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1. Introduction 

1.1 The thyroid gland 

The major role of the thyroid is to synthesise and secrete thyroid hormones (TH). It does this 

by a complex process that begins with extraction of iodide from circulating blood via the 

sodium iodide symporter (NIS) (Dai, et al. 1996). Intracellular iodide is oxidised, under the 

influence of a thyroperoxidase leading to iodination of the amino acid tyrosine on the 

abundant thyroglobulin that occupies thyroid follicles. Iodinated tyrosines are combined to 

form thyroxine (4 iodine atoms, T4) and triiodothyronine (3 iodine atoms, T3). Both T4 and T3 

are secreted from the thyroid gland and circulate bound to a family of thyroid binding 

proteins so that only a tiny fraction of T4 and T3 remain unbound (Benvenga 2005). T4 is 

avidly taken up by liver and deiodinated by a type 1 deiodinase (D1) (Bianco, et al. 2002) to 

the biologically more active T3 and the biologically inactive reverse T3 (rT3). Most circulating 

T3 is of hepatic origin. T4, and to a lesser extent T3 feed back at the pituitary level. 

Intrapituitary T4 is deiodinated to T3 by a Type 2 deiodinase (D2) and this together with T3 

from the circulation inhibits synthesis and secretion of thyroid stimulating hormone (TSH), 

also known as thyrotropin (Shupnik, et al. 1985). TSH is a highly glycosylated protein with 

alpha and beta chains and is under the tonic control of the inhibitory hypothalamic hormone 

somatostatin (Weeke, et al. 1975) and the stimulatory thyrotropin releasing hormone (TRH) 

(Shupnik, et al. 1986). TSH via thyroid cell membrane TSH receptors stimulates iodide 

uptake (Levy, et al. 1997) and TH synthesis and secretion. Serum TH levels are controlled by 

the pituitary feedback mechanism.  

1.2 Thyroxine (T4) 

The thyroid gland is the only known source of T4 in the body (Chopra 1996). T4 is the most 

abundant iodothyronine in the circulation, present at around twenty times the concentration 

of T3, up to one hundred times more than rT3 and more than one thousand times the 

concentration of any other iodothyronine derivative. Iodine constitutes about 65% (by 

weight) of the T4 molecule and T4 accounts for up to 90% of protein bound iodine in serum. 

The extent of overall protein binding is great, such that the serum free T4 concentration is 
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usually less than 0.1% of total T4 concentration. The major TH binding proteins are; 

thyroxine binding globulin (TBG), transthyretin (TTR) and albumin as well as several minor 

carriers. The less biologically active T4 is largely deiodinated in peripheral tissues to the 

bioactive form of TH, T3 (Figure 1). Alternatively, T4 may be converted to the inactive 

metabolite, rT3. Both T3 and rT3 can be further metabolised in peripheral tissues to 3,3’-

diiodothyronine (T2).  

1.3 3,5,3’-triiodothyronine (T3) 

T3 was first discovered in human serum in 1951 (Gross and Leblond 1951) and was found to 

be several times more biologically potent than T4 in producing the classic effects of THs 

(Gershengorn, et al. 1979). T3 is formed by the removal of an iodine atom, by deiodinase 

enzymes, from the phenolic ring of T4 (Figure 1). Like T4, T3 in serum is bound to TBG, TTR 

and albumin. As indicated above the main source of T3 is peripheral conversion from T4 in 

addition to some limited direct thyroid gland secretion. 

1.4 3,3’,5’-triiodothyronine (rT3) 

Reverse T3 (rT3) differs from T3 in that iodine is removed from the inner or tyrosyl ring of T4 

rather than the outer or phenolic ring (Chopra 1996) (Figure 1). rT3 was first found in the 

blood of rats in 1956, it has little or no activity when administered to animals and its 

metabolism is extremely rapid. The main source of rT3 is inner-ring deiodination of T4 in 

peripheral tissue, predominantly liver (Chopra, et al. 1975). 

1.5 other thyronine derivatives 

Besides T4, T3 and rT3 several other thyronine derivatives are found in serum. These include 

three diiodothyronines (3,3’-T2, 3’,5-T2 and 3’,5’-T2), two monoiodothyronines (3’-T1 and 3-

T1) and two acetic acid analogues of T4 (tetrac) and T3 (triac) as well as the sulfate and 

glucuronide conjugates of T4, T3 and rT3. Sulfate conjugates of iodothyronines are more 

actively deiodinated than the parent iodothyronine and sulfated T3 loses its affinity for the 

thyroid receptor (Visser 1994). 

1.6 Thyroid hormone receptors 

Thyroid hormones act by binding to specific nuclear receptors that interact with DNA 

causing activation or repression of transcription (Tata and Widnell 1966). In the 1960s it was 

noted that nuclear RNA transcription preceded many of the physiological effects of T3 and 

this led to the discovery of high affinity nuclear receptors for T3 (Oppenheimer, et al. 1972; 

Samuels and Tsai 1973). The cloning from many species of multiple cDNAs encoding 

proteins with the characteristics of TH receptors (TR) brought about the realisation that 

there is a family of TRs (Evans 1988). These have molecular weights of 50 to 55kDa and bind 

T3 with high affinities (Sap, et al. 1986; Weinberger, et al. 1986). The TR isoforms have 

substantial amino acid sequence homology with the steroid hormone receptors (Evans 

1988). Levels of nuclear TRs correlate well with the developmental and tissue specific effects 

of T3 (Chan, et al. 2002). 
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Fig. 1. Deiodination pathways of the thyroid hormones. D1, Deiodinase Type 1; D2, 
Deiodinase Type 2; D3, Deiodinase Type 3 

2. Thyroid hormone and iodide are required for normal fetal development 

2.1 Mild maternal thyroid dysfunction and impaired neuro-cognitive function in the 
offspring 

There is now ample evidence that even mild maternal hypothyroidism is associated with 

impaired fetal neuro-cognitive outcome. World wide, the most common cause of maternal 

hypothyroidism is iodine deficiency (Andersson, et al. 2010; Pharoah and Connolly 1991). 

Severe iodine deficiency is well known to cause severe mental retardation, neuro-muscular 

impairment and short stature, a syndrome known as cretinism. While cretinism was 

described hundreds of years ago, the link between milder degrees of iodine deficiency and 

reduced intelligence of the offspring was first described described in the Himalayas in the 

early 20th century. Subsequent work in the highlands of Papua New Guinea by Pharoah 

confirmed the link between milder degrees of iodine deficiency and reduced neuro-

cognitive function and provided evidence of correlations between reduced maternal T4 (but 

not T3) levels and reduced intelligence and coordination (Pharoah and Connolly 1991). A 

small, more recent Italian study (Vermiglio, et al. 2004) confirmed reduced IQ levels and a 

high incidence of attention deficit disorder in offspring of women from an area of moderate 

iodine deficiency. There was a strong inverse correlation between maternal mid gestation 
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free T4 (FT4) and offspring IQ. A Spanish study emphasised the importance of early iodine 

supplementation in preventing neurological damage (Berbel, et al. 2009). 

A link between mild maternal hypothyroidism and impaired intellectual development of 
offspring was suggested in the 1960s. Over several years, from the late 1960s to the 1970s 
Man and co-workers published data from 1349 women whose serum T4 was estimated by 
measuring butanol-extractable iodine during early and late pregnancy (Man, et al. 1991); 
three percent were hypothyroxinemic. Developmental and intellectual outcomes of progeny 
of 210 euthyroxinemic women, 15 hypothyroxinemic women adequately treated with 
thyroxine and 21 women inadequately treated with T4 were compared at eight months, four 
and seven years of age. Mothers were well matched for intelligence, years of education and 
chronological age. At each age children of mothers with inadequately treated 
hypothyroidism had lower mean developmental and intellectual scores. 

Subsequent studies using more precise measurements of TH status have yielded similar 
results. Haddow and co-workers (Haddow 1999) measured TSH levels in stored blood taken 
from over 25,000 pregnant women. Seventy-five women (0.3%) had levels at or above the 
99.7th percentile; 47 were contacted and agreed to allow neuropsychological testing of their 
children at seven to nine years of age. Children of an additional 15 women with serum TSH 
levels between the 98th and 99.6th percentiles were also tested; 77 % of these 62 women had 
positive thyroid antibodies (markers of potential autoimmune thyroid disease). Results were 
compared with those of 124 women with normal thyroid function (14% of whom had 
positive antithyroid antibodies) and demonstrated significantly (p=0.06) reduced full-scale 
IQ scores, reduced verbal IQ scores (p=0.06) and word discrimination (p=0.01).  

Children of women with normal thyroid stimulating hormone (TSH) levels but FT4 levels 
less than the 10th percentile during early pregnancy (i.e. technically normal thyroid function) 
had significantly lower Bayley Psychomotor Development Index scores at ten months of age 
than children of women with higher FT4 levels. Mothers with FT4 levels below the 10th 
percentile had a significantly higher incidence of positive antithyroid antibodies (Pop, et al. 
1999). 

These, and other (Ghassabian, et al. 2011; Klein, et al. 2001; Kooistra, et al. 2006; Li, et al. 
2010), clinical studies provide strong evidence of a relationship between reduced or low 
normal early pregnancy FT4 levels and neuro-cognitive functioning of offspring. This 
relationship holds whether maternal thyroid dysfunction results from iodine deficiency or 
autoimmune thyroid disease. These findings suggest that maternal thyroxine is required for 
early fetal brain development and that maternal TH crosses the placental barrier. 

2.2 Maternal hypothyroxinemia 

Under normal circumstances maternal FT4 levels rise in the mid first trimester in response to 

a surge in maternal human chorionic gonadotropin (hCG) levels (Fisher 1983) (Figure 2). 

HCG is a double chain glycosylated protein secreted by placenta from early pregnancy that 

shares a common alpha subunit with TSH. The beta subunits of each hormone and their cell 

membrane receptors are also significantly homologous. HCG stimulates the normal 

maternal thyroid via the TSH receptor to synthesise and secrete TH. Very high hCG levels as 

are seen in women with excessive pregnancy induced vomiting (hyperemesis) and women 

with placental malignancy (choriocarcinoma) can cause maternal hyperthyroidism. As 
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normal pregnancy progresses hCG levels fall and this is reflected in falling FT4 levels (Figure 

2). Impairment of maternal TH secreting capacity from iodine deficiency or autoimmune 

thyroid disease can blunt the physiological first trimester surge in maternal TH secretion, or 

if more severe can result in maternal hypothyroidism. 

 

Fig. 2. Ontogenic changes in maternal and fetal thyroid gland and hormone function 
(compiled with data from (Fisher 1983; Fuse 1996)). hCG, human chorionic gonadotropin; 
TSH, thyroid stimulating hormone/thyrotropin; T4, thyroxine. 

Mild iodine deficiency is prevalent in many parts of the world, including some European 

countries, the USA and Australia and as discussed above is a common cause of maternal 

hypothyroxinemia. Iodine deficiency can be exacerbated by maternal smoking, which 

increases blood thiocyanate levels. Thiocyanate competitively blocks the sodium iodide cell 

membrane symporter (NIS) responsible for transfer of iodide into maternal and fetal thyroid 

and for materno-fetal transfer of iodide by the placenta (Manley, et al. 2005) . Thyroid 

autoimmunity is common in pregnant women. Autoimmune thyroid disease (AITD) is 

associated with autoantibodies to thyroperoxidase (TPO). This enzyme oxidises iodine in 

the presence of hydrogen peroxide, facilitating iodination of tyrosine and synthesis of TH. 

Enzyme activity is blocked by anti-TPO autoantibodies. About 10% of pregnant women 

have positive anti-thyroperoxidase antibodies at 14 weeks gestation and about 2.5% have 

asymptomatic hypothyroidism (Lazarus 2005).  
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2.3 Ontogeny of the human fetal hypothalamic-pituitary-thyroid axis  

The thyroid gland is the first endocrine organ to develop in man where it originates as a 

thickening in tissue destined to become the tongue (Fuse 1996). This bud descends to the 

level of the larynx, forming two lobes connected by an isthmus. Recognisable thyrocytes are 

present by the end of 7 weeks gestation but mature thyroid follicles containing colloid do 

not appear until after 13.5 weeks gestation. The fetal thyroid appears to be able to 

accumulate iodine by about 12 weeks gestation (Figure 2). Iodine concentrating capacity 

increases from about 12 weeks, reaching a peak at about 24 weeks gestation. T4 is 

synthesised by about 19 weeks gestation (Fuse 1996) (Figure 2). 

The pituitary gland has two separate origins, the glandular component (appearing in the 

developing mouth at about 3 weeks gestation) and the neural primordium (extending from 

the hypothalamus about 5.5 weeks). The glandular primordium forms Rathke’s Pouch, 

which loses its connection with the oral cavity by about 8.5 weeks. This adenohypophyseal 

primordium forms the anterior pituitary and forms a close association with the developing 

neural structure forming the neurohypophysis. Cells staining for the alpha subunit of TSH 

can be seen from 8-12 weeks gestation. The beta subunit can be identified by 13-15 weeks 

gestation. Immunoreactive TSH can be identified in fetal serum by 12 weeks gestation but 

levels are low until a rapid increase at 18-22 weeks. 

These data suggest that while the fetal thyroid can concentrate iodine and synthesise TH in 

the late first trimester. TSH regulated TH secretion may not occur until as late as 18-20 

weeks gestation (Figure 2). 

2.4 Feto-maternal transfer of iodide and thyroid hormones 

2.4.1 Iodide 

Detectable iodine in the amniotic fluid of pregnant rabbits fed potassium iodide was 
reported in 1859 and in 1872 similar results were reported in man (quoted by (Gersten 1954). 
Transfer of radioiodine from the maternal to fetal circulations of the guinea pig was 
reported in 1955 (Logothetopoulos and Scott 1955) who noted that transport was blocked by 
sodium thiocyanate, suggesting an active transport process. In thyroid iodide is transferred 
from blood to the thyroid cell by the sodium iodide symporter (NIS) and iodide efflux from 
the thyrocyte is mediated by another transporter called Pendrin. NIS (Bidart, et al. 2000; 
Mitchell, et al. 2001) and Pendrin (Bidart et al. 2000) have been reported in trophoblasts and 
functional studies in a trophoblast cell line suggest that these are responsible for iodide 
influx and efflux in placenta (Manley et al. 2005). Sodium thiocyanate is a powerful inhibitor 
of NIS. Recently SLC5A6, a placental sodium/multivitamin transporter has been identified 
as an iodide transporter (de Carvalho and Quick 2011) but its role in placental iodide 
transfer is as yet unclear. 

2.4.2 Thyroid hormone 

Early human studies suggested that there was significant materno-fetal transfer of TH (Raiti, 
et al. 1967) and this was supported by detection of significant amounts of TH in cord blood 
of infants unable to synthesise TH (Vulsma, et al. 1989). Investigation of transfer of T4 in the 
isolated perfused human placenta demonstrated that the abundant type 3 deiodinase (D3) 
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significantly limited transfer so that the fetal circuit T4 reached only 0.008% of maternal 
levels. Inhibition of D3 by iopanoic acid increased fetal T4 levels to 30% of those in the 
maternal circuit (Mortimer, et al. 1996). Membrane TH transporters were demonstrated in 
human trophoblasts and choriocarcinoma cell lines (Mitchell, et al. 1992) mediating uptake 
and efflux of TH. The identities of these transporters were subsequently ascertained.  

There is now clear evidence of THs in fetal serum, coelomic and amniotic fluid and brain in 

early pregnancy, a time when the fetal thyroid gland has not yet developed the capacity to 

secrete TH (Calvo, et al. 2002). These studies were done in human tissues obtained from 

fetuses as early as 5-6 weeks gestation. The early feto-placental unit (up to 12-13 weeks 

gestation) consists of the fetus floating in amniotic fluid (AF) within an amniotic sac. This in 

turn is contained within an exocoelomic cavity containing coelomic fluid (CF) in which 

floats a prominent secondary yolk sac. The yolk sac, an extension of the fetal gastrointestinal 

tract and circulation, secretes and resorbs a variety of proteins. The CF is contained within a 

uterus lined by the early placenta. The early placenta is poorly vascularised, relatively 

hypoxic and covers the surface of the chorionic sac. The CF is protein rich, containing 

albumin and TTR whereas AF is essentially a low protein ultrafiltrate of maternal serum 

containing placental and yolk sac secretory products. Its volume is increased by urine 

secreted by the developing fetal kidneys. 

With increasing gestational age, the yolk sac and the majority of the placenta regress and the 

exocoelomic cavity is largely obliterated by an expanding amniotic sac. The placenta forms a 

circumscribed disc-like structure and trophoblasts, the epithelial cells that mediate materno-

fetal exchange, invade the uterine vasculature. This allows development of a mature 

maternal and fetal circulation within the placenta and a rise in placental oxygen levels. 

There is increasing evidence that the changing oxygen levels within the developing placenta 

have major effects on trophoblast function (Patel, et al. 2010b). 

Human studies have provided considerable insight into TH levels in fetal serum (FS), CF 
and AF. It is clear that maternal TH crosses the placenta, entering the human embryonic 
cavities and fetal blood well before the fetal thyroid is secreting its own TH (Calvo et al. 
2002; Contempre B 1993) (Figure 3). Total T4 was detectable in several sets of CF fluid 
obtained between 5.8 and 11 weeks gestation, with set means ranging from 950 to 1280 
pmol/litre. Total T3 levels were very much lower (2.50 to 2.82 pmol/litre). rT3 levels were 
high, ranging from 2.1 to 5.48 nmol/liter. T4, T3 and rT3 were also found in AF sampled 
from 8 weeks on. Total T4 ranged from 63 to 2041 pmol/litre, whereas total T3 was 6 to 12 
pmol/litre. rT3 levels were again relatively high at 210 to 3430 pmol/litre. The high ratios 
of rT3 to T4 suggest active Type 3 deiodination (see below). The yolk sac synthesises and 
secretes the T4 binding protein TTR and low levels of TTR were detected in CF from 7 
weeks gestation, increasing with increasing gestational age. Mean free T4 levels of 2.5 to 
2.82 pmol/litre could be estimated in CF. Mean FT4 in AF ranged from 6.45 to 20.43 
pmol/litre.  

These TH levels, expressed as a percentage of corresponding maternal levels in early 

pregnancy, are shown in Figure 3. Although fetal total T4 is only about 5% of maternal levels 

and CF and AF levels are less than 1% of maternal values, free T4 levels are much higher 

(approaching maternal levels) in these compartments due to very low TBG levels (Calvo et 

al. 2002).  

www.intechopen.com



 
Recent Advances in Research on the Human Placenta 

 

316 

 

Fig. 3. Levels of total and free T4 and total T3 in first trimester fetal blood, coelomic (CF) and 
amniotic (AF) fluids as a percentage of maternal levels in the first trimester. (Data from 
(Calvo et al. 2002)). 

Maternal T4 and FT4 levels increase during the first and second trimester. T4 levels in CF 
correlate with those in maternal serum and in the second trimester fetal blood levels also 
correlate with maternal values. Interestingly T3 and free T3 levels in CF do not correlate with 
maternal levels (Calvo et al. 2002). These data strongly argue for significant transfer of 
maternal THs to the coelomic and amniotic fluids and into the fetal circulation. The 
significant gradient of total T4 from maternal to fetal circulations and high levels of rT3 in CF 
and AH suggest that active conversion of T4 to rT3 by D3 in placenta, placental membranes 
and the fetus strongly modulates fetal T4 supply. Despite this fetal T4 levels are strongly 
determined by maternal levels. 

There is also strong clinical evidence that, at least in the presence of a hypothyroid fetus, 
transfer of maternal T4 to the fetus continues throughout pregnancy. In 1989 Vulsma and 
colleagues reported that cord blood T4 levels from infants with complete thyroid agenesis or 
a complete defect in organification of iodine and capacity to synthesise TH had T4 levels of 
30 – 75 nmol/liter, which must have been of maternal origin (Vulsma et al. 1989). Placental 
D3 levels appear normal in these infants (Koopdonk-Kool, et al. 1996). 

2.5 Thyroid hormone and development of the fetal brain 

Although fetal serum T3 levels are very low at that time, T3 and TH receptors have been 
identified in human fetal brain as early as 9 weeks gestation (Bernal and Pekonen 1984; 
Chan et al. 2002). Brain T3 is locally produced by Type 2 deiodination of T4 and rat studies 
indicate that brain T3 in the hypothyroid rat fetus cannot be replenished by maternal T3 
administration but requires maternal T4. T4 enters brain via the cerebral circulation but a 
significant proportion also appears to be transferred through the choroid plexus, a potent 
source of cerebro-spinal fluid (CSF) transthyretin (TTR). TTR represents about 20% of CSF 
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protein and is the major TH transporter in CSF. Membrane TH transporters, notably 
monocarboxylate transporter (MCT) 8, are important mediators of neuronal T3 uptake. 
Intracellular T3 is translocated to the cell nucleus where it binds to TRs and, following 
homodimerisation or heterodimerisation with retinoic acid receptors, it binds to TH 
response elements present in many genes, positively or negatively regulating them. T3 has 
major effects on neurogenesis, cell migration and myelination in the developing brain (Patel, 
et al. 2011). 

3. Placental regulation of thyroid hormone transfer 

3.1 Iodothyronine deiodinases 

The deiodinases play an important role in coordinating TH action during vertebrate 
development and they regulate TH action within selected tissues during development and 
adulthood. Three deiodinases have been identified, deiodinase type 1 (D1), deiodinase type 
2 (D2) and deiodinase type 3 (D3), and all are integral membrane proteins and are 
selenoenzymes that have regions of high homology surrounding the selenocysteine residue 
at the active site (Bianco and Larsen 2005). Interestingly, the deiodinases differ in tissue 
distribution, substrate specificities, catalytic profile, physiological functions and regulation. 
Of the three deiodinating enzymes, only D2 and D3 have been identified in the placenta 
(Koopdonk-Kool et al. 1996). Placental D3 activity is much greater (~200 times in first 
trimester and ~400 times at term) than D2 activity, however the activity and expression of 
both D2 and D3 falls as gestation progresses (Chan, et al. 2003; Koopdonk-Kool et al. 1996; 
Stulp, et al. 1998). D2 is an outer ring deiodinase (Nelson, et al.) found primarily in brain, 
pituitary, brown adipose tissue, thyroid and placenta with a preference for T4 > rT3 as a 
substrate (Figure 1). D2 converts the biologically inactive T4 to the active T3. Conversely, D3 
catalyses inner ring deiodination (IRD) of T4 and T3 and is mainly present in placenta, brain 
and skin with T3 being the preferred substrate over T4 (Figure 1) (Gereben, et al. 2008). D3 
inactivates T3 to T2 or T4 to rT3. T2 and rT3 were previously considered inactive metabolites 
because they do not bind TH receptors, however more recently rT3 has been implicated in 
actin polymerisation (Farwell, et al. 2005) and T2 in stimulation of mitochondrial respiration 
(O'Reilly and Murphy 1992).  

D2 and D3 have been found to be present in the placenta throughout gestation (Chan et al. 
2003). D2 has been localised to the villous cytotrophoblasts cells in the first trimester with 
expression in villous syncytiotrophoblasts (ST) variable and weak. In contrast, D3 has been 
localised to the villous ST cells and syncytial sprouts with expression in villous CTs focal 
and weak. In the third trimester villous ST expressed D2 and D3, whilst villous CTs were 
stronger for D2 than D3 (Chan et al. 2003). The localisation of the deiodinases suggests that 
they may regulate the amount of maternal TH reaching fetal circulation. D3 localised to the 
villous ST layer, which is in direct contact with the maternal circulation can protect the fetus 
from excessive maternal TH. 

3.2 Placental TH membrane transporters 

TH membrane transporters mediate cellular uptake and efflux of TH (Hennemann, et al. 

2001; Visser, et al. 2008). Trophoblast membrane transport of TH was first reported in 1992 

by Mitchell et al, using the human placenta choriocarcinoma cell line, JAR (Mitchell et al. 
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1992). Since this time significant findings in placental TH transporters have been made. TH 

transporters identified in the human placenta to date include the monocarboxylate 

transporters MCT8 (Chan, et al. 2006) & MCT10 (Friesema, et al. 2008), L-type amino acid 

transporters LAT1 (Okamoto, et al. 2002) and LAT2 (Park, et al. 2005) and organic anion 

transporting polypeptides OATP1A2 (Patel, et al. 2003) and OATP4A1 (Patel et al. 2003) 

(Sato, et al. 2003). However, their individual contribution to placental TH transport has yet 

to be elucidated.  

3.2.1 MCT8 & MCT10 

Freisema et al identified MCT8 as a TH transporter with a preference for T3 over T4 

(Friesema, et al. 2003). Both MCT8 and MCT10 mRNAs have been identified in placenta 

however it is only recently that both mRNAs were identified in early human placenta (from 

6 weeks gestation) and both increased in expression throughout pregnancy (Loubiere, et al. 

2010). Immunohistochemical studies have localised MCT8 and MCT10 proteins to villous 

ST, CT and extra villous trophoblasts (EVTs) in first trimester placental tissue, with marked 

immunostaining of MCT10 in the CT layer (Chan et al. 2006; Loubiere et al. 2010). Both 

proteins localised to villous STs in term placental tissue.  

3.2.2 OATP1A2 & OATP4A1 

The expression of OATP1A2 and OATP4A1 in placenta and their ability to mediate 
transport of T4, T3 and rT3 have implicated both proteins as TH transport mechanisms in the 
placenta (Patel et al. 2003; Sato et al. 2003). RT-PCR analysis revealed OATP1A2 mRNA 
increases in human placental tissue throughout gestation, whilst OATP4A1 decreases to 
mid-gestation followed by an increase towards term. Western blotting results suggest no 
significant change in both proteins throughout gestation.  

OATP1A2 and OATP4A1 proteins have been localised to villous STs in the first trimester 
with OATP1A2 also found moderately strong in villous CT and extra villous trophoblasts 
(EVTs). In term tissue both proteins revealed diffuse, weak expression, with OATP4A1 
preferentially localised to the apical surface in STs (Loubiere et al. 2010; Sato et al. 2003).  

3.2.3 LAT1 & LAT2 

LAT1 protein has been localised to the ST layer in placenta and LAT2 to the apical and basal 
membranes of ST at term (Hoeltzli and Smith 1989; Lewis, et al. 2007; Okamoto et al. 2002; 
Ritchie and Taylor 2001). Localisation of the proteins throughout gestation has yet to be 
elucidated. A more recent study of LAT1 mRNA expression in human placenta revealed 
that it increases with gestation, whilst LAT2 did not alter. 

Considering in the first trimester STs are in direct contact with maternal blood, MCT8, 
OATP4A1 and LAT1 may be the key transporters for TH uptake from the maternal 
circulation as they are preferentially localised to the apical membrane of STs (Chan et al. 
2006; Ritchie and Taylor 2001; Sato et al. 2003), whilst OATP4A1 and LAT2 may play more 
prominent roles later in gestation. TH membrane transporters in the placenta most likely act 
in concert to regulate the passage of TH transported from the maternal to the fetal 
circulation throughout gestation.  
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3.3 Placental TH binding proteins 

Thyroid hormone is extremely hydrophobic and carried in serum bound to three hepatically 
secreted binding proteins, thyroxine binding globulin (TBG), transthyretin (TTR) and 
albumin (Schussler 2000). Previously our group has described the synthesis of the TH 
binding proteins TTR and albumin by human placenta (McKinnon, et al. 2005).  

3.3.1 Transthyretin (TTR)  

Studies have reported high levels of TTR in fetal serum as early as 13 wks gestation (Fryer, 
et al. 1993) and considering little TTR mRNA is detectable in fetal liver at this time 
(Jacobsson 1989) we propose that the fetal TTR present may be of placental origin. Using 
placental explants and the choriocarcinoma cell line JEG3, we demonstrated that TTR was 
not only synthesised (McKinnon et al. 2005) but also secreted mainly through the apical cell 
membrane of these cells (Landers, et al. 2009).  

We have also shown internalisation of TTR by placental explants and JEG3 cells which 
increased in the presence of T4 (Landers et al. 2009). This increased internalization occurred 
under TTR: T4 ratios that favoured TTR tetramer formation (Landers et al. 2009) Similar 
increases have been described in astrocytoma cells (Divino and Schussler 1990b). Cross-
linking studies of TTR bound to 125I-T4 suggest that TTR-T4 is internalised by JEG3 cells as a 
TTR-T4 complex. However, further research is required to confirm this finding and elucidate 
the mechanisms by which TTR or TTR-T4 is internalised by the placenta. The protective role 
of TTR was postulated when binding of TTR to T4 in placental cytosol was inhibited by 
addition of mefanamic acid, resulting in an increase in T4 deiodination as determined by 
HPLC (McKinnon et al. 2005). The exact mechanisms of this are yet to be confirmed.  TTR 
internalisation has previously been observed in ependymoma cells (Kuchler-Bopp, et al. 
2000), chicken oocytes (Vieira, et al. 1995) and kidney proximal tubules (Sousa, et al. 2000) 
via megalin-mediated endocytosis. Receptor-mediated uptake of TTR was first described in 
HepG2 cells, primary rat hepatocytes, renal adenocarcinoma cells, neuroblastoma and 
transformed lung cells (Divino and Schussler 1990a). Similarly apical secretion of TTR has 
been described in the choroid plexus (Dickson 1986) and retinal pigment epithelium 
(Jaworowski, et al. 1995). Apical secretion of TTR by trophoblast cells into what would be 
the maternal circulation would increase local serum TTR concentrations at the surface of 
trophoblast cells. We propose that this would result in increased binding of maternal T4 to 
placental TTR where TTR may serve to protect T4 from deiodination and deliver T4 or the 
TTR-T4 complex to trophoblast cells of the placenta for eventual delivery to fetal circulation.  

Many chemicals, including a variety of environmental pollutants, bind to TTR and displace 
T4. These agents can cross the placenta and interfere with fetal thyroid function (Koopman-
Esseboom, et al. 1994). Their role in interfering with TTR TH transfer is however yet to be 
investigated. 

3.3.2 Albumin 

There is an abundance of albumin during human pregnancy that comes into direct contact 
with the trophoblast cell layer. Early studies have demonstrated that maternal albumin is 
internalised by placental explants and in the syncytiotrophoblast layer the protein is either 
apically recycled into the maternal circulation or degraded (Lambot, et al. 2006). The exact role 
albumin plays at the trophoblast surface remains unclear and requires further investigation 
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particularly in first trimester tissue and in the presence of TH. Furthermore, the fate of albumin 
synthesized by placenta (McKinnon et al. 2005) is also of interest as, like TTR, it may also play 
a protective role for TH and aid in the transport of TH to fetal circulation. 

4. Placental regulation of Iodide transport 

4.1 Iodide transporters 

It has been long recognised that maternal iodide crosses the placenta to the fetal circulation 
(Logothetopoulos and Scott 1956). Two transporters carry out placental iodide transport 
from the maternal to the fetal circulation: the sodium-iodide symporter (NIS) and Pendrin. 
Both transporters were first described in thyroid (Dai et al. 1996) followed by placenta 
(Mitchell et al. 2001) and kidney (Spitzweg, et al. 2001). NIS is a membrane-bound 
glycoprotein and the fifth member of the solute carrier family (SLC5A5)(Dohan, et al. 2003). 
As its name suggests, NIS simultaneously takes up two Na+ and one I- ion from 
extracellular fluid (i.e. blood) into cells (Figure 4). This process is an active transport 
powered by the sodium gradient across the cell membrane generated by sodium potassium 
pumps, (Na+/K+ ATPase). Pendrin is an anion exchanger, encoded by the Pendred 
syndrome gene (PDS) (Manley et al. 2005; Royaux, et al. 2001; Scott and Karniski 2000) 
activated by high concentration of intracellular iodide (Yoshida, et al. 2004). Pendrin activity 
is dependent on NIS transporting iodide into the cells (Figure 4).  

 

Fig. 4. Regulation of iodide transport across placental syncytiotrophoblast. NIS, sodium 
iodide symporter; PEN, Pendrin; hCG, human chorionic gonadotropin; CGR, chorionic 
gonadotropin receptor. 
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The physiological functions of these two transporters are similar in placenta and thyroid. In 

thyroid gland, NIS is localised at the basal membrane of thyrocytes and takes up iodide 

from the blood stream into the cells (Caillou, et al. 1998; Castro, et al. 1999; Dai et al. 1996; 

Royaux, et al. 2000; Yoshida, et al. 2002). Pendrin is expressed on the apical membrane of 

thyrocytes and releases iodide into thyroid follicles for TH synthesis (Dohan and Carrasco 

2003; Mian, et al. 2001; Spitzweg, et al. 2000). In placenta, NIS is localised to the apical 

membrane (maternal side) of syncytiotrophoblasts, which directly contacts with maternal 

blood and influxes iodide into the cells (Figure 4). Conversely, Pendrin is located in the 

basal membrane (fetal side) of syncytiotrophoblasts and effluxes iodide into the extracellular 

space (Bidart et al. 2000; Manley et al. 2005; Mitchell et al. 2001). Mutations of NIS have been 

found in patients previously found to have congenital hypothyroidism due to an iodide 

transport defect. Some of these NIS mutations have been confirmed to cause failure of 

membrane targeting (Kosugi, et al. 1999; Kosugi, et al. 1998; Matsuda and Kosugi 1997; 

Pohlenz, et al. 2000). Pendred syndrome, a recessively inherited disorder causing congenital 

deafness and thyroid goitre is caused by a genetic defect in the PDS gene (Everett, et al. 

1997; Kopp, et al. 1999; Royaux et al. 2000; Taylor, et al. 2002). 

4.2 Cell model for study of placental iodide transport 

During development of the human placenta, cytotrophoblasts fuse to form multinucleated 

syncytiotrophoblasts that form the surface of the placental villi and are directly bathed in 

maternal blood. Syncytiotrophoblast cells conduct maternal-fetal nutrient and gas exchange 

and have a distinct endocrine function to produce and secrete pregnancy hormones such as 

hCG and placental lactogen. BeWo cells are a human trophoblast-derived choriocarcinoma 

cell line that shares many features with primary trophoblasts in culture. They form a well-

differentiated monolayer, undergo syncytialization and, secrete hCG (Bode, et al. 2006; Liu, 

et al. 1997; Sullivan 2004). They have been used widely in placental transport studies, e.g. 

glucose (Antony, et al. 2007; Araujo, et al. 2008; Baumann, et al. 2007; Di Simone, et al. 2009; 

Mark and Waddell 2006), amino acid (Jones, et al. 2006a, b; Novak, et al. 2006), iron 

(Danzeisen and McArdle 1998; Gambling, et al. 2001), fatty acid (Johnsen, et al. 2009; Tobin, 

et al. 2009), and drug and toxicity studies (Araujo, et al. 2009; Hirano, et al. 2008; Magnarin, 

et al. 2008; Prouillac, et al. 2009). BeWo cells express both of the iodide transporters, NIS and 

Pendrin (Manley et al. 2005). NIS proteins are located in the apical membrane of polarized 

BeWo cells while Pendrin is located to the basolateral membrane. BeWo cells demonstrate 

significant uptake and efflux of iodide, with kinetic and inhibitory characteristics consistent 

with these transporters (Li, et al. 2007; Manley et al. 2005). The human JAr placental 

choriocarcinoma cell line has also been used in iodide transport studies but radio-labelled 

iodide (I125) uptake was dependent on the presence of exogenous hCG in the culture 

medium (Arturi, et al. 2002a) limiting their use in many studies. The JEG-3 cell line also 

expresses both NIS and Pendrin, however JEG-3 cells do not take up measureable amounts 

of I125, even after hCG treatment, since the NIS protein is not localized to the apical 

membrane (unpublished observation). Primary trophoblasts and placental explant cultures 

might appear to be the ideal model for iodide transport studies, but due to variations in 

sample quality and low NIS expression their use is limited. Clearly, BeWo cells possess the 

physiological properties required and are the best cell model for studies of iodide transport. 
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4.3 Regulation of placental iodide transport 

In thyroid follicular cells, NIS is regulated by serum levels of the pituitary derived TSH 

(Ajjan, et al. 1998; Kogai, et al. 1997; Saito, et al. 1997). However, unlike thyroid, placental 

syncytiotrophoblasts not only express NIS but also produce hCG. NIS expression and iodide 

uptake is increased in Jar cells exposed to hCG, and withdrawing hCG from the culture 

medium, leads to decreased NIS expression and iodide uptake (Arturi et al. 2002a). In BeWo 

cells NIS mRNA and membrane protein is up-regulated by hCG, and is accompanied by 

increased levels of iodide uptake (Li et al. 2007). Clearly hCG is an important regulator of 

placental iodide transport. In thyroid, hCG can stimulate NIS expression, subsequently 

increasing iodide uptake and TH synthesis and secretion (Arturi, et al. 2002b; Kraiem, et al. 

1994).  

An inhibitory effect of excess iodide on iodide organification in the normal thyroid (Wolff-

Chaikoff effect) was reported by Wolff and Chaikoff in 1949 (Wolff, et al. 1949). Following 

the discovery of NIS, persuasive evidence suggested that the inhibitory effect of iodide is 

associated with a decrease in NIS mRNA and protein levels, subsequently reducing iodide 

transport to the thyroid (Eng, et al. 1999; Eng PH 2001; Glatt, et al. 2005). In iodine deficient 

rats, NIS mRNA is up regulated in fetal thyroid, as well as in the placenta (Schroder-van der 

Elst, et al. 2001). In BeWo cells iodide also caused a significant decrease in NIS mRNA and 

apical membrane protein, followed by a decrease in levels of iodide uptake (Li et al. 2007). 

These studies suggest that self-regulation of iodide uptake by intracellular iodide occurs in 

thyroid and placenta. In BeWo cells, iodide decreases hCG mRNA expression and protein 

secretion. Interestingly cord blood TH levels in neonates of mothers with moderate iodine 

deficiency and hypothyroxinemia are significantly higher than maternal levels (Glinoer 

1997; Glinoer, et al. 1992). Although no measurements of serum inorganic iodine 

concentrations were made in these cases it is tempting to hypothesise that in the face of 

moderate maternal iodide deficiency up-regulated placental NIS expression and increased 

materno-fetal placental iodide transport may allow the fetus to maintain normal TH levels. 

Excessive maternal iodide intake may, on the other hand, down-regulate NIS expression in 

placenta and reduce iodide transport to the fetus.  

5. Importance of oxygen in placental thyroid hormone and iodide transport 

5.1 Changes in placental oxygen concentration through gestation  

The adaptive processes of the developing placenta have long been studied demonstrating 
that under rapid physiological changes specific genes and associated proteins are affected, 
leading to altered nutrient, hormone and waste exchange between the mother and fetus. 
Many of these physiological changes relate to changing oxygen concentrations in the 
placenta that relate to placental vascularisation by the end of the first trimester of 
pregnancy. In the first trimester, EVT cells invade into the decidua, occluding uterine spiral 
arteries (Jauniaux, et al. 2003). This restricts blood flow into the intervillous space (IVS) 
resulting in a low oxygen environment that is essential for placental and embryonic 
development (Burton, et al. 1999; Genbacev, et al. 1997; Huppertz and Peeters 2005; Osol 
and Mandala 2009). Measurements with oxygen sensitive probes during ultrasonography at 
8 weeks gestation have established that the oxygen concentration within the IVS is <20 
mmHg or 3-5% O2 (Rodesch, et al. 1992). Oxygen concentrations within the underlying 
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maternal decidua are approximately 60 mmHg or 8-10% O2. Between weeks 11-12 of 
gestation, uterine spiral arterioles become patent, allowing significant maternal blood flow 
and increasing oxygen levels (Carter 2009; Jauniaux, et al. 2000; Rodesch et al. 1992). Recent 
in vitro studies have demonstrated the capacity of EVTs to initiate apoptosis of vascular 
smooth muscle cells (VSMC) and endothelial cells. This may represent the mechanism of the 
physiological modification of the uterine spiral arterioles that leads to the increased vascular 
compliance and circumference of early pregnancy (Ashton, et al. 2005; Harris, et al. 2006; 
Moffett-King 2002; Zygmunt, et al. 2003). The resulting increased blood flow and growth of 
the vascular and capillary network meets the demands of the growing fetus (Burton 2009).  

Many placental transport processes are regulated by low oxygen levels, including hormonal, 
glucose, amino acid (system A – a sodium dependant transport process of amino acids) and 
iodide transporters. Here we describe potential placental adaptations to T4 uptake through 
regulation of TTR expression and iodide uptake through regulation of the NIS cell 
membrane transporter. 

5.2 Low oxygen in the placenta and NIS expression and function 

As described earlier, placental iodide transport to the developing fetus is essential to allow 
the fetal thyroid to produce TH from about week 12 of gestation. We have demonstrated 
down regulation of mRNA and protein expression of the NIS transporter in human BeWo 
placental cells cultured at 1% oxygen in comparison to controls cultured at 8% oxygen (Li, et 
al. 2011). A significant reduction in iodide uptake in cells cultured at low oxygen was also 
observed (Li et al. 2011). This suggests that the increasing oxygenation of the placenta at 
about 12 weeks gestation may up regulate NIS expression leading to increased iodide 
transport at a time when the developing fetal thyroid requires maternal iodide. hCG 
expression measured in the same study mirrored the expression of NIS. hCG regulates Pax8, 
an essential protein that must bind to the NIS promoter and enhancer region to up regulate 
NIS transcription (Schmitt, et al. 2001). This highlights the complexity of placental NIS 
expression, with oxygen concentrations and hormonal expression both playing a role in NIS 
regulation.  

5.3 Low oxygen, the placenta and transthyretin (TTR) expression and function 

As described above, the low oxygen environment within the placenta clearly regulates a 
number of important genes including those related to specific transport processes. Recently, 
our group demonstrated that low oxygen levels up-regulate expression, secretion and re-
uptake of TTR (Patel, et al. 2010a). Human placental JEG-3 and primary trophoblast cells 
cultured under low oxygen conditions (1-3% O2), showed an increase in TTR mRNA and 
protein expression. Using fluorescent and 125I labelled TTR, increased up-take into 
trophoblast cells was observed using the same low oxygen culture conditions. The uptake 
studies were conducted in the presence of excess T4 which causes TTR tetramerisation, a 
process that appears critical for significant TTR uptake by cells (Landers et al. 2009). This 
study was the first to demonstrate physiological regulation of trophoblast TTR uptake. 
Although speculative at this stage, this could suggest increased transplacental delivery of 
thyroxine (T4) during the first trimester of pregnancy, when fetal requirement for maternal 
T4 is higher (as detailed earlier in this chapter) and when a physiological low oxygen 
environment is present.  
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Increased concentrations of placental TTR protein have been demonstrated in patients with 

preeclampsia (Gharesi-Fard, et al. 2010). This increased TTR expression probably relates to 

placental hypoxia, which is common in pre-eclampsia, but further investigation of TTR in 

the cause and/or diagnosis of pre-eclampsia is warranted.  

6. Conclusion 

Adequate supplies of maternal TH and iodide are essential for normal fetal brain 

development, with TH critical in the first trimester and iodide from the second trimester on. 

It is increasingly apparent that even very mildly reduced maternal T4 levels may impair the 

offspring’s neuro-cognitive function. Impaired maternal thyroid function from iodine 

deficiency or autoimmune thyroid disease is common and may represent a major public 

health issue. The mechanisms underlying materno-fetal transport of iodide and TH are 

slowly being unravelled. NIS and Pendrin mediate iodide transfer in placenta, as they do in 

the thyroid gland. HCG, iodide and placental oxygen levels regulate placental NIS. NIS 

transport is blocked by thiocyanate, a component of tobacco smoke, which may exacerbate 

marginal iodide deficiency in smoking mothers.  

TH transfer appears to involve trophoblast membrane TH transporters but the important 

role of placental TTR requires further evaluation. There is increasing evidence that placental 

TTR participates in a shuttle in which TTR secreted by the apical trophoblast membrane is 

taken up by the trophoblast. This shuttle appears to be involved in TH transfer but whether 

this is by carriage of TH across the placenta, delivery of TH to the membrane transporters or 

both is as yet unclear. The low placental oxygen level of early pregnancy up regulates both 

TTR expression and reuptake. Many agents interfere with T4 binding to TTR and impair 

fetal thyroid function but a role in interfering with placental transfer of TH is yet to be 

studied. Placental D3, which converts T4 to the biologically inactive rT3, is an important 

modulator of TH transfer. The interaction of TTR, if any, with the deiodinase requires 

investigation. 

Lastly, TTR is up regulated in placentas of women with pre-eclampsia. While this may be 

the effect of placental hypoxia, which is prevalent in this condition, its role as a marker of 

pre-eclampsia deserves further attention. 
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