum. Low levels of mGluR2/3 are found 
in the pallidum, colliculi, ventral midbrain and hypothalamus.  
Group II mGluRs act in the hippocampus to decrease synaptic transmission and glutamate 
release when activated. These receptors have been targeted extensively by potential 
neuroprotective agents to develop treatments for anxiety, schizophrenia, Alzheimer’s disease, 
Parkinson’s disease, pain, drug withdrawal, and epilepsy (Rudd & McCauley, 2005). 

3.2.1 Allosteric modulators for mGluR2 
Over the past decade, a number of highly potent (EC50 in subnanomolar) mGluR2 agonists 
and antagonists with high binding affinity (Ki < 2 nM) have been identified (Rudd & 
McCauley, 2005; Yasuhara et al., 2006). However, their mGluR2-selectivity over mGluR3 in 
the same group is fairly low with the highest potency ratio being 6.5 (Dominguez et al., 
2005). A high potency ratio does not necessarily imply a high binding affinity ratio, whereas 
the specific binding of a radiotracer depends much on the binding affinity ratio. Considering 
a low subtype-selectivity and unfavorable brain penetration of classical mGluR2 agonists 
and antagonists, the focus has presently been to develop noncompetitive allosteric 
modulators. When the allosteric binding sites on glutamate receptors within a group are 
sufficiently different it is possible to develop subtype selectivity modulators. 
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Fig. 8. Chemical structures of mGluR2 positive allosteric modulators 

Many series of selective mGluR2 positive allosteric modulators have been reported to date. 
Figure 8 shows the compounds that were reported to have an EC50 value of less than 30 nM. 
They are N-aryl-N-(pyridylmethyl)ethanesulfonamides (76) (Barda et al., 2004; Johnson et 
al., 2003), biphenyl-indanones (77) (Bonnefous et al., 2005), 1,4-disubstituted 3-cyano-
pyridone derivatives (78) (Imogai et al., 2007), 3-(Imidazolyl methyl)-3-aza-
bicyclo[3.1.0]hexan-6-yl)methyl ethers (79 and 80) (Zhang et al., 2008), 
oxazolobenzimidazoles (81) (Garbaccio et al., 2010), 3-Benzyl-1,3-oxazolidin-2-ones (82 and 
83) (Duplantier et al., 2009), 2-((4-(2-methoxy-4-(trifluoromethyl)phenyl)piperidin-1-
yl)methyl)-5,6-dihydro-4H-imidazo[4,5,1-ij][1,7]naphthyridine (84) (Efremov et al., 2008) 
and THIIC (85) (Fell et al., 2011).  
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Fig. 9. Chemical structures of mGluR2/3 positive allosteric modulators 

Several series of compounds have been developed as mGluR2 or mGluR2/3 allosteric 

antagonists, which include 8-ethynyl-1,3-dihydrobenzo[b][1,4]diazepin-2-one derivatives 

(86 and 87) (Woltering et al., 2007; Woltering et al., 2008a; Woltering et al., 2008b; Woltering 

et al., 2010), imidazole derivatives (88) (Gatti McArthur et al., 2006b), pyrazolopyrimidines 

www.intechopen.com



 
Neuroimaging – Clinical Applications 

 

516 

(89) (Gatti McArthur et al., 2006c), Pyridine and pyrimidine derivatives (90 and 91) (Gatti 

Mcarthur et al., 2007), acetylenyl-pyrazolo-pyrimidine derivatives (92 and 93) (Gatti 

McArthur et al., 2006a). Representative compounds listed in Fig. 9 exhibit high binding 

affinity towards mGluR2, however, their binding selectivity over mGluR3 is either very low 

or is not disclosed.  

Currently, no positron emitting radioligand has been developed for imaging mGluR2. 

3.2.2 PET imaging studies of mGluR2/3 expression 

 

 

Fig. 10. To investigate preliminary imaging characteristics of (S,S,S)-2-(2-
carboxycyclopropyl)-2-(3-[11C]methoxyphenethyl) glycine dimethyl ester ([11C]CMG) 0.4-0.5 
mCi of [11C]CMG was administered iv. into the anesthetized (isoflurane 1.5% with O2 flow 
of 1L/min) rats (male Spraque Dawley) in a microPET scanner (P4, Concord Microsystems). 
Dynamic volumetric data were acquired in 6 rats for 60 min. Fast reversible binding was 
observed in several cortical areas, hippocampus, striatum and olfactory bulb, the sites which 
are known to express group II mGluRs. The maximum binding (1.1-1.6% of the injected dose 
per cm3) was observed 2 min after administration. These data provide a foundation for 
future development of specific PET imaging ligands for group II mGluRs. Coronal and axial 
slices of [11C]CMG distribution in the rat brain from 1 min till 40 min after administration of 
the radioligand are illustrated. Color coded images are normalized to each other and 
correspond the acquisition time of 1 min at the same midbrain level (coronal slice at bregma 
-1.6 mm; axial slice at bregma -5.4 mm). 
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3.2.3 Allosteric modulators for mGluR3 

Eli Lilly and Company reported the first series of compounds, 1-(heteroaryl)-3-(2,4-
dichlorobenzyl)amino-pyrolidine, acting as mGluR3 negative allosteric modulators (Britton 
et al., 2006). Figure 11 shows the chemical structures of two most potent ligands reported in 
the patent. Compounds, 94 and 95, have an IC50 value of 77 nM, which is insufficient for in 
vivo detection of the receptors. Further SAR studies are needed to find more potent ligands. 
No PET radioligands have been identified for mGluR3 so far. 
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3.3 Allosteric modulators and radiotracers for Group III mGluRs 

Group III metabotropic glutamate receptors are mGluR4, mGluR6, mGluR7 and mGluR8. 

There is no publication reporting mGluR6 allosteric ligands. 

3.3.1 Allosteric modulators for mGluR4 
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Fig. 12. Chemical structures of mGluR4 positive allosteric modulators 

MGluR4 has received much attention lately due to its implication in several diseases, such as 
PD, epilepsy, and anxiety. There has been substantial progress in identifying positive 
allosteric modulators for mGluR4. The compound PHCCC (96, Fig. 12), a partial selective 
mGluR4 potentiator, has been studied for many years. Unfortunately PHCCC and other 
early disclosed mGluR4 PAMs such as 98–101 (Fig.12) are deficient in their BBB penetration 
(Engers et al., 2009). The potencies of these compounds are also relatively low (EC50: 0.65 – 
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5.0 M) and SAR studies around these structures have given ‘flat’ results. Addex Pharma 
disclosed a series of heteroaromatic compounds (102 in Fig. 12) as positive allosteric 
modulators for mGluR4, with many compounds having EC50 < 0.5 µM (Bolea & Celanire, 
2009). However, no other information was reported about these compounds. 
Two research groups; Addex Pharma (Bolea, 2009) and Vanderbilt University (Engers et al., 
2009), have independently disclosed a series of small arylamide compounds as a new class 
of mGluR4 PAMs. Engers et al (Vanderbilt University) found from a high-throughput 
screening that there were a number of small arylamide compounds having mGluR4 PAM 
activity (Engers et al., 2009). They reported studies on SAR and in vitro and in vivo 
pharmacokinetic parameters in rat. The most potent compound in this series was 103 shown 
in Fig. 12. Researchers at Merck presented two new compounds, 104A and 105, with 
improved activity (Reynolds, 2008). Engers et al. further studied SAR of 4-
(phenylsulfamoyl)phenylacetamide derivatives and found that 104B was the most potent 
(19.8 nM) mGluR4 positive allosteric modulator reported to date (Engers et al., 2010). Doller 
and co-workers (Lundbeck Research USA) have recently reported on a series of tricyclic 
thiazolopyrazole derivatives including compound 106, which was identified as a very 
potent and orally available compound with excellent brain penetration and good 
physicochemical properties (Hong et al., 2011).  

3.3.2 PET imaging studies of mGluR4 expression 

 

 

Fig. 13. Distribution of [11C]methyl-PHCCC between 10-20 min after administration of 
radioligand in a control (1.2 mCi iv.) and PD (1.1 mCi iv.) rat brain. Coronal and axial views 
localize cortex at the level of S1 and S2 areas. It is noticeable that the accumulation of 
[11C]methyl-PHCCC is enhanced in PD rat in the areas of subthalamic nucleus and spinal cord. 
The motor neurons in the ventral horn in the spinal cord express mGluR4 and the observed 
enhanced accumulation of mGluR4 ligand, [11C]methyl-PHCCC is an indication of excess 
glutamate. This is the first time, when this aspect has been demonstrated in vivo in a PD model.  
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3.3.3 Allosteric modulators for mGluR7 

It is reported that mGluR7 is widely expressed in the central nervous system and is 
primarily located on presynaptic terminals in brain regions such as the hippocampus, 
amygdala, and locus coeruleus. Mitsukawa et al. developed the first selective allosteric 
agonist of mGluR7, AMN082 (107), which has an EC50 value of 64-290 nM and it is brain 
penetrating (Mitsukawa, 2005). However, converting it to a PET tracer is not 
straightforward. Researchers of Banyu Pharmaceutical Co reported a series of 
isoxazolopyridone derivatives as allosteric mGluR7 antagonists (Suzuki et al., 2007b). 
Compound MDIP (108) that was identified by random screening displayed mGluR7 
antagonistic activity (IC50 = 20 nM) and had no detectable activity on other mGluRs at 1000 
nM. However, MDIP showed poor metabolic stability (predicted FH: 34%) on rat hepatocyte 
assay and low aqueous solubility (0.17 µg/mL, pH 7.4). It is assumed that poor metabolic 
stability and low aqueous solubility may be due to its high lipophilicity (clogD7.4: 3.5). 
Recently, Nakamura et al. have identified some isoxazolopyridone derivatives with potent 
mGluR7 antagonistic activity and metabolic stability, in which MMPIP (109) with improved 
physicochemical properties and metabolic stability showed good oral bioavailability and 
brain penetrability in rats (Nakamura et al., 2010). 
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Fig. 14. Chemical structures of mGluR7 modulators 

3.3.4 Allosteric modulators for mGluR8 

Recently, AstraZeneca developed a positive allosteric modulator for mGluR8 (Duvoisin et 
al., 2010; Duvoisin et al., 2011). The compound AZ12216052 as injected into the amygdale, 
reduced measures of anxiety. There is no PET ligand available and AZ12216052 does not 
cross blood brain barrier. 

4. Conclusion 

Glutamate is an interesting transmitter since it can participate also on glutamate metabolism 
to be converted to glutamine and its function as a neurotransmitter can be investigated 
based on its receptor functions. To understand the diverse physiological effects of glutamate 
it is important to know molecular identity of mGluRs expressed in distinct subpopulations 
of neurons. For instance, group I mGluRs are coupled to phospholipase C and subsequent 
production of inositol triphosphates and induces intracellular calcium release in Purkinje 
cells and hippocampal CA1 neurons, but the same receptor types are also coupled to 
inhibition of voltage-dependent calcium channel in hippocampal neurons without 
intracellular diffusible messengers (Choi & Lovinger, 1996). Group II mGluRs can be 
coupled to inhibition of cyclic AMP cascade in neural and glial cells while they are also 
linked to rapid-onset regulation of various channels including calcium channels and G-

www.intechopen.com



 
Neuroimaging – Clinical Applications 

 

520 

protein. The group III mGluRs-mediated effect is inhibition of neurotransmission through 
suppression of presynaptic voltage-dependent calcium channels (Pekhletski et al., 1996). 
This basic functional information of mGluRs has been obtained with in situ hybridization, 
immunohistochemistry and ex vivo studies with tritium labeled antibodies. While ex vivo 
studies can provide accurate endpoint information in steady state, they cannot provide 
information of the active inhibitory or stimulating effects in the system or interplay with 
other systems. To obtain functional information in real time, the investigation has to be done 
by using in vivo imaging methods. However, a lack of specific agonists and antagonists has 
limited the precise characterization of the role of individual metabotropic glutamate 
receptors in glutamatergic neurotransmission and hampered progress in identifying the 
physiological and pathological roles of mGluRs in vivo.  
Recently, the modern computational chemistry has opened a wide range of technical 
approaches to design and construct molecules for imaging and to simulate their molecular 
targets. This technology has been used to design molecules for tracking different mGluRs. 
Especially, approach of allosteric compounds relies on sophisticated design of three-
dimensional arrangement of the tracer molecules responsible for the biological activity. 
Pharmacophore models can be constructed based on known biological activity. Design of 
novel allosteric modulators is an iterative process where structure-activity relationship 
information generated in the biological assays guides how to make structural alternations 
towards the optimal compound. Recently several non-competitive structurally diverse 
mGluR ligands have been published. These ligands, positive, negative and neutral 
modulators, bind to the allosteric binding sites located in the seven strand transmembrane 
domain. Based on these modulators, a number of radiotracers useful for imaging specific 
metabotropic glutamate receptors have been developed and their in vivo biological 
properties have been characterized. 
Development of metabotropic glutamate receptor ligands will open a new perspective for 
molecular imaging. Modulation of receptor functions might be used as diagnostic tools as 
well as to follow progression/regression of neural diseases. Presently, three mGluR ligands 
have been used in human studies. They are developed as negative allosteric modulators for 
mGluR5. For example, concerning PD, the death of dopamine neurons in the substantia 
nigra pars compacta causes a loss of dopamine in the basal ganglia. Dopamine modulation 
of neurotransmission in the striatum and other basal ganglia structures is crucial to gate 
cortical and thalamic excitatory input through the direct and indirect pathways. By using in 
vivo PET imaging studies and [18F]FPEB we have found an upregulation of mGluR5 
expression following dopamine denervation in animal models of PD (Figures 7 & 13), which 
probably represents a local compensatory mechanism, directed to dampen an excessive 
excitability of striatopallidal neurons. Drugs targeting the mGluR5 might provide new 
approaches by selectively reducing glutamate transmission in the areas where it is 
abnormally enhanced. In addition, we and others have found enhanced mGluR5 expression 
in several brain areas related to the indirect pathway in models of L-DOPA induced 
dyskinesias and some studies have shown promising therapeutic results after using mGluR5 
antagonists. In gut glutamate is the main energy source and its neurotransmission is 
conducted by vagal afferents. The gut expresses also mGlu5 receptors and we have localized 
them with [18F]FPEB. This phenomenon has raised a hypothesis that gut-brain axis as well 
as interplay with dopamine transmission might contribute to obesity. 
Even mGlu2 receptors had the earliest interest as targets for drug development and Eli Lilly 

developed several potent ligands targeted to mGluR2 there is not yet any specific allosteric 
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modulators available for imaging purposes of mGluR2 function. The earlier compounds 

were missing receptor selectivity and sensitivity for imaging purposes since sequence 

similarity at the orthosteric binding site to which endogenous agonists bind.  

Present application of glutamate transmission has evoked an active drug development 
especially to develop allosteric modulators for neurodegenerative disorders, pain and 
schizophrenia. It should be noted that these disorders are affected also by modulation of 
dopaminergic system supporting hypothesis of interplay of these powerful transmitter 
systems. Future pharmacological and imaging studies will show which specific ligands 
acting at individual receptor subtypes could be used as sensitive indicators for diagnostic 
imaging. Therefore, there is an urgent need for development of allosteric modulators as 
imaging ligands for different of mGluRs for human use. 
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