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1. Introduction

1.1 Wave and particle duality in quantum measurements

Right from the introduction of Plank’s modern quantum concept, measurement effects
have played a central role in both theoretical and experimental considerations [Jammer
(1974)]. Einstein (1916) photon effects favor a particle based explanation. de Broglie
(1923) proposed wave and particle duality. Heisenberg proposed a matrix approach to
handling complex operations based on spectra measurements. Schrödinger established a
wave equation for quantum construction extending de Broglie’s schemes. von Neumann
(1932,1996)’s contribution placed quantum mechanics in Hilbert space to establish a solid
mathematical foundation for modern quantum mechanics. Despite developments in the
quantum approach spanning more than a century, fundamental measurement problems
remain unsolved [Penrose (2004)]. All their lives, Bohr and Einstein engaged in many debates,
discussions and arguments trying to reach a common understanding on wave and particle
issues [Jammer (1974)]. The EPR (Einstein, Podolsky, Rosen) Paradox [Einstein et al. (1935)] is
said to have given Bohr many sleepless nights [Bohr (1935; 1949)].

1.2 Criteria conditions and modern experiments

Quantum measurement puzzles have been explored by [Feynman (1965); Feynman et al.
(1965,1989)]. From the 1940s, Feynman emphasized that: "The entire mystery of quantum
mechanics is in the double-slit experiment." This experiment establishes an interactive
model that can directly illustrate both classical and quantum interactive results. Under
single and double slit conditions, dual visual distributions are shown in particle and wave
statistical distributions. Both particle probability and wave interactive interference patterns
are observed [Barnett (2009); Hawking & Mlodinow (2010); Healey et al. (1998)].
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2 Measurement Systems

1.3 Modern experiments

Mach-Zehnder interferometers and Stern-Gerlach spin-devices play a key role in Quantum
measurement development [Barnett (2009); Barrow et al. (2004); Hawking & Mlodinow (2010);
Jammer (1974)]. Wave particle-duality has been demonstrated in larger particles [Arndt
et al. (1999)] and advanced optical fibers, communication, computer software, photonics, and
integrated technologies have been applied to different quantum media [Barrow et al. (2004);
Grangier et al. (1986)].

1.3.1 Bell approaches

In the 1960s, Bell played an important role in exploring the foundations of the quantum
approach [Bell (1964)]. Based on the EPR paradox, he proposed inequations for measurable
experiments to distinguish between Bohr’s Principle of Complementarity and Einstein’s EPR
paradox under a local realism framework [Aspect et al. (1982); Bell (2004)].

1.3.2 Advanced experiments

By the 1970s, work piloted by [Clauser et al. (1969)], Aspect et al. (1982) was using an
experimental approach to test Bell Inequalities and to clearly show a significant gap between
Bell Inequalities and real quantum reality.

After 40 years of development, many accurate experiments [Lindner et al. (2005); Zeh (1970);
Zeilinger et al. (2005)] have been performed successfully worldwide using Laser, NMRI, large
molecular, quantum coding and quantum communication approaches [Afshar et al. (2007);
Barrow et al. (2004); Fox (2006); Merali (2007); Schleich et al. (2007)]. Following the application
of advanced technologies and simulation methodologies, detailed single and multiple photon
detection technologies have been further developed.

1.3.3 Weakness

However it does not matter how successful any single experiment or indeed many
experiments might be, those results cannot simply replace the idea experiment of [Feynman
et al. (1965,1989); Hawking & Mlodinow (2010); Penrose (2004)]. From a theoretical
viewpoint, modern experiments involving Bell Inequations are excellent in illustrating the
fundamental differences between a local realism and quantum reality. Since both theoretical
and experimental activities focused on supporting or disproving Bell Inequalities cannot on
their own provide a full explanation, further investigations are essential to provide a sound
foundation on which a full understanding of quantum issues can be constructed.

1.4 From local interactive measurements to global matrix representations

In this chapter, a double path model has been established using the Mach-Zehnder
interferometer. Different approaches to quantum measurements taken by Einstein,
Stern-Gerlach, CHSH and Aspect are investigated to form quaternion structures. Using
multiple-variable logic functions and variant principles, logic functions can be transferred into
variant logic expressions as variant measures. Under such conditions, a variant simulation
and representation model is proposed.
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From Local Interactive Measurements to Global Matrix Representations on Variant Construction 3

(a) (b)

Fig. 1. (a-b) Double Path Model (a) Mach-Zehnder Double Path Model (b) Description Model

A given logic function f , can be represented as two meta logic functions f+ and f− to simulate
single and double path conditions. N bits of input vectors are exhausted by 2N states for
measured data, recursive data are organized into eight histograms. Results are determined by
symmetry/anti-symmetry properties in histograms. All 22n

functions are applied to generate
a set of histograms. Eight sets of histograms are represented as eight matrices in a selected C
code configuration. Under this construction, it is possible to visualize different combinations
from symmetry and anti-symmetry categories.

From these results, both additive probability properties in particle condition and wave
interference properties with non-addition behaviors are observed. Both types of result are
obtained consistently from this model under synchronous/asynchronous conditions. From a
simulation viewpoint, this system satisfies all of Feynman’s criteria conditions for double slit
experiments.

2. Double path model and measurements of quantum interaction

2.1 Mach-Zehnder interferometer model

The Mach-Zehnder interferometer is the most popular device used to support a Young double
slit experiment.

In Fig 1(a) a double path interferometer is shown. An input signal X under control function
f causes Laser LS to emit the output signal ρ under BP (Bi-polarized filter) operation. The
output is in the form of a pair of signals: ρ+ and ρ−. Both signals are processed by SW output
ρ+L and ρ−R , and then IM to generate output signals IM(ρ+L , ρ−R ) . In Fig 1(b), a representation
model has been described with the same signals being used.

2.1.1 Other devices

A Stern-Gerlach spin measurement device provides equivalent information for double path
experiment [Jacques et al. (2008); Jammer (1974)]. This device divides composed signals into

vertical ⊥ and horizontal ‖ components, in BP part ρ → {ρ⊥, ρ‖}, through controls and IM

output IM(ρ⊥L , ρ
‖
R).
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4 Measurement Systems

2.2 Emission and absorption measurements of quantum interaction

2.2.1 Einstein measurements

Einstein (1916) established the first model to describe atomic interaction with radiation. For
two-state systems, Einstein’s model is as follows. Let a system have two energy states: the
ground state E1 and the excited state E2. Let N1 and N2 be the average numbers of atoms in
the ground and excited states respectively. The number of states are changed from emission

state E2 → E1 with a rate dN21
dt , and at any point in time, the number of ground states are

determined by absorbed energies from E1 → E2 with a rate dN12
dt respectively. For convenience

of description, let N12 be the number of atoms from E1 to E2 and N21 be the numbers from E2

to E1. In Einstein’s model, a measurement quaternion is 〈N1, N2, N12, N21〉.

2.2.2 Spin measurements

Uhlenback and Goudsmit proposed spin using devices devised by Stern-Gerlach [Cohn
(1990); Jammer (1974)]. Spin can be represented by | ↑〉, | ↓〉 in a two-state system. A
quaternion 〈〈↑ | ↑〉, 〈↑ | ↓〉, 〈↓ | ↑〉, 〈↓ | ↓〉〉 can be established for spin interactions.

CHSH proposed spin measures testing Bell Inequalities [Aspect (2002); Clauser et al. (1969)].
They applied ⊥→ + and ‖→ − to establish a measurement quaternion:
〈N++, N+−, N−+, N−−〉. CHSH parameters are in the Stern-Gerlach scheme.

2.2.3 Aspect’s measurements

Advanced experimental testing of Bell Inequalities for quantum measures were performed
by [Aspect (2002); Aspect et al. (1982)]. In this set of experiments, active properties are
measured via four measurements: transmission rate Nt, reflection rate Nr, correspondent
rate Nc and also the total number Nω in ω-time period. This set of measurements is a
quaternion 〈Nt, Nr, Nc, Nω〉. Among these, Nc is a new data type not found in the Einstein and
Stern-Gerlach schemes. As a matched pair of signals, this parameter indicates either single
or double path issues. This parameter could be an extension of synchronous/asynchronous
time-measurement.

3. Variant simulation and representation system

A comprehensive process of measurement from local interactions through to global matrix
representations is described. It is hoped that this may offer a convenient path to assist theorists
and experimenters seeking to devise experiments to further explore such natural mysteries
through the application of sound principles of logic and measurement.

Using the variant principle described in the next subsections, a N bit 0-1 vector X and a given
logic function f , all N bit vectors are exhausted, variant measures generate two groups of
histograms. The variant simulation and representation system is shown in Fig 2 (a-b). The
detailed principles and methods are described in Sections 3.2-3.7 respectively.

3.1 Simulation and representation model

The full measurement and representation architecture as shown in Figure 2(a) is composed of
four components: Meta Measurements MM, Local Interactive Measurements LIM, Statistical

374 Advanced Topics in Measurements
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From Local Interactive Measurements to Global Matrix Representations on Variant Construction 5

X ∈ BN
2 →

J ∈ B2n

2 →

Meta
Measurements

MM
→ ρ →

Local Interactive
Measurements

LIM

→ u
→ v

u →
v →

∀X ∈ BN
2 →

Statistical
Distribution

SD

→ {PH(uβ|J)} →
→ {PH(vβ|J)} →

∀J ∈ B2n

2 →

Global Matrix
Representations

GMR

→ {M(uβ)}
→ {M(vβ)}

(a) Architecture

ρ → BP
→ ρ− →
→ ρ+ →

SW
→ ρ−, (1 − ρ−)/2 →
→ ρ+, (1 + ρ+)/2 →

IM
→ u
→ v

(b) LIM Component

Fig. 2. (a-b) Variant Simulation and Representation System; (a) System Architecture; (b) Local
Interactive Measurement LIM Component

Distributions SD, Global Matrix Representations GMR respectively. The key part of the
system: the LIM component is shown in Fig 2(b).

3.1.1 Meta Measurements

The Meta Measurement (MM) component uses N bit 0-1 vector X and a given function J ∈ B2n

2 ,
MM transfers N bit 0-1 vector under J(X) to generate four Meta-measures, under a given
Probability scheme, four probability measurements are generated to output as a quaternion
signal ρ.

3.1.2 Local Interactive Measurements

The Local Interactive Measurement (LIM) component is the key location for local interactions
as shown in Figure 2(b) to transfer quaternion signal ρ under symmetry / anti-symmetry and
synchronous / asynchronous conditions, in relation to four combination of time effects as
(Left, Right, Double Particle, Double Wave) respectively. Two types of additive operations are
identified. Each {u, v} signal is composed of four distinct signals.

3.1.3 Statistical Distributions

The Statistical Distribution (SD) component performs statistical activities on corresponding
signals. It is necessary to exhaust all possible vectors of X with a total of 2N vectors. Under
this construction, each sub-signal of {u, v} forms a special histogram with a one dimensional
spectrum to indicate the distribution under function J. A total of eight histograms are
generated in the probability conditions.

3.1.4 Global Matrix Representations

The Global Matrix Representation (GMR) component uses each statistical distribution of the
relevant probability histogram as an element of a matrix composed of a total of 22n

elements
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6 Measurement Systems

for all possible functions {J}. In this configuration, C code schemes are applied to form a

22n−1
× 22n−1

matrix to show the selected distribution group.

Unlike the other coding schemes (SL, W, F, ...), only C code schemes provide a regular
configuration to clearly differentiate the Left path as exhibiting horizontal actions and the
Right path as exhibiting vertical actions . Such clearly polarized outcomes may have the
potential to help in the understanding of interactive mechanism(s) between double path for
particles and double path for waves properties.

3.2 Variant principle

The variant principle is based on n-variable logic functions [Zheng (2011); Zheng & Zheng
(2010; 2011a;b); Zheng et al. (2011)].

3.2.1 Two sets of states

For any n-variables x = xn−1...xi...x0, 0 ≤ i < n, xi ∈ {0, 1} = B2 let a position j be the
selected bit 0 ≤ j < n, xj be the selected variable. Let output variable y and n-variable
function f , y = f (x), y ∈ B2, x ∈ Bn

2 . For all states of x, a set S(n) composed of the 2n states
can be divided into two sets: S0(n) and S1(n).

⎧

⎨

⎩

S0(n) = {x|xj = 0, ∀x ∈ Bn
2 }

S1(n) = {x|xj = 1, ∀x ∈ Bn
2 }

S(n) = {S0(n), S1(n)}
(1)

3.2.2 Four meta functions

For a given logic function f , input and output pair relationships define four meta logic
functions { f⊥, f+, f−, f⊤}.

⎧

⎪

⎪

⎨

⎪

⎪

⎩

f⊥(x) = { f (x)|x ∈ S0(n), y = 0}
f+(x) = { f (x)|x ∈ S0(n), y = 1}
f−(x) = { f (x)|x ∈ S1(n), y = 0}
f⊤(x) = { f (x)|x ∈ S1(n), y = 1}

(2)

3.2.3 Two polarized functions

Considering two standard logic canonical expressions: AND-OR form is selected from
{ f+(x), f⊤(x)} as y = 1 items, and OR-AND form is selected from { f−(x), f⊥(x)} as y = 0
items. Considering { f⊤(x), f⊥(x)}, xj = y items, they are invariant themselves.

To select { f+(x), f−(x)}, xj = y in forming variant logic expression. Let f (x) = 〈 f+|x| f−〉
be a variant logic expression. Any logic function can be expressed as a variant logic form. In
〈 f+|x| f−〉 structure, f+ selected 1 items in S0(n) as same as the AND-OR standard expression,
and f− selecting relevant parts the same as OR-AND expression 0 items in S1(n).

3.2.4 n = 2 representation

For a convenient understanding of the variant representation, 2-variable logic structures are
illustrated for its 16 functions as follows.

376 Advanced Topics in Measurements
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From Local Interactive Measurements to Global Matrix Representations on Variant Construction 7

f f ∈ 3 2 1 0 f+ ∈ 30 21 10 01 f− ∈
No. S(n) 11 10 01 00 S0(n) 110 101 010 001 S1(n)

0 {∅} 0 0 0 0 〈∅| 1 0 1 0 |3, 1〉
1 {0} 0 0 0 1 〈0| 1 0 1 1 |3, 1〉
2 {∅} 0 0 1 0 〈∅| 1 0 0 0 |3〉
3 {1, 0} 0 0 1 1 〈0| 1 0 0 1 |3〉
4 {2} 0 1 0 0 〈2| 1 1 1 0 |3, 1〉
5 {2, 0} 0 1 0 1 〈2, 0| 1 1 1 1 |3, 1〉
6 {2, 1} 0 1 1 0 〈2| 1 1 0 0 |3〉
7 {2, 1, 0} 0 1 1 1 〈2, 0| 1 1 0 1 |3〉
8 {3} 1 0 0 0 〈∅| 0 0 1 0 |1〉
9 {3, 0} 1 0 0 1 〈0| 0 0 1 1 |1〉
10 {3, 1} 1 0 1 0 〈∅| 0 0 0 0 |∅〉
11 {3, 1, 0} 1 0 1 1 〈0| 0 0 0 1 |∅〉
12 {3, 2} 1 1 0 0 〈2| 0 1 1 0 |1〉
13 {3, 2, 0} 1 1 0 1 〈2, 0| 0 1 1 1 |1〉
14 {3, 2, 1} 1 1 1 0 〈2| 0 1 0 0 |∅〉
15 {3, 2, 1, 0} 1 1 1 1 〈2, 0| 0 1 0 1 |∅〉

(3)

Checking two functions f = 3 and f = 6 respectively.
{ f = 3 := 〈0|3〉, f+ = 11 := 〈0|∅〉, f− = 2 := 〈∅|3〉};
{ f = 6 := 〈2|3〉, f+ = 14 := 〈2|∅〉, f− = 2 := 〈∅|3〉}.

3.3 Meta measures

Under variant construction, N bits of 0-1 vector X under a function J produce four Meta
measures composed of a measure vector N

(X : J(X)) → (N⊥, N+, N−, N⊤), N = N⊥ + N+ + N− + N⊤

Using four Meta measures, relevant probability measurements can be formulated.
ρ = (ρ⊥, ρ+, ρ−, ρ⊤) = (N⊥/N, N+/N, N−/N, N⊤/N), 0 ≤ ρ⊥, ρ+, ρ−, ρ⊤ ≤ 1.

From a methodological viewpoint, this set of probability parameters belongs to multivariate
probability measurements.

3.3.1 Variant measure functions

Let ∆ be the variant measure function

∆ = 〈∆⊥, ∆+, ∆−, ∆⊤〉
∆J(x) = 〈∆⊥ J(x), ∆+ J(x), ∆− J(x), ∆⊤ J(x)〉

∆α J(x) =

{

1, J(x) ∈ Jα(x), α ∈ {⊥,+,−,⊤}
0, others

(4)

For any given n-variable state there is one position in ∆J(x) to be 1 and other 3 positions are
0.

3.3.2 Variant measures on vector

For any N bit 0-1 vector X, X = XN−1...Xj...X0, 0 ≤ j < N, Xj ∈ B2, X ∈ BN
2 under n-variable

function J, n bit 0-1 output vector Y, Y = J(X) = 〈J+|X|J−〉, Y = YN−1...Yj...Y0, 0 ≤ j <
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8 Measurement Systems

N, Yj ∈ B2, Y ∈ BN
2 . For the j-th position xj = [...Xj...] ∈ Bn

2 to form Yj = J(xj) = 〈J+|xj|J−〉.
Let N bit positions be cyclic linked. Variant measures of J(X) can be decomposed

∆(X : Y) = ∆J(X) =
N−1

∑
j=0

∆J(xj) = 〈N⊥, N+, N−, N⊤〉 (5)

as a quaternion 〈N⊥, N+, N−, N⊤〉, N = N⊥ + N+ + N− + N⊤.

3.3.3 Example

E.g. N = 12, given J, Y = J(X).

X = 1 0 1 1 1 0 1 1 1 0 0 1

Y = 0 0 1 0 1 0 1 0 1 1 0 0

∆(X : Y) = − ⊥ ⊤ − ⊤ ⊥ ⊤ − ⊤ + ⊥ −

∆J(X) = 〈N⊥, N+, N−, N⊤〉 = 〈3, 1, 4, 4〉, N = 12.

Input and output pairs are 0-1 variables for only four combinations. For any given function
J, the quantitative relationship of {⊥,+,−,⊤} is directly derived from the input/output
sequences. Four meta measures are determined.

3.4 Four meta measurements

Using variant quaternion, local measurements of probability signals are calculated as four
meta measurements by following the given equations. For any N bit 0-1 vector X, function J,
under ∆ measurement: ∆J(X) = 〈N⊥, N+, N−, N⊤〉, N = N⊥ + N+ + N− + N⊤

Signal ρ is defined by
⎧

⎨

⎩

ρ = ∆J(X)
N = (ρ⊥, ρ+, ρ−, ρ⊤)

ρα = Nα
N , α ∈ {⊥,+,−,⊤}

(6)

The four meta measurements are core components in the multivariate probability framework.

3.5 Local Interactive Measurements

Local Interactive Measurements (LIM) are divided into three stages: BP, SW and SM
respectively. The BP stage selects {ρ−, ρ+} as sub-signals. The SW component extends two
signals into four signals with different symmetric properties; The SM component merges
different signals to form two sets of eight signals.

Using {ρ+, ρ−}, a pair of signals {u, v} are formulated:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

u = (u+, u−, u0, u1) = {uβ}

v = (v+, v−, v0, v1) = {vβ}

β ∈ {+,−, 0, 1}

(7)
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From Local Interactive Measurements to Global Matrix Representations on Variant Construction 9

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

u+ = ρ+
u− = ρ−
u0 = u+ ⊕ u−

u1 = u+ + u−

v+ =
1+ρ+

2

v− =
1−ρ−

2
v0 = v+ ⊕ v−
v1 = v+ + v− − 0.5

(8)

where 0 ≤ uβ, vβ ≤ 1, β ∈ {+,−, 0, 1}, ⊕ : Asynchronous addition, + : Synchronous addition.

3.6 Statistical distributions

The SD component provides a statistical means to accumulate all possible vectors of N bits
for a selected signal and generate a histogram. Eight signals correspond to eight histograms
respectively. Among these, four histograms exhibit properties of symmetry and another four
histograms exhibit properties of anti-symmetry.

3.6.1 Statistical histograms

For a function J, all measurement signals are collected and the relevant histogram represents
a complete statistical distribution.

Using u and v signals, each uβ or vβ determines a fixed position in the relevant

histogram to make vector X on a position. After completing 2N data sequences, eight
symmetry/anti-symmetry histograms of {H(uβ|J)}, {H(vβ|J)} are generated.

For a function J, β ∈ {+,−, 0, 1}

{

H(uβ|J) = ∑∀X∈BN
2

H(uβ|J(X))

H(vβ|J) = ∑∀X∈BN
2

H(vβ|J(X)), J ∈ B2n

2
(9)

3.6.2 Probability histograms

Let |H(..)| denote the total number in the histogram H(..), a normalized Probability histogram
(PH(..)) can be expressed as

⎧

⎨

⎩

PH(uβ|J) =
H(uβ |J)
|H(uβ |J)|

PH(vβ|J) =
H(vβ |J)
|H(vβ |J)|

, J ∈ B2n

2

(10)

Here, all histograms are restricted in [0, 1]2 areas respectively.

Distributions are dependant on the data set as a whole and are not sensitive to varying under
special sequences. Under this condition, when the data set has been exhaustively listed, then
the same distributions are always linked to the given signal set.

The eight histogram distributions provide invariant spectrum to represent properties among
different interactive conditions.
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10 Measurement Systems

3.7 Global Matrix Representations

After local interactive measurements and statistical process are undertaken for a given
function J, eight histograms are generated. The Global Matrix Representation GMR
component performs its operations into two stages. In the first stage, exhausting all possible
functions for ∀J ∈ B2n

2 to generate eight sets, each set contains 22n
elements and each element

is a histogram. In the second stage, arranging all 22n
elements generated as a matrix by C code

scheme. Here, we can see Left and Right path reactions polarized into Horizontal and Vertical
relationships respectively.

3.7.1 Matrix and Its elements

For a given C scheme, let C(J) = 〈J1|J0〉, each element

⎧

⎪

⎪

⎨

⎪

⎪

⎩

M〈J1|J0〉(uβ|J) = PH(uβ|J)

M〈J1|J0〉(vβ|J) = PH(vβ|J)

J ∈ B2n

2 ; J1, J0 ∈ B2n−1

2

(11)

3.7.2 Representation patterns of matrices

For example, using n = 2, P = (3102), ∆ = (1111) conditions, a C code case contains sixteen
histograms arranged as a 4 × 4 matrix.

0 4 1 5

2 6 3 7

8 12 9 13

10 14 11 15

(12)

All matrices in this chapter use this configuration for the matrix pattern to represent their
elements.

4. Simulation results

For ease of illustration, as different signals have intrinsic random properties only statistical
distributions and global matrix representations are selected in this section.

4.1 Statistical distributions

The simulation provides a series of output results. In this section, N = {12, 13}, n = 2, {J =
3, J+ = 11, J− = 2} are selected. Corresponding to Left path (Left), Right path (Right),
Double path for Particles (D-P) and Double path for Waves (D-W) under symmetry and
anti-symmetry conditions respectively.

From a given function, a set of histograms can be generated as two groups of eight probability
histograms. To show their refined properties, it is necessary to represent them in both odd and
even numbers. A total of sixteen histograms are required. For convenience of comparison,
sample cases are shown in Figures 3(I-III).
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From Local Interactive Measurements to Global Matrix Representations on Variant Construction 11

PH(u+|J) PH(u−|J)
(a) Left (b) Right

PH(u0|J) PH(u1|J)
(c) D-P (d) D-W

PH(v+|J) PH(v−|J)
(e) Left (f) Right

PH(v0|J) PH(v1|J)
(g) D-P (h) D-W

(I) Representative patterns of Histograms for function J (a-d) symmetric cases; (e-h)
antisymmetric cases

(a) Left (b) Right

(c) D-P (d) D-W

(e) Left (f) Right

(g) D-P (h) D-W
(II) N = {12}, J = 3 Two groups of results in eight histograms
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12 Measurement Systems

(a) Left (b) Right

(c) D-P (d) D-W

(e) Left (f) Right

(g) D-P (h) D-W
(III) N = {13}, J = 3 Two groups of results in eight histograms

Fig. 3. (I-III) N = {12, 13}, J = 3 Simulation results ; (I) Representative Patterns for
PH(u+|J) = PH(u−|J) and PH(v+|J) = PH(1 − v−|J) conditions; (II) N = {12}, J = 3 Two
groups of eight probability histograms; (III) N = {13}, J = 3 Two groups of eight probability
histograms

382 Advanced Topics in Measurements

www.intechopen.com



From Local Interactive Measurements to Global Matrix Representations on Variant Construction 13

Representation patterns are illustrated in Fig 3(I). Eight probability histograms of PH(u+|J) =
PH(u+|J) are shown in Fig 3(II) for N = 12 to represent four symmetry groups and another
eight probability histograms are shown Fig 3(III) for N = 13 to represent four anti-symmetry
groups respectively.

4.2 Global matrix representations

All possible 22n
functions are applied. It is convenient to arrange all generated histograms as

a matrix, a C code scheme of variant logic applied to organize a set of 22n
histograms into a

22n−1
× 22n−1

matrix.

Applying the C code configuration, a given signal of a function determines an element on
a matrix to represent its histogram. There is one to one correspondence among different
configurations.

Using this measurement mechanism, eight types of statistical histograms are systematically
illustrated. Each element in the matrix is numbered to indicate its corresponding function
and also the relevant histogram will be put on the position.

For n = 2 cases, sixteen matrices are shown in Figs 5-6 (a-h). Figs 5-6 (a-d) represent
Symmetry groups and Figs 5-6 (e-h) represent Anti-symmetry groups. To show odd and even
number configurations, Fig 5 (a-h) shows N = 12 cases and Fig 6 (a-h) shows N = 13 cases
respectively.

5. Analysis of results

In the previous section, results of different statistical distributions and their global matrix
representations were presented. In this section, plain language is used to explain what various
visual effects might be illustrated and to discuss local and global arrangements.

5.1 Statistical distributions for a given function

It is essential to analyze differences among various statistical distributions for a given
function.

5.1.1 Symmetry groups for a function

For the selected function J = 3, four distributions in symmetry groups are shown in Fig 3
(a-d). (a) PH(u+|J) for Left; (b) PH(u−|J) for Right; (c) PH(u0|J) for D-P; and (d) PH(u1|J) for
D-W respectively.

Under Symmetry conditions, PH(u+|J) = PH(u−|J), both Left and Right distributions are the
same. PH(u0|J) generated with both paths open under asynchronous conditions simulates
D-P. Compared with distributions in (a-b) , it is feasible to identify the same components from
original inputs.

However, for PH(u1|J) under synchronous conditions and with the same Left and Right input
signals, the simulation shows D-W exhibiting interferences among the output distributions
that are significantly different from the original components.
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5.1.2 Anti-symmetry groups for a function

Four distributions are shown in Fig 3 (e-h) as asymmetry groups. A pair of equation
PH(v+|J) = PH(1 − v−|J) shows that one distribution is a mirror image of another one.
PH(v+|J) distribution is shown in Fig 3 (e) for Left signals and PH(v−|J) distribution is shown
Fig 3 (f) for Right signals.

PH(v0|J) is shown in Fig 3 (g) for both paths open under asynchronous conditions to simulate
D-P. Compared with (e-f) distributions, it is feasible to identify the same components from the
original inputs.

However PH(v1|J) is shown in Fig 3 (h) under synchronous condition with both path signals
as inputs to simulate D-W exhibiting interferences among the output distributions that are
significantly different from the original components.

To show even and odd number’s differences, N = 12 cases are shown in Fig 3 (II, a-h) and
N = 13 cases are shown in Fig 3 (III, a-h) respectively.

5.2 Global matrix representations

Sixteen matrices are represented in Fig 4-5 (a-h) with eight signals generating two sets of 16
groups for N = {12, 13} respectively.

5.2.1 Symmetry cases

Matrices for the Left in Fig 4-5 (a) show elements in a column with the corresponding
histogram showing polarized effects on the vertical.

Matrices for the Right in Fig 4-5 (b) show elements in a row with the corresponding histogram
showing polarized effects on the horizontal.

Matrices for D-P in Fig 4-5 (c) provide asynchronous operations combined with both
distributions from Fig 4-5 (a-b) to form a unified distribution. From each corresponding
position, it is possible to identify each left and right component and the resulting shapes of
the histogram.

Matrices for D-W in Fig 4-5 (d) provide synchronous operations combined with both
distributions from Fig 4-5 (a-b) for each element. Compared with Fig 4-5 (c) and Fig 4-5
(d) respectively, distributions in Fig 4-5 (d) are much simpler with two original distributions
especially on the anti-diagonal positions: J ∈ {10, 12, 3, 5}. Only less than half the number of
spectrum lines are identified.

5.2.2 Anti-symmetry cases

In a similar manner to the symmetry conditions, four anti-symmetry effects can be identified
in Fig 4-5 (e-h). Matrices in Fig 4-5 (e) are Left operations for different functions, elements
are polarized on the vertical and matrices in Fig 4-5 (f) are Right operations, elements are
polarized on the horizontal. Spectrum lines in Fig 4-5 (e) appear in the right half and spectrum
lines in Fig 4-5 (f) are appeared in the left half respectively.

Matrices for D-P in Fig 4-5 (g) show additional effects for each distribution according to the
relevant position with components that can be identified as corresponding to identifiable
inputs in many cases. Anti-symmetry signals are generated in merging conditions.
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Matrices for D-W in Fig 4-5 (h) show different properties. In general, only one peak can be
observed for each element especially for the J ∈ {10, 12, 3, 5} condition. Spectra appear to
be much simpler than the original distributions in Fig 4-5 (e-f), and significant interference
properties are observed.

5.3 Four symmetry groups

Pairs of relationships can be checked on symmetry matrices in Figs 4-5 (a-d), four groups are
identified.

5.3.1 Left: polarized vertical group

{PH(u+|J)} elements in Figs 4-5 (a) show (only) four distinct distributions. Each column
contains only one distribution. Sixteen elements in the matrix can be classified into four
vertical classes: {0, 2, 8, 10}, {4, 6, 12, 14}, {1, 3, 9, 11}, {5, 7, 13, 15} respectively. Four meta
distributions are given as {10, 14, 11, 15}.

5.3.2 Right: polarized horizontal group

{PH(u−|J)} elements in Figs 4-5 (b) show (a further) four distinct distributions. Each row
contains only one distribution. Sixteen elements in the matrix can be classified into four
horizontal classes: {0, 4, 1, 5}, {2, 6, 3, 7}, {8, 12, 9, 13}, {10, 14, 11, 15} respectively. Four meta
distributions are given as {0, 2, 8, 10}.

5.3.3 D-P: particle group

{PH(u0|J)} elements in Figs 4-5 (c) illustrate symmetry properties. There are six pairs of
symmetry elements: {8 : 14}, {2 : 11}, {0 : 15}, {6 : 9}, {4 : 13}, {1 : 7}. In addition, four
elements on anti-diagonals provide different distributions: {10, 12, 3, 5}. Under this condition,
ten classes of distributions are distinguished.

5.3.4 D-W: wave group

{PH(u1|J)} elements in Figs 4-5 (d) illustrate symmetry properties. There are six pairs of
symmetry elements: {8 : 14}, {2 : 11}, {0 : 15}, {6 : 9}, {4 : 13}, {1 : 7}. In addition,
four elements on diagonal positions provide same distribution: {0, 6, 9, 15}. Two elements
on anti-diagonals: {12, 3} have the same distribution in Fig 4 (d). Under this condition, nine
or ten classes of different distributions can be identified for Fig 4 (d) and Fig 5 (d) respectively.

5.4 Four anti-symmetry groups

Figures 4-5 (e-h) represent anti-symmetry properties, four groups can be identified.

5.4.1 Left: polarized vertical group

{PH(v+|J)} elements in Figs 4-5 (e) show that (only) four classes can be distinguished.
Elements within these groups members are the same as for symmetry groups in Figs 4-5(a).
Their distributions fall within the region [0.5, 1].
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5.4.2 Right: polarized horizontal group

{PH(v−|J)} elements in Figs 4-5 (f) show that (only) four classes can be distinguished.
Elements within these groups are the same as for symmetry groups in Figs 4-5 (b). Their
distributions fall within the region [0, 0.5].

5.4.3 D-P: particle group

{PH(v0|J)} in Figs 4-5 (g) show six pairs of anti-symmetry distributions: {8 ∤ 14}, {2 ∤
11}, {0 ∤ 15}, {6 ∤ 9}, {4 ∤ 13}, {1 ∤ 7} four elements are distinguished on the anti-diagonals:
{10, 12, 3, 5}. Under this condition, ten classes can be identified.

5.4.4 D-W: wave group

{PH(v1|J)} in Figs 4-5 (h) show six pairs of anti-symmetry distributions: {8 ∤ 14}, {2 ∤ 11}, {0 ∤
15}, {6 ∤ 9}, {4 ∤ 13}, {1 ∤ 7} four pairs of symmetry elements: {3 : 5}, {10 : 12}, {2 : 4}, {11 :
13} are distinguished. Under this condition, twelve classes can be identified.

5.5 Odd and even numbers

From a group view point, only D-P and D-W need to be reviewed as different groups in
symmetry conditions. Anti-symmetry conditions are unremarkable.

It is reasonable to suggest that anti-symmetry operations will be much easier to distinguish
under experimental conditions, since sixteen groups in D-P conditions and twelve groups in
D-W conditions will have significant differences. However, under the symmetry conditions
(only) minor differences can be identified.

5.5.1 Single and double peaks

Single and Double peaks can be observed in Fig 4(5) (h): {3, 5} for even and odd numbers
respectively.

For two other members {10, 12}, (only) single pulse distributions are observed in Figs 4-5 (h)
to show the strongest interference results.

5.6 Class numbers in different conditions

To summarize over the different classes, 16 matrices are shown in different numbers of
identified classes as follows:

Class No. Left Right D-P D-W

SE 4 4 10 9
SO 4 4 10 10
AE 4 4 16 12
AO 4 4 16 12

where Left:Left Path, Right: Right Path, D-P: Double Path for Particles, D-W: Double Path for
Waves; SE: Symmetry for Even number, SO: Symmetry for Odd number, AE: Anti-symmetry
for Even number, AO: Anti-symmetry for Odd number.
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5.7 Polarized effects and double path results

In order to contrast the different polarized conditions, it is convenient to compare distributions
{PH(u+|J), PH(u−|J} and {PH(v+|J), PH(v−|J} arranged according to the corresponding
polarized vertical and horizontal effects. This visual effect is similar to what might be found
when using polarized filters in order to separate complex signals into two channels. Different
distributions can be observed under synchronous and asynchronous conditions.

5.7.1 Particle distributions and representations

For all symmetry or non-symmetry cases under ⊕ asynchronous addition operations,
relevant values meet 0 ≤ u0, v0, u−, v−, u+, v+ ≤ 1. Checking {PH(u0|J), PH(v0|J)} series,
{PH(u+|J), PH(u−|J)} and {PH(v+|J), PH(v−|J)} satisfy following equation.

{

PH(u0|J) =
PH(u− |J)+PH(u+ |J)

2

PH(v0|J) =
PH(v− |J)+PH(v+ |J)

2

(13)

The equation is true for different values of N and n.

5.7.2 Wave distributions and representations

Interference properties are observed in {PH(u+|J) = PH(u−|J)} conditions. Under +
synchronous addition operations, relevant values meet 0 ≤ u1, v1, u−, v−, u+, v+ ≤ 1.
Checking {PH(u1|J), PH(v1|J)} distributions and compared with {PH(u+|J), PH(u−|J)} and
{PH(v+|J), PH(v−|J)}, non-equations and equations are formulated as follows:

{

PH(u1|J) = PH(u0|J)
PH(v1|J) = PH(v0|J)

(14)

Spectra in different cases illustrate wave interference properties. Single and double peaks
are shown in interference patterns similar to interference effects in classical double slit
experiments.

5.7.3 Non-symmetry and non-anti-symmetry

However, for the {PH(u+|J) = PH(u−|J)} non-symmetry cases, there are significant
differences between {PH(u0|J), PH(v0|J)} and {PH(u1|J), PH(v1|J)}. Such cases have
interference patterns with more symmetric properties than single path and particle
distributions.

Four anti-diagonal positions are linked to symmetry and anti-symmetry pairs, twelve other
pairs of functions belong to non-symmetry and non-anti-symmetry conditions. Their meta
elements can be identified by the relevant variant expressions.

6. Other relevant measurements and properties

6.1 Quaternion measurements

It is interesting to note the relationship between the variant quaternion and other quaternion
measurements.
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6.1.1 Variant quaternion

In the variant quaternion, ∆ f (X) = (N⊥, N+, N−, N⊤), N = N⊥ + N+ + N− + N⊤.

6.1.2 Einstein quaternion

Einstein’s two-state system of interaction (N1, N2, N12, N21) allows the following equations to
be established.

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

N1 = N⊥ + N+

N2 = N− + N⊤
N12 = N+

N21 = N−

N = N1 + N2

(15)

From the equations, the measured pair {N21, N12} has a 1-1 correspondence to {N−, N+}.

6.1.3 CHSH quaternion

Selecting + → 1,− → 0, CHSH’s N±,±(a, b) measurements meet
⎧

⎪

⎪

⎨

⎪

⎪

⎩

N+,+(a, b) → N⊤
N+,−(a, b) → N−

N−,+(a, b) → N+

N−,−(a, b) → N⊥

(16)

(N++, N+−, N−+, N−−) → (N⊤, N−, N+, N⊥), let N = N++ + N+− + N−+ + N−−. CHSH
quaternion is a permutation of the variant quaternion.

6.1.4 Aspect quaternion

Aspect’s quaternion (Nt, Nr, Nc, Nω) have following corresponding:
⎧

⎨

⎩

Nt → N−

Nr → N+

Nω → N
(17)

For Nc, there is no parameter in the variant quaternion for parameter Nc. Nc indicates joined
action numbers to distinguish single and double paths, corresponding to {u1, v1} times.

This parameter is of significance in an actual experiment. In a simulated system, the parameter
provides a control coefficient that separates two types of paths {u0, v0} and {u1, v1} that
would be measured in real experiments.

6.2 Different particle models

From Newton’s particles to Young’s Double slit experiments, the question of how to
distinguish particle and wave measurements has a long history [Hawking & Mlodinow (2010);
Penrose (2004)]. From a measurement viewpoint, recent activities testing Bell Inequations can
be seen to be consistent with historical viewpoints [Jammer (1974)].

The fundamental assumptions of Bell Inequations are based on a local realism [Eberhard
(1978); Fine (1999)]. A key condition of measure theory can be seen in a review of authoritative
definitions of local realism [SEP (2009)].
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6.2.1 Independent conditions in probability

Kolmogorov developed modern probability construction [Ash & Doléans-Dade (2000)] to use
measure theory approaches to handle probability measurements. Modern expressions of Bell
Inequalities have many forms [SEP (2009)], all of these are based on the conceptual framework
of locality which is understood as the conjunction of independent conditions on probability
measurements.

For any independent events A, B,

P(A ∩ B) = P(A)P(B)
P(A ∪ B) = P(A) + P(B)− P(A ∩ B), 0 ≤ P(A), P(B) ≤ 1
P(A ∪ B) ≤ P(A) + P(B)

(18)

Probability measurement expressions play the core role in Bell Inequalities. In real single
photon experiments, people found that P(A ∪ B) ≤ P(A) + P(B) did not hold true.

In quantum reality environment, testing measurements could be P̃(A ∪ B) > P̃(A) + P̃(B)
under specific conditions.

6.2.2 Bell inequalities and Newton-Einstein-Feynman particle distributions

From a measurement viewpoint, measurements of local realism correspond to a real number
construction that links to Kolmogorov probability [Ash & Doléans-Dade (2000)]. von
Neumann (1932,1996)’s mathematical foundation of quantum mechanics is based on a
complex number construction. By their nature, these measurement constructions reveal
significant differences between the classical and complex probability framework.

Probability deductions under local realism must be restricted to real number systems. Under
the independent condition, P(A ∪ B) ≤ P(A) + P(B) is always true.

6.3 Further predictions

Observing modern experiments to test Bell Inequations, it is necessary to measure the events
in synchronous conditions to create multiple pairs of photons. Different time conditions
indicate asynchronous and synchronous conditions playing a critical role in distinguishing
between classical and quantum activities. Experimental evidence and case study results are
not sufficient at this time to permit firm propositions. However, a summary of predictions
for the measurement construction of variant frameworks which can be extrapolated from the
simulations is provided below.

Prediction 1: Left distributions have relationships showing polarized vertical behaviors.

Prediction 2: Right distributions have relationships showing polarized horizontal behaviors.

Prediction 3: D-P distributions have relationships showing classical particle statistical
behaviors.

Prediction 4: D-W distributions have relationships showing wave interference statistical
behaviors.

Prediction 5: Under the same conditions of Bell Inequations, it will be possible to design and
implement experiments to distinguish D-P and D-W distributions in real photon experimental
environments.
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(a) Left

(b) Right

390 Advanced Topics in Measurements

www.intechopen.com



From Local Interactive Measurements to Global Matrix Representations on Variant Construction 21

(c) D-P

(d) D-W
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(e) Left

(f) Right
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(g) D-P

(h) D-W

Fig. 4. (a-h) Even number groups: N = {12}, f ∈ B4
2 Eight Matrices of Global Matrix

Representations. (a) Left; (b) Right; (c) D-P; (d)D-W in symmetry conditions; (e) Left; (f)
Right; (g) D-P; (h)D-W in anti-symmetry conditions.
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(a) Left

(b) Right
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(c) D-P

(d) D-W
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(e) Left

(f) Right
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(g) D-P

(h) D-W

Fig. 5. (a-h) Odd number groups: N = {13}, f ∈ B4
2 Eight Matrices of Global Matrix

Representations. (a) Left; (b) Right; (c) D-P; (d)D-W in symmetry conditions; (e) Left; (f)
Right; (g) D-P; (h)D-W in anti-symmetry conditions.

397
From Local Interactive Measurements to Global Matrix Representations on Variant 
Construction – A Particle Model of Quantum Interactions for Double Path Experiments

www.intechopen.com



28 Measurement Systems

Prediction 6: It will be much easier to design and implement key experiments to distinguish
D-P and D-W behaviors in asynchronous conditions than in synchronous conditions.

In other words, under proposed variant measurements, the simplest effects are polarized
properties in Left and Right matrices. Both D-P and D-W distributions are generated from
pairs of polarized signals in general cases. In addition, significant differences can be observed
between D-P and D-W distributions in asynchronous conditions. This set of theoretical
predictions could help experimenters to design and implement effective experiments to check
variant measurements under real quantum environments.

6.4 Two conjectures

Back to Young’s waves and Newton’s particles, Bohr’s complementarity, EPR and Feynman’s
particle and wave conditions [Hawking & Mlodinow (2010); Jammer (1974); Penrose (2004)],
it is essential to list two conjectures to summarize our results as follows:

Conjecture 1. Measurement results of Newton-Einstein-Feynman particles and Variant D-P
models must obey Bell Inequations.

This conjecture could be approved from listed models satisfied independent conditions. From
this viewpoint, Newton-Einstein-Feynman particle models and Variant D-P models could
satisfy Bell Inequalities. Bell Inequations at most could provide only a logical foundation
for different particle models.

Conjecture 2. Measurement results of Young-Bohr-Feynman waves and Variant D-W models
satisfy the same types of entanglement conditions.

Since the Local Realism cannot be supported by quantum construction, a solid foundations
is required to validate this conjecture using complex-probability conditions for different
entanglements in real quantum environments.

7. Conclusion

Analyzing a N bit 0-1 vector and its exhaustive sequences for variant measurement, from a
double path experiment viewpoint, this system simulates double path interference properties
through different accurate distributions from local interactive measurements to global matrix
representations. Using this model, two groups of parameters {uβ} and {vβ} describe left path,
right path, and double paths for particles and double paths for waves with distinguishing
symmetry and anti-symmetry properties. {PH(uβ|J), PH(vβ|J)} provide eight groups of
distributions under symmetry and anti-symmetry forms. In addition, {M(uβ), M(vβ)}
provide eight matrices to illustrate global behaviors under complex conditions.

Compared with the variant quaternion and other quaternion measurements, it is helpful to
understand the usefulness and limitations of variant simulation properties.

The complexity of n-variable function space has a size of 22n
and exhaustive vector space

has 2N . Whole simulation complexity is determined by O(22n
× 2N) as ultra exponent

productions. How to overcome the limitations imposed by such complexity and how best
to compare and contrast such simulations with real world experimentation will be key issues
in future work.
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Six predictions and two conjectures are summarized in this chapter to guide further theoretical
and experimental exploration.

In addition, real world experiments are expected to be designed and implemented in the near
future to test results given in this chapter.
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