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1. Introduction  

The plant genetic resources is preserved by pollen, seed, branch, bulb, or tissue culture at 

the gene bank. Since these need to be updated periodically (several months ~ several years), 

I point out the problems involving the great labor and space spent for the maintenance of 

plant genetic resources. 

Cryopreservation is a storage method of plant genetic resources at ultra-low temperature, 
for example, that of liquid nitrogen (LN; -196 oC). It is a preservation method that enables 
plant genetic resources to be conserved safely, and cost-effectively.  

For successful cryopreservation, it is essential to avoid intracellular freezing and induce the 

vitrification state of plant cells during cooling in LN. In addition, the cryopreservation 

method should be a simple protocol for everyone to use easily. Since the 1970’s, 

cryopreservation techniques have been researched using different plant organs, tissues and 

cells. As a result, different cryopreservation procedures have been developed (for example, 

slow-prefreezing method, vitrification method, dehydration method). With the 

development of these cryopreservation methods, tissues of tropical plants, which have been 

conventionally thought to be not cryopreserved, also were successfully preserved in LN 

(Bajaj, 1995; Towill & Bajaj, 2002). In this Chapter, I describe different types of 

cryopreservation methods.  

In addition, I often ask my colleagues why cryopreservation of plant tissue did not succeed 

irrespective of the method. As the cause, it is possible that there is a problem in the character 

of plant species (stress resistance and polyphenol production), or the ways used in the 

cryopreservation technique. Then, I also would like to present some knowledge about some 

improvements for making cryopreservation of plant genetic resources more successful in 

this chapter. 

2. Methods of cryopreservation of plant genetic resources 

In the section (2.1), I would like to introduce cryopreservation methods of plant genetic 
resources that have been developed. In the section (2.2), I would like to describe the 
approach when cryopreserving plant samples from the past literatures or my own 
experience in order to enhance the regrowth percentage after cryopreservation,  
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2.1 Cryopreservation method of plant genetic resourses  

In this section, I introduce cryopreservation procedures by using figures.  

2.1.1 Slow programmed freezing (also known as “prefreezing”)  

Slow programmed freezing was a major cryopreservation method for plant genetic 

resources until the 1980’s. The procedure in this method is shown in Fig. 1. 

 

Fig. 1. The protocol of slow programmed freezing (from Kumu et al., 1983).  

Plant genetic resources (cells and tissues) were packed in cryotube or straw, and 
cryoprotectants were added. In this method, dimethyl sulfoxide (DMSO), ethylene glycol 
(EG) and glucose were utilized as cryoprotectants. In many cases, these were used 
independently, but Finkle & Ulrich (1979) reported that the regrowth percentage of 
germplasm after cryopreservation was higher when mixing cryoprotectans in sugar cane 
cells. Packed specimens were gradually cooled from -20 oC to -100 oC using a programmable 
freezer or ethanol baths. Processing which freezes cryoprotectant in a tube artificially is 
performed near -7~-8 oC in the middle of the freezing. In this treatment, ice is made to form 
out of a cell under gradual cooling. Intracellular moisture penetrates a plasma membrane, 
and arrives at the surface of the ice besides a cell, and freezes. This is called ‘extracellular 
freezing’. Intracellular moisture is removed and a cytoplasm is contracted by ‘extracellular 
freezing’. Kindly refer to the book of Kartha (1985) to understand the principle of this 
phenomenon. After making specimens freeze to a predetermined freezing-temperature, they 
are immersed in LN. The freezing-temperature is arranged by -40 oC in many species. 
Cryopreserved tubes are warmed using hot water (40 oC) for 1~2 min, and cryoprotectants 
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are removed from a tube. After rewarming, samples are moved from the cryotube, and 
recultured. The cooling rate in this method is important. It differs from 0.5 oC/min to 50 
oC/min with plant species and the size of the plant germplasm. However, in the case of the 
freezing speed of 2 oC/min or more, the regrowth after preservation tends to fall (Sugawara 
& Sakai, 1974; Uemura & Sakai, 1980). The disadvantage of this method is that there are 
many species for which the prefreezing method is not utilized at all. In addition, there are 
plant tissues which freeze to death partially, and cases in which the decrease in subsequent 
viability induced also exists (Grout & Henshaw, 1980; Haskins & Kartha, 1980).  

2.1.2 Slow unprogrammed freezing (also known as “simple freezing”) 

This cryopreservation method was reported using samples of several species in the early 
1990’s. The advantage of this method is that researchers can cryopreserve without a special 
programmable freezer, compared with slow programmed freezing.  

The slow unprogrammed freezing is shown in Fig. 2. Plant tissues are added to the tube 
containing cryoprotectants. Tubes are treated for about 10 min at room temperature (25 oC), 
and are kept at -30 oC for 30~120 min. They are then immersed in LN thereafter. 
Cryopreserved tubes are warmed using hot water (40 oC) for 1~2 min, and cryoprotectants 
are removed from a tube. After rewarming, samples are moved from the cryotube, and 
recultured. In this cryopreservation method, mixtures of glycerol and sucrose or DMSO and 
sorbitol are used as cryoprotectants (Sakai et al., 1991; Niino et al., 1992; Maruyama et al., 
2000). In this cryopreservation method, although ‘naked’ samples are used, Kobayashi et al. 
(2005) utilized cells encapsulated with alginate beads in the suspension cells of tobacco. 

 

Fig. 2. The protocol of slow unprogrammed freezing (from Sakai et al., 1991).  
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2.1.3 Vitrification 

The vitrification method has been the major cryopreservation method since Uragami et al. 

(1989) developed it using asparagus culture cells. This cryopreservation method is shown in 

Fig. 3. Plant tissues are added to the tube containing the loading solution (LS) for the 

osmoprotection. Beads in tubes are osmoprotected for about 30 min at room temperature 

(about 25 oC). LS is the liquid culture medium in which sucrose (0.4 mol/L) and the glycerol 

(2.0 mol/L) were contained. After loading, LS is removed from a tube, and new vitrification 

solution is added for the dehydration of plant tissues.  

 

 

Fig. 3. The protocol of vitirication method (from Sakai et al., 1990).  

Many cryoprotectants are dissolved in the vitrification solution, and the optimal 

dehydration time using the solution changes greatly with treatment temperature.  

In many cases, the dehydration using the vitrification solution is performed at 0 oC by the 

reason of the toxicity to plant cells. Plant Vitrification Solution 2 (PVS2; Sakai et al., 1990) is 

utilized most as the vitrification solution. Besides PVS2, there are many vitrification 

solutions. Please refer to Table 1 for the composition. They are immersed in LN after that. 

Cryopreserved tubes are warmed using hot water (40 oC) for 1~2 min, and the vitrification 

solution is removed from a tube. After the removal of vitrification solution, unloading 

solution (the liquid medium supplemented with 1.2 mol/L sucrose) is added to a tube, and 

cryoprotectants are removed from plant tissues for 30 min at 25 oC. In many cases, the 

above-mentioned liquid mediums (LS, PVS and unloading solution) were adjusted by pH 
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5.7~5.8, but without plant growth regulators. After unloading, samples are removed from 

the cryotube, and recultured. 

 

Conponent (g/L) PVS1 PVS2 PVS3 

Glycerol 220.0 300.0 500.0 

Ethylene Glycol 150.0 150.0  

Propylene Glycol 150.0   

Dimethyl Sulfoxide (DMSO) 70.0 150.0  

Sucrose  136.9 500.0 

Sorbitol 91.1   

Table 1. Components of major plant vitrification solutions. Components of three plant 
vitrification solutions are referred from previous reports (Uragami et al., 1989; Sakai et al., 
1990; Nishizawa et al., 1993).  

2.1.4 Encapsulation-vitrification 

The encapsulation-vitrification method was reported first by Matsumoto et al. (1995) using 

shoot apices of Wasabia japonica, and then spread all over the world. The advantage of this 

method is that regrowth of plant germplasm after cryopreservation is markedly increased 

by encapsulating plant samples with alginate beads. The encapsulation of plant germplasms 

makes for less damage to samples during vitrification procedures (loading treatment and 

dehydration treatment). On the other hand, due to encapsulation-dehydration, treatment 

time becomes long compared with that of vitrification and the cryopreservation operation 

becomes complicated (for example, encapsulation).  

The procedure for encapsulation-vitrification is shown in Fig. 4. Plant tissues are immersed 

in the calcium-free liquid medium supplemented with 0.4 mol/L sucrose, 30.0 g/L sodium 

alginate and glycerol (1.0~2.0 mol/L). The mixture (including a plant cell or tissue) was 

added drop by drop to the liquid medium containing 0.1 mol/L calcium chloride, forming 

beads about 5 mm in diameter. The above-mentioned liquid mediums (30.0 g/L sodium 

alginate and 0.1 mol/L calcium chloride) were adjusted by pH 5.7, but without plant growth 

regulators. Encapsulated specimens are added to the culture bottle containing LS for 

osmoprotection. Beads in the bottles are osmoprotected for 16 hours at room temperature 

(25 oC). LS is the liquid culture medium in which sucrose (0.75~0.8 mol/L) and the glycerol 

(2.0 mol/L) were contained. After loading, LS is removed from a bottle, and PVS is added 

newly for the dehydration of plant tissues. The same as with vitrification, the dehydration 

using PVS is performed at 0 oC in light of the toxicity to plant cells.  

After dehydration of PVS, encapsulated samples are moved to a cryotube containing fresh 

PVS, and immersed in LN. Cryopreserved tubes are warmed using hot water (40 oC) for 1~2 

min, and the vitrification solution is removed from the tube. After removal of the solution, 

unloading solution (supplemented with 1.2 mol/L sucrose; pH 5.7) is added to a tube, and 

cryoprotectants are removed from plant tissues for 30 min at 25 oC. After unloading, 

samples are moved from the cryotube, and recultured. 
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Fig. 4. The protocol of encapsulation-vitirication method (from Matsumoto et al., 1995)  

2.1.5 Simplified encapsulation-vitrification 

The simplified encapsulation-vitrification method was first reported by Hirai & Sakai (2002) 

using shoot apices of sweet potato. The operating procedure in this method is the same as 

encapsulation-vitrification (see Fig. 4), however, the composition of LS differs. LS of 

simplified encapsulation-vitrification includes high-concentration glycerol (2.0 mol/L) and 

sucrose (1.6 mol/L), and the viscosity of LS is high. Although this method succeeded with 

sweet potato, there are some plant species which cannot be cryopreserved using high 

concentration glycerol (Hirai & Sakai, 1999). 

2.1.6 Droplet method 

The droplet method was first reported by Schäfer-Menuhr et al. (1994, 1997) using potato 

apices. The operating procedure is the same for vitrification. However, the LS immersion 

protocol differs compared with that in the vitrification method. This cryopreservation 

method is shown in Fig. 5. After treatments by LS and PVS, plant samples are put on 

aluminum foil which is sterilized and cut small. One drop of PVS is dripped onto plant 

samples, and the whole aluminum foil is immersed in LN. The aluminum foil after 

cryopreservation is taken out from LN, and one drop of unloading solution supplemented 

with 1.0 mol/L sucrose is driiped onto to freezing samples. After rewarming, samples are 
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moved from the cryotube, and recultured. In the droplet method, in order to make a plant 

sample cool quickly, Wesley-Smith et al. (2001) used not liquid nitrogen but a slush 

nitrogen (-210 oC) and an isopentane (-160 oC). In addition, the droplet method can 

reportedly obtain a high regrowth percentage after cryopreservation in tropical plants 

difficult to cryopreserve (Pennycooke & Towill, 2000, 2001; Leunufna & Keller, 2003; Panis 

et al., 2005). 

 

Fig. 5. The protocol of Droplet method (from Schäfer-menuhr et al., 1997).  

2.1.7 Dehydration 

Dehydration was first reported by Uragami et al. (1990) using asparagus lateral buds. A dry 

technique is superior to vitrification in that it does not need to produce PVS. Therefore, 

there is no influence of medical toxicity at low cost. Problems of dehydration include ready 

influence of humidity on drying by air flow and dried samples are easily crushed with 

tweezers.  

The cryopreservation procedure is shown in Fig. 6. Plant tissues are put on the filter paper 
or nylon mesh sterilized and cut small. Samples are dehydrated by silica gel (Uragami et al., 
1990) or air flow (Shimonishi et al., 1992; Kuranuki & Yoshida, 1996) before immersion in 
LN. It is reported that the optimal moisture of the sample is 10%~30% for survival after 
cryopreservation in the dehydration method (Uragami et al., 1990; Shimonishi et al., 1992; 
Kuranuki and Yoshida, 1996). After the dehydration, germplasms are moved to a cryotube 
and immersed in LN. Cryopreserved tubes are warmed at room temperature or using hot 
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water (40 oC) for 1 ~ 2 min. After rewarming, samples are removed from the cryotube, and 
recultured. 

 

Fig. 6. The protocol of Dehydration method (from Uragami et al., 1990).  

2.1.8 Encapsulation-dehydration 

The encapsulation-dehydration method was first reported by Fabre & Dereuddre (1990) 
using shoot apices of potato, and spread worldwide the same way as vitrification and 
encapsulation-vitrification. This method excels that of dehydration in that regrowth of plant 
germplasm after cryopreservation is markedly increased by encapsulating plant samples 
with alginate beads. In addition, encapsulated samples are difficult to be crushed with 
tweezers compared with the dehydration method.  

The encapsulation-dehydration procedure is shown in Fig. 7. Plant tissues are immersed in a 
calcium-free liquid medium supplemented with 0.4 mol/L sucrose and 30.0 g/L sodium 
alginate. The mixture (including a plant cell or tissue) was added drop by drop to the liquid 
medium containing 0.1 mol/L calcium chloride, forming beads about 5 mm in diameter. The 
above-mentioned liquid mediums (30.0 g/L sodium alginate and 0.1 mol/L calcium chloride) 
were adjusted by pH 5.7~5.8, but without plant growth regulators. Encapsulated germplasms 
are added to the culture bottle containing LS for the osmoprotection. Beads in the bottles are 
osmoprotected for 16 hrs at room temperature (25 oC). LS is the liquid culture medium in 
which sucrose (0.75~0.8 mol/L) is contained. After loading, LS is removed from the bottle. 
Loaded samples are put on sterilized filter papers, and samples are dehydrated by silica gel for 
3~7 hours before immersion in LN. After  dehydration by silica gel, encapsulated samples are 
moved to a cryotube, and immersed in LN. Cryopreserved tubes are warmed using hot water 
(40 oC) for 1 ~ 2 min. After rewarming, samples are moved from the cryotube, and recultured. 
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Fig. 7. The protocol of Encapsulation-dehydration method (from Fabre & Dereuddre, 1990).  

In encapsulation-dehydration, the addition of glycerol besides sucrose in LS reportedly 
enhances the regrowth percentage of cryopreserved samples. The optimal concentration of 
glycerol in LS is 0.5~2.0 mol/L for regrowth of cryopreserved specimens (Matsumoto & 
Sakai, 1995; Kami et al., 2005, 2007, 2008).  

2.1.9 Newly-developed encapsulation-dehydration 

A newly developed encapsulation-dehydration method was first reported by Sakai et al. 

(2000). The operating procedure is the same as for encapsulation-dehydration (see Fig. 7), 

however, the LS composition differs. LS of the newly developed encapsulation-dehydration 

includes a high concentration (2.0 mol/L) of glycerol besides sucrose. Therefore, the loading 

time of this method (1 hour) is shorter than that of encapsulation-dehydration (16 hours). 

2.2 Methods of improvement of cryopreservation efficiency 

In this section, I introduce some approaches to increase regrowth of samples after 
rewarming with past reports and actual experimental data I obtained. 

2.2.1 Plant material 

Before performing cryopreservation of plant samples, it is necessary to grasp the 
characteristics of the given plant species. For example, it is better to utilize encapsulation-
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dehydration rather than vitrification for plant species which are subject to toxicity from 
cryoprotectants. Moreover, if you want to cryopreserve the plant germplasms readily 
susceptible to toxicity in DMSO with the vitrification method, it is better to use PVS3 rather 
than PVS2 as the vitrification solution.  

Next, I would like to explain this paragraph with actual experimental data I obtained. In 
cryopreservation, the extracted size of plant material also becomes important. When plant 
tissues are greatly (3 mm x 3 mm) trimmed, the extraction labor will decline with small 
tissue size (1 mm x 1 mm). However, the regrowth percentage of large tissues after 
cryopreservation seems to decrease more than that of small tissues (Fig. 8; Kami et al., 2010). 
From previous peports, the reason is that the smaller the size of the extracted plant, the 
more the osmosis cryoprotectant decreases (Kim et al., 2004, 2005).  

 

Fig. 8. Effects of excised apex size and exposure time to plant vitrification solution (PVS) on 
the regrowth of shoot apices immersed in liquid nitrogen (LN) using vitrification. Apices 
were dehydrated with two types of PVS at 0 oC for various lengths of time prior to cooling 
(Cryopreserved) or without cooling to -196 oC (Treated Control). The PVS in a cryovial was 
exchanged just after PVS loading treatment to prevent deterioration of PVS by a loading 
solution in this study. After cooling for 1hour in LN, rewarming apices were transplanted 
into regrowth medium. Values represent mean ± SE of three determinations. Differences in 
mean values of regrowth of treated control and cryopreseved apices with different letters 
are statistically significant (Tukey’s HSD at p<0.05) in all data. (from Kami et al., 2010) 
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2.2.2 Treatment before cryopreservation 

Before cryopreservation, cold-acclimation and preculture are done, so survival percentages 
will increase after cryopreservation.  

Cold-acclimation is a treatment by which plantlets are cultured at about 5 oC for one week to 

two months. However, Chang et al. (2000) reported that cold-acclimation was performed at -

1 oC in grass species (Zoysia and Lolium sp.). The freezing resistance of plant specimens 

reportedly increases by cold-acclimation (Chang et al., 2000). However, since cold-

acclimation cannot be adapted for a tropical plant, you should not perform this operation. 

Moreover, optimal acclimation periods differ by plant germplasms. In addition, prolonged 

cold-acclimation may curve and lower the survival percentage of plant specimens after 

cryopreservation. Therefore, I recommend that you closely consider the optimal cold 

acclimation period before trying cryopreservation. 

Preculture is the treatment which gives plant cells or tissues dehydration tolerance. In many 

cases, plant samples are cultivated for 24~48 hours by culture medium supplemented with 

high-concentration the sucrose (0.3~0.7 mol/L). And some plant species are moved 

gradually from low to high concentration of sucrose medium (Niino et al., 1992; Niino & 

Sakai, 1992a,b; Suzuki et al., 1994; Niino et al., 1997). In addition, there are also cases in 

which glycerol (Matsumoto et al., 1998; Niino et al., 2003), DMSO (Fukai, 1990), or abscisic 

acid (ABA; Kendal et al., 1993; Tsukazaki et al.,2000) is mixed with a sucrose culture 

medium, and culture medium containing sorbitol without sucrose are used (Yamada et al., 

1991; Maruyama et al., 2000). In many cases, room temperature is used for treatment (20~25 
oC). However, some plant species can be processed by -1 oC (Chang et al., 2000) or 5 oC 

(Niino & Sakai, 1992a,b; Kuranuki & Sakai, 1995; Tanaka et al., 2004).  

2.2.3 Treatment under cryopreservation 

I would like to explain this paragraph with actual experimental data I obtained. In 

vitrification, I examined the effect of exchange times of fresh PVS2 during a 60-min PVS2 

loading treatment on shoot apices (Cardamine yezoensis Maxim.) immersed in LN using a 

vitrification protocol (Fig. 9). The shoot regeneration percentages after cryopreservation was 

enhanced up to 96.7% when two PVS2 exchanges were used. Moreover, above 80% of shoot 

regrowth was maintained also by three or more PVS2 exchanges. From this experiment, it 

became clear that the injury by too much dehydration and medical toxicity are not induced 

by the exchange of fresh vitrification solution. However, the increase in the exchange time of 

vitrification solution carries a complex risk of losing the shoot apex and operating. 

Therefore, I considered that even 2 exchanges during 60-min PVS2 loading treatment on 

shoot apices of Cardamine yezoensis was appropriate (Kami et al., 2010).  

Since PVS2 at 0 oC has high viscosity and the circulation in the cryobial is poor, it is thought 
PVS2 around a shoot apex was diluted by the moisture flowing out of the plant tissue. 
Therefore, by exchanging for fresh PVS2, the dilution of PVS2 around a shoot apex was 
prevented and the dehydration maintained. 

Furthermore, adding an ice blocking agent to PVS reportedly enhances regeneration of 
cryopreserved sample in recent years (Zhao et al., 2005). 
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Fig. 9. Effects of exchange times of PVS2 during 60-min PVS2 loading treatment on shoot 

apices immersed in LN using vitrification. 2 ml of fresh PVS2 were exchanged at 0oC for 60-

mins prior to cooling. A PVS2 exchange just after PVS2 loading treatment was not counted 

as the exchanging time of PVS2 in this study. After cooling for 1hour in LN, rewarming 

apices were transplanted into 1/4MS. Values represent mean ± SE of three determinations. 

Differences in mean values of regrowth with different letters are statistically significant 

(Tukey’s HSD at p<0.05) in each treatments. (from Kami et al., 2010) 

2.2.4 Treatment after cryopreservation 

In cryopreservation of plant genetic resources, regeneration after rewarming is the key. 

Surviving cells or tissues after cryopreservation readily succumb due to different 

environmental agents because they have been injured by the dehydration or temperature 

change during the cryopreservation procedure. Moreover, when plant specimens were 

injured by the cryopreservation process, polyphenol can be produced. Thus, this may 

threaten the survival of plant specimens after cryopreservation. In that case, regeneration of 

tissues after preservation reportedly increased when activated charcoal (Bagniol & 

Engelmann, 1992) and polyvinyl pyrrolidone (Niino et al., 2003), an adsorbent of 

polyphenol, was mixed with a culture medium.  

In recent years, it is also reported that regrowth percentages of rewarming tissues increased 

by mixing surfactant with regrowth medium (Anthony et al., 1996; Niu et al., 2010). 

Therefore, special consideration must be given to certain plant species. From previous 

reports, the regrowth after preservation increases sharply also by decreasing NH4+ 

concentration in a culture medium (Niino et al., 1992a, 1992b; Suzuki et al., 1994; 

Pennycooke & Towill, 2001). 

Next, I would like to explain this paragraph with actual experimental data I obtained. I 

examined the effects of various nutrient media (Table 2) on regrowth of cryopreserved 
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apices (Cardamine yezoensis Maxim.). It was demonstrated that 4-fold dilution of inorganic 

salts of Murashige and Skoog’s medium (1/4MS) or Woody Plant medium (WPM) as basal 

medium resulted in higher regrowth percentages (both 66.7%) than  six other media (Fig. 10; 

Kami et al., 2010).  

 

Component 
(mmol/L) 

Murashige & Skoog (MS) White B5 N6 WPM 

1 1/2 1/4 1/8 

NO3- 45.39 22.70 11.35 5.67 0.79 26.77 30.25 6.30 

NH4+ 20.61 10.31 5.15 2.58 0.00 2.33 7.01 5.00 

PO43- 1.25 0.62 0.31 0.16 0.12 1.09 2.94 1.25 

K+ 20.05 10.02 5.01 2.51 1.63 24.73 30.94 12.61 

Ca2+ 2.99 1.50 0.75 0.37 1.27 1.02 1.13 3.01 

Mg2+ 3.07 3.07 0.77 0.28 5.98 2.08 1.54 3.07 
 

Table 2. Compositions of eight types of nutrient medium for the regrowth of cryopreserved 
shoot apices 

 

 

Fig. 10. Effects of nutrient media on the regrowth of shoot apices immersed in LN using 

vitrification. Apices were dehydrated with PVS2 at 0oC for 60-mins prior to immersion in 

LN. The PVS2 in a cryovial was exchanged once just after PVS2 loading treatment. After 

cooling for 1hour in LN, rewarming apices were transplanted into 8 types of basal medium. 

Values represent mean ± SE of three determinations. Differences in mean values of regrowth 

with different letters are statistically significant (Tukey’s HSD at p<0.05) in each treatments. 

(from Kami et al., 2010) 
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3. Conclusion 

The cryopreservation technique for plant genetic resources has developed since the 1990s. 

However, since there are plant species which cannot yet be cryopreserved, improvement of 

the technology is a pressing need. I have limited my remarks to the introduction of the 

cryopreservation technique in this section. This seems like a personal comment, not a part of 

your conclusion. Kartha (1985), in his detailed book on these principles, provides a valuable 

addition to this chapter, not but provides an explanation of cryopreservation technology.  
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